The CACHE CORPORATION

WHAT IS CACHE?

CACHE is a not-for-profit organization whose purpose is to promote cooperation among universities, industry and government in the development and distribution of computer-related and/or technology-based educational aids for the chemical engineering profession.

CREATION OF THE CACHE CORPORATION

During the 1960s the rapid growth of computer technology challenged educators to develop new methods of meshing the computer with the teaching of chemical engineering. In spite of many significant contributions to program development, the transferability of computer codes, even those written in FORTRAN, was minimal. Because of the disorganized state of university-developed codes for chemical engineering, fourteen chemical engineering educators met in 1969 to form the CACHE (Computer Aids for Chemical Engineering) Committee. The CACHE Committee was initially sponsored by the Commission on Education of the National Academy of Engineering and funded by the National Science Foundation. In 1975, after several successful projects had been completed, CACHE was incorporated as a not-for-profit corporation in Massachusetts to serve as the administrative umbrella for the consortium activities.

CACHE ACTIVITIES

All CACHE activities are staffed by volunteers including both educators and industrial members and coordinated by the Board of Trustees through various Task Forces. CACHE actively solicits the participation of interested individuals in the work of its ongoing projects. Information on CACHE activities is regularly disseminated through CACHE News, published twice yearly. Individual inquiries should be addressed to:

CACHE Corporation
P. O. Box 7939
Austin, Texas 78713-7939
(512) 471-4933
CACHE@UTXVM.CC.UTEXAS.EDU.

CACHE NEWS

The CACHE News is published twice a year and reports news of CACHE activities and other noteworthy developments of interest to chemical engineering educators. Persons who wish to be placed on the mailing list should notify CACHE at the aforementioned address. Contributions from CACHE representatives are welcome. This issue was edited by D. M. Himmelblau with contributions from a number of CACHE members and representatives.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, recording, or otherwise, without the prior permission of the Copyright owner.
Multimedia Instructional Modules for the Chemical Engineering Laboratory .. 1

Microcomputer Chemical Engineering Programs
Edited by Bruce A. Finlayson .. 2

Computer Aided Learning in Chemical Reactor Engineering
By Richard Tanner .. 5

Interactive Computer Graphics: GNUPLOT
By J.A. Furzer .. 9

DICOF: A Package for Multivariable Controller Design in the Frequency Domain
By Osvaldo E. Agamennoni and Jose A. Romagnoli 15
CACHE Trustees

President:
Michael H. Cutlip, University of Connecticut
(BITNET: MCUTLIP@UCONNVM)

Vice President:
Ignaio Grossmann, Carnegie Mellon University
(BITNET: IGROSSM@CMU.COM)

Secretary:
Yam na Arun, Georgia Institute of Technology
(BITNET: YAMARUN@CHMENG.GATECH.EDU)

Executive Officer:
David M. Himmelt, University of Texas at Austin
(BITNET: CACHE@UTXVM.CCUTEXAS.EDU)

Academic Trustees:
L.T. Biegler, Carnegie Mellon University
(BITNET: LTB@CMU.EDU)
Brice Carnahan, University of Michigan
(BITNET: BCAR@UMC.EDU)
Jeffrey C. Davis, Ohio State University
(BITNET: DAVIS@KCC1.ENG.OHIO-STATE.EDU)
Michael P. Doherty, University of Massachusetts
(BITNET: MDH@UMASS.EDU)
Thomas F. Edgar, University of Texas at Austin
(BITNET: UTXCH@CHI.UTEXAS.EDU)
H. Scott Fogler, University of Michigan
(BITNET: HSF@CMU.EDU)
Andrew N. Hrymak, McMaster University
(BITNET: HRYMAK@MCMASTER.EDU)
Jeffrey Kantor, University of Notre Dame
(BITNET: JEFKANTOR@ND.EDU)
Sangtae Kim, University of Wisconsin
(BITNET: KIM@CHEWHE.EDU)
Richard S. Mah, Northwestern University
(BITNET: MAH@CC.ADMIN.TECH.NWU.EDU)

