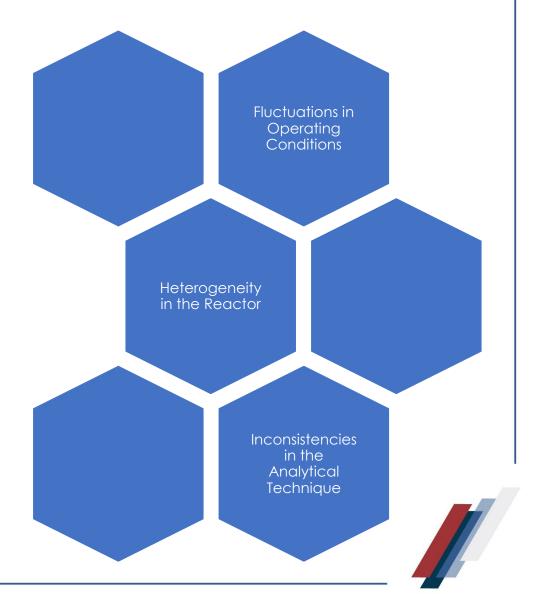


NOVEMBER 7-11 • BOSTON, MA NOVEMBER 15-19 • VIRTUAL

Linking Measurements and Statistical Methodology through the Characterization of Polymeric Materials: Hierarchical Analysis of Gel Permeation Chromatography Data


Alison J. Scott, Process Engineering and Applied Science, Dalhousie University Nicholas Filipovic and Alexander Penlidis, Chemical Engineering, University of Waterloo

> Building the Bridge in 21st Century Education: Chemical Engineering Industry + Academia

Motivation

- Consider synthesizing some material and then analyzing the material using a property characterization technique in the lab...
 - If we independently replicate
 the synthesis and subsequent
 characterization several times,
 will we get the same result?

Hierarchical Design of Experiments

- For any process with multiple steps or stages, it can be useful to know whether the variance is equally a result of all operating stages, or if certain process steps are contributing most of the variance
 - Hierarchical design of experiments: variance decomposition technique where the overall variance is separated into several components...this allows us to identify and quantify different sources of variation within the data

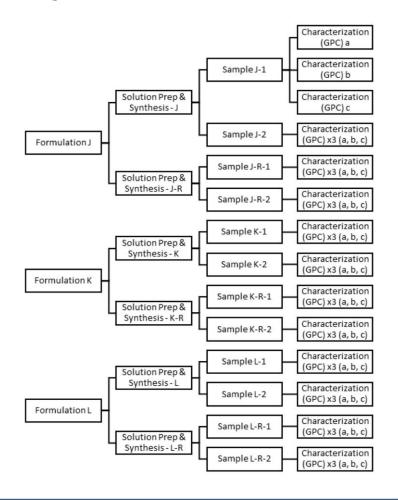
Gel Permeation Chromatography

- Opportunity to introduce hierarchical design methodology to students using characterization of polymeric materials
 - Specifically, hierarchical analysis of aqueous gel permeation chromatography (GPC) data

Historical Background

- Dubé and Penlidis (1996). Hierarchical data analysis of a replicate experiment in emulsion terpolymerization. AIChE J. 42(7): 1985-1994.
- D'Agnillo, Soares and Penlidis (1999). A hierarchical data analysis of a replicate experiment in polyethylene synthesis with high-temperature gel permeation chromatography. Polym. React. Eng. 7(2): 259-281.
- Nabifar (2012) Hierarchical Data Analysis of a Replicated NMRP of STY/DVB. PhD Thesis.
- Filipovic, Scott and Penlidis (2021). Hierarchical Data Analysis for the Characterization of Polymeric Materials: Linking Measurements and Statistical Methodology. Chem. Eng. Ed. 55(1), 11-22.

Questions inspired by research provide a valuable opportunity to engage undergraduate students and to expose them to additional statistical tools.



Project Overview

- Molecular weight determination of water-soluble terpolymers for enhanced oil recovery (polymer flooding)
 - Formulation: prepare solutions with varying compositions of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylamide (AAm) and acrylic acid (AAc) in water
 - **Solution preparation:** add initiator and adjust pH, ionic strength, monomer concentration, etc.
 - **Synthesis:** separate pre-polymer solution into several vials (samples), add to hot water bath to initiate polymerization, isolate samples
 - Characterization: prepare samples for GPC and perform analysis (dissolve samples in mobile phase, filter samples, run GPC)

Project Overview

- 3 formulations
- ×2 solution preparation & synthesis replicates
- ×2 samples
- ×3 GPC characterization
- = 36 GPC measurements (including \overline{M}_w , \overline{M}_n , M_p , PDI)