Industrial Trustees:
Gary E. Blau, DowElanco
Carlos R. Garcia, Shell Development Co.
(BITNET: HALE@PCVAX.DP.COM)
Norman E. Rawson, IBM
(BITNET: NERAWSON@IBMVNET.IBM.COM)
Edward M. Rosen, Monsanto Company
(BITNET: CODIS20R@WUVM.DPED)
Jeffrey J. Sirola, Eastman Chemical Co.
(BITNET: SIROLA@RODACK.COM)
Joseph D. Wright, Xerox
(BITNET: WRIGHT@MCMASTER.EDU)

Advisory Committee:
Lawrence B. Evans, Aspen Technology
James R. Fazekas, University of Texas at Austin
Thomas H. Lafferre, Monsanto Company
John J. McKetta, University of Texas at Austin

STANDING COMMITTEES
Publications:
Prof. Brice Carnahan
Dept. of Chemical Engineering
University of Michigan
Ann Arbor, Michigan 48109
(313) 964-3566

Newsletter:
Prof. David M. Himmelt
Dept. of Chemical Engineering
University of Texas
Austin, Texas 78712
(512) 471-7445

Development:
Dr. J.J. Haydel
Manager, Systems Development
Wellchook Research Center
P.O. Box 1360
Houston, Texas 77251-1360
(713) 249-8141

Conferences:
Prof. Richard S. Mah
Dept. of Chemical Engineering
Northwestern University
Evanston, Illinois 60201
(312) 491-3267

CACHE Task Forces and Committees

Electronic Mail
Prof. Paez Rozy
Dept. of Chemical Engineering
Virginia Polytechnic Institute & State University
Blacksburg, Virginia 24061
(703) 961-7628

NSF Development of Innovative Engineers
Prof. IL Scott Fogler
Dept. of Chemical Engineering
University of Texas
Austin, Texas 78712
(512) 471-7445

NSF Simulated Laboratory Modules
Prof. Gustavo V. Reklaitis
School of Chemical Engineering
Purdue University
West Lafayette, Indiana 47907
(317) 494-4075

Graphical Computer Aids for CHE Education
Prof. Bruce A. Finlayson
Dept. of Chemical Engineering, RIT-10
University of Washington
Seattle, Washington 98195
(206) 543-2250

Artificial Intelligence
Prof. George Stephanopoulos
Dept. of Chemical Engineering
Massachusetts Institute of Technology
60-562
Cambridge, Massachusetts 02139
(617) 253-3944

Process Engineering
Dr. Edward M. Rosen
Monsanto Company
P.O. Box 1360
Houston, Texas 77251-1360
(713) 249-8141

Case Studies
Prof. Masood Morari
Dept. of Chemical Engineering
206-41
California Institute of Technology
Pasadena, California 91125
(818) 356-4136

Curriculum:
Prof. James E. Davis
Dept. of Chemical Engineering
Ohio State University
140 West 19th Avenue
Columbus, OH 43210-1180
(614) 292-2359
Multimedia Instructional Modules for the Chemical Engineering Laboratory

CACHE is pleased to announce the availability of the results of its Purdue-Industry collaboration in developing instructional materials for the typical senior capstone in Chemical Engineering Laboratory. Although the modules were originally intended for use in the senior laboratory, they can be adapted for use in other courses as well. At Georgia Tech, for example, the Amoco Resid Hydrodesulfurization simulation has been used as part of a course in reactor design. Four companies participated in the preparation of the materials as listed in Table 1.

Table 1: Materials Available

<table>
<thead>
<tr>
<th>Company</th>
<th>Process/Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoco</td>
<td>Resid hydrosulfurization</td>
</tr>
<tr>
<td>Dow Chemical</td>
<td>Latex emulsion polymerization</td>
</tr>
<tr>
<td>Mobil</td>
<td>Catalytic reforming</td>
</tr>
<tr>
<td>Tennessee Eastman</td>
<td>Methyl acetate reactive distillation</td>
</tr>
</tbody>
</table>

Each group of materials consists of a video tape to show the actual process, a disk containing computer programs to simulate the process, and a set of written materials. The computer programs run on a Sun workstation, and make use of the IMSL libraries. They should be portable to any system running under UNIX and supporting X Windows.

At Purdue, the materials were used as part of the laboratory course as follows. Students worked in groups of three, each group was headed by a (a) group leader, (b) an experimentalist, and (c) a design engineer. Each group worked on three month-long projects during the semester. Table 2 shows how the eight three-hour lab periods were allotted to each project.

Table 2 - Lab Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Period</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Planning/Planning Conference</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>Experiments</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Experiments</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>Experiments/Oral Progress Report</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Follow-up problem</td>
</tr>
<tr>
<td>IV</td>
<td>7</td>
<td>Follow-up problem</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Follow-up problem</td>
</tr>
</tbody>
</table>

A final report was due one week after Period 8.

Before the first scheduled lab period, the students attended an orientation meeting with the instructor, who answered general questions about the process, the simulation, and the lab. They received a detailed written description of the process, including their initial assignment letter, and they viewed the video plant tour. In keeping with the attempt to provide a sense of realism in the project, the students were given their assignments on official company stationary.

As seen in Table 2, the first two lab periods were spent in preparing a detailed plan of attack. Before students were permitted to begin taking data, they had to present their experimental plan to the instructor in a planning conference. The purpose of the planning conference was twofold: to ensure that the students understood what they were supposed to be doing, and to give them practice in explaining technical concepts.

Once the students demonstrated to the instructor's satisfaction that they were ready to begin their experiments, they were shown how to use the simulator. The programs are designed to be easy to use, even for students having no previous experience with Sun computers.

Once the students finished taking data for the initial assignment, they received a second assignment letter, again on official company stationary. The follow-up problem typically required that they use the data they obtained to perform some useful task such as to recommend a startup procedure, or to explain how to make modifications to the current process equipment. During the sixth lab period, the group leader presented a 15-minute oral progress report to an audience of professors and students. His or her report was videotaped and critiqued in private. The instructor plays four important roles in the course:

1. **Mother Nature** - sets the mean values and random variability of all parameters used in the simulation.
2. **Boss** - receives reports from the group.
3. **Consultant** - helps with specific technical questions, but charges a fee that must be paid from the budget.
4. **Instructor** - assigns the grades.

The initial price for each set of materials is $200, and the annual fee for continued use of the materials is $25. They may be ordered from CACHE on the order form in this issue.
Microcomputer Chemical Engineering Programs

Developed by Professors
Edited by Bruce A. Finlayson

Have you wondered what microcomputer programs are being used in other chemical engineering curricula? This column provides a mechanism for University professors to let others know about the programs they’ve developed and are willing to share on some basis.

The program should be described by a 250 word description, machine requirements, and ordering information. These programs should be ready to be shipped out the door, and should have been tested by students at more than one University. It would be helpful if the specific Chemical Engineering course were identified in which the program is useful. The programs will not be reviewed by Professor Finlayson, nor will they be certified by CACHE.

In order to edit the column efficiently, the submissions must be made to Finlayson via BITNET, address FINLAYSON@MAX or on a diskette in ASCII. He will acknowledge receipt of the submission via BITNET and will send the edited column to the CACHE office via BITNET. Letters cannot be accepted.

The column can only be successful if professors submit their write-ups. Let us hear from you!

PICLES: Process Identification and Control Laboratory Experiment Simulator

Prof. Douglas J. Cooper
University of Connecticut

PICLES is an easy-to-use simulator that runs on IBM PC compatible computers to provide real-world experience to those studying process dynamics and control. PICLES is not a control system design package. Rather, this teaching tool, designed specifically for academic and short course use, provides the realistic processes for students to practice upon.

Students can select one of the PICLES processes and manipulate the input variables to obtain pulse or step test data for identification, just as they would on a real process. After performing an identification analysis using the data, students can then design and implement a PID controller to obtain a visual appreciation for the relationship between initial design methods and resulting controller performance.

The available processes include nonlinear behaviors so, students can learn how to compromise controller tuning to maintain stability over a range of nonlinear operation. A “design your own process” facility lets students study, for example, how model order affects controller stability.