Hierarchical Analysis

A: # formulation replicates

B: # solution replicates

C: # sample replicates

D: # GPC replicates

TABLE 1 Generalized ANOVA Table for a Nested Design with Four Levels								
Source	Sum of Squares	Degrees of Freedom	MS	Expected Value of Mean Square (MS)	Component Variance Estimates			
Average	$ABCDig(ar{\mathtt{y}}^2ig)$	1						
Formulation	$BCD \sum_{a=1}^{A} (\bar{y}_a - \bar{y})^2$	A-1	m_{A}	$BCD\hat{\sigma}_A^2 + CD\hat{\sigma}_B^2 + D\hat{\sigma}_C^2 + \hat{\sigma}_D^2$	$\widehat{\sigma}_{A}^{2} = \frac{m_{A} - m_{B}}{BCD}$			
Solution	$CD\sum_{a=1}^{A}\sum_{b=1}^{B}(\bar{y}_{ab}-\bar{y}_{a})^{2}$	A(B-1)	$m_{\scriptscriptstyle B}$	$CD\hat{\sigma}_{B}^{2}+D\hat{\sigma}_{C}^{2}+\hat{\sigma}_{D}^{2}$	$\widehat{\sigma}_{B}^{2} = \frac{m_{B} - m_{C}}{CD}$			
Sample	$D\sum_{a=1}^{A}\sum_{b=1}^{B}\sum_{c=1}^{C}(\bar{y}_{abc}-\bar{y}_{ab})^{2}$	AB(C-1)	$m_{\rm C}$	$\mathrm{D}\widehat{\sigma}_{\mathrm{C}}^2 + \widehat{\sigma}_{\mathrm{D}}^2$	$\widehat{\sigma}_{C}^{2} = \frac{m_{C} - m_{D}}{D}$			
GPC	$\sum_{a=1}^{A} \sum_{b=1}^{B} \sum_{c=1}^{C} \sum_{d=1}^{D} (y_{abcd}^{} - \overline{y}_{abc}^{})^{2}$	ABC(D-1)	$m_{ m D}$	$\widehat{\sigma}_{D}^{2}$	$\widehat{\sigma}_{D}^{2}$ = m_{D}			
Total	$\sum_{a=1}^{A} \sum_{b=1}^{B} \sum_{c=1}^{C} \sum_{d=1}^{D} (y_{abcd})^{2}$	ABCD						

Hierarchical Analysis

TABLE 3 ANOVA Table for AMPS/AAm/AAc Study (A×B×C×D = 3×2×2×3)							
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square				
Average	9.11×10 ¹³	1					
Formulation	5.03×10 ¹⁰	2	2.51×10 ¹⁰				
Solution	3.26×10 ⁹	3	1.09×109				
Sample	3.47×10 ¹⁰	6	5.79×10 ⁹				
GPC	1.52×10 ¹¹	24	6.35×10 ⁹				
Total	9.13×10 ¹³	36					

TABLE 4 F-Testing Results for AMPS/AAm/AAc Study (A×B×C×D = 3×2×2×3)							
Type of Test	\mathbf{F}_{obs}	$\mathbf{F}_{\mathrm{crit}}$	Reject null?				
Sample/GPC	0.91	2.51	Fail to reject				
Solution/Sample	0.19	4.76	Fail to reject				
Formulation/Solution	23.13	9.55	Reject				

Null hypothesis:

• component variance estimate at the higher level does not provide a significant contribution to the overall variability ($\hat{\sigma}_i^2 = 0$)

If the variance at a higher design level is significantly larger than the next lowest level, then the variance component at that upper design level provides a significant contribution to the overall variability.

In this case, significant differences in variances were detected only at the formulation level $(\hat{\sigma}_A^2 \neq 0)$.

Potential Extensions

- What if we eliminate one of the formulations? Is the formulation 'level' still contributing significantly to the overall variability?
- How 'different' would a solution/synthesis step need to be before we detect a significant contribution to the overall variability?

Benefits of Teaching Hierarchical Design

- Technical skills:
 - Exposure to advanced statistical design and analysis techniques
 - Experience identifying and quantifying sources of error
 - Improved understanding of polymerization techniques and material characterization (molecular weight distributions)
 - Development of laboratory skills including sample preparation, instrument operation and data collection

Benefits of Teaching Hierarchical Design

- Transferrable skills:
 - Collaboration with classmates and communication of results
 - Exposure to complex, open-ended problems
 - Real-world extensions to industrial problem-solving (designing experiments, identifying sources of error, troubleshooting, etc.)

Benefits of Teaching Hierarchical Design

- Versatility:
 - Senior undergraduate research project
 - Undergraduate laboratory course
 - Lecture-based statistics course
 - Graduate student exercise
- Easily adapted to diverse student backgrounds, laboratory capabilities, and course timelines
 - Analysis of published experimental data
 - Material synthesis and/or characterization (not just GPC)

Concluding Remarks

- Teaching hierarchical design methodology provides students with an opportunity to identify and quantify different sources of variation within a process
- Case study: terpolymers for enhanced oil recovery were synthesized and characterized via gel permeation chromatography
 - Additional studies from references of slide 5
- Projects have real-world relevance and can be used to achieve a wide range of learning outcomes

NOVEMBER 7-11 • BOSTON, MA NOVEMBER 15-19 • VIRTUAL

Linking Measurements and Statistical Methodology through the Characterization of Polymeric Materials: Hierarchical Analysis of Gel Permeation Chromatography Data

Alison J. Scott, Process Engineering and Applied Science, Dalhousie University Nicholas Filipovic and Alexander Penlidis, Chemical Engineering, University of Waterloo

> Building the Bridge in 21st Century Education: Chemical Engineering Industry + Academia