There are processes with and without dead time, noisy and quiescent processes, and integrating process, a process with a negative steady state gain, one that has a nonminimum phase disturbance response, and a multivariable process. PICLES lets students visually appreciate the implications for controller design.

The available controllers are all PID, and the menus make it easy to compare P-only, PI, PD and PID control modes. Students can compare PI velocity mode with PI position mode, and the difference in performance for derivative on measurement versus derivative on controller error. The Smith predictor lets them learn the benefits of model-based dead time compensation and the feed forward element lets them learn about model-based disturbance compensation. Decouplers enable a study on model-based reduction of controller interactions for multivariable applications. CACHE will shortly be distributing PICLES.

More information can be obtained from:

Douglas J. Cooper
Dept. of Chemical Engineering
University of Connecticut, U-222
Storrs, CT 06269-3222

Phone: (203) 486-4092
Fax: (203) 486-2959
Internet: cooper@eng2.uconn.edu

***** ***** ***** ***** ***** ***** *****

EZPlot, XY - Turbo Pascal Units (Libraries) for developing graphical Chemical Engineering Applications.

Dr. James P. Henley Jr.
Auburn University

EZPlot is a graphics unit for plotting functions and data (a unit is like a subroutine library, but much more powerful). XY is a unit for fitting experimental data. EZPlot was developed as a simple, yet powerful tool for visualizing two dimensional numeric data, functions and calculations, and is used in the freshman Chemical Engineering course at Auburn. Students quickly learn to write Turbo Pascal programs to graph functions and data. Programs written in Turbo Pascal using the EZPlot unit will run on any IBM compatible computer with CGA, MCGA, EGA, or VGA graphics systems.
XY was developed for binary vapor liquid equilibrium calculations in Unit Operations and Thermo II. The primary procedure in the XY unit is called fit_data and is called in one statement:

```c
fit_data('ethanol.dat');
```

The procedure opens the data file "ethanol.dat", does a curve fit of the data, and produces two functions, Xe(y) and Ye(x). In a McCabe Thiele Distillation program, for example, the equilibrium curve, Ye(x) can be drawn by the EZPlot procedure draw:

```c
draw(Ye);
```

And in the stage to stage calculations, each time the vapor composition (x) needs to be calculated from the vapor composition (y) on the same tray, the Xe function can be called:

```c
x=Xe(y);
```

When used together, EZPlot and XY allow a wide range of Chemical Engineering Problems to be solved with very short Turbo Pascal Programs. For example, a program that does a graphical McCabe Thiele solution using experimental VLE data is only 70 lines. Other programs written by the author using these units include graphing partial molar properties, liquid liquid extraction, multi-stage distillation, VLE diagrams from Benedict-Webb-Rubin, Redlich-Kwong, Wilson, Van Laar, and Margules.

More information can be obtained from:

Dr. James P. Henley Jr.
Dept. of Chemical Engineering
Auburn University
Auburn University, AL 36849

INTERNET: henley@eng.auburn.edu
FAX: (205) 844-2063

UC SIGNAL: Graphical Configuration of Multiloop Control System Signals

Prof. Alan Foss

UC ONLINE - version 2.1: Real-Time Multiloop Control System

Prof. Alan Foss

Almost any imaginable multiloop control system can be placed in operation on laboratory apparatus or simulated processes with this easily learned PC-based computer program. Multiloop feedback, feedforward, and decoupling are easily accomplished. So too are gain schedulers, cascades, overrides, and variable structure systems. System elements at the user's disposal are PID controllers (both velocity and position algorithms), summers, multipliers, dividers, square roots, high- and low-selects, delays, lead-lags, ramps, and sinusoids. All may be speedily incorporated into a full control system through use of our interactive graphics program UC SIGNAL (see preceding listing).

Process simulations and custom modules can be written in Microsoft (tm) Fortran and/or C and linked with the program object modules. A distillation column simulation is available as a separate license.

New features in this version include a screen displaying
controller variables and status in a graphical format. One can now bound the rate of change of the output of a controller. Panel displays of system element parameters have been enhanced. Sinusoidal, ramp, and dead-time variables have been added. Controllers now incorporate an audible alarm feature. Datalogging to disk file at user selected intervals has been added. Simulations can now be run at accelerated rates for rapid evaluation of control system performance.

A student tutorial, a user's guide, and an instructor's reference are included. We provide technical support for this product by telephone and/or by electronic mail.

This and earlier versions have been distributed to some 45 institutions worldwide.

Equipment needed: same as for UC SIGNAL (see preceding listing except no mouse is required).

North American academic departmental site license: $800.

A demonstration diskette detailing the major features is available.

Address inquiries to:

Prof. Alan Foss
Dept. of Chemical Engineering
University of California
Berkeley, CA 94720

Phone: (510) 642-4526
Fax: (510) 642-4778
E-mail:

Internet: online@garnet.berkeley.edu
BITNET/EARN: NJE/RSCS: ONLINE at UCBGARNE.BITNET
UUCP: ucbwax!garnet.berkeley.edu!online

***** ***** ***** ***** ***** ***** ***** *****

The following programs have been listed in prior editions of the CACHIE News.

1. Vapor compression refrigeration cycle, No. 24 and 25
Stanley Sandler, University of Delaware

2. Compression of an ideal gas, No. 24 and 25, Stanley Sandler, University of Delaware

3. Computer Aided Analysis for Process Systems, No. 24 and 25, Ted Cadman, University of Maryland

4. Discounted Cash Flow Analysis (and Present Worth), No. 24 and 25, Bruce A. Finlayson, University of Washington

5. Short-cut Distillation and Flash Calculations, No. 24 and 25, Bruce A. Finlayson, University of Washington

Bruce A. Finlayson, University of Washington
7. Engineering Plot (ENGNPLOT), No. 25 and 26, Bruce A. Finlayson, University of Washington

8. Educational Software for Teaching Process Dynamics and Control, No. 26 and 27, Andrew Hrymak, McMaster University

9. MIDAS - Microcomputer Integrated Distillation Sequences, No. 26 and 27, Andrew Hrymak, McMaster University

10. A Rigorous Multicomponent Multistage Steady-State Distillation Rating Program, No. 27 and 28, E.C. Roche, Jr., New Jersey Institute of Technology

11. RESIM. A Reactor Design Teaching Tool, No. 27 and 28, B.W. Wojciechowski, Queen's University

12. Real-time Multiloop Computer Control Program, UC ONLINE, No. 27 and 28, by Alan Foss, University of California, Berkeley

13. Real-time Dynamic Distillation Simulation and Relative Gain Program, No. 27 and 28, by Alan Foss, University of California, Berkeley

14. The Kinetics and Selectivity of Consecutive Reactions, No. 29 and 30, by Alvin H. Weiss and Reynold Dodson, Worcester Polytechnic Institute

15. Equations of State, No. 30 and 31, by Kenneth R. Jolls, Iowa State University

16. Thermal Design of Shell and Tube Heat Exchangers, No. 31 and 32, by Nurcan Bac and Ilker Oral, Worcester Polytechnic Institute

17. Optimum Series Bioreactor Design, No. 31 and 32, by Gordon Hill, University of Saskatchewan

18. REACT! A Chemical Equilibrium Calculator, No. 32 and 33, by James A. O'Brien, Yale University

19. BioDesigner, No. 33 and 34, by Demetri Petrides, New Jersey Institute of Technology

20. WILSON - A non-ideal vapour-liquid equilibrium tool, No. 34 and 35, by Dr. R.E. Hayes, University of Alberta

Page 4

Spring 1993
INTRODUCTION

A computer aided learning (CAL) system for chemical reactor engineering has been developed at Heriot-Watt University. It is used in parallel with traditional teaching techniques in the introductory course to reactor engineering for chemical engineering undergraduates, in the 3rd year of a 4 year BEng Honours degree. The development is based on software used for a proven system for the teaching of mathematics at Heriot-Watt, the Computer Aided Learning project in Mathematics, (CALM)\(^1\).

The CALM project began in 1985 as part of the Computers in Teaching Initiative set up by the Computer Board for UK Universities. A grant of £125,000 was used to equip a network laboratory of 32 Research Machines 186 microcomputers. Each machine has a megabyte of RAM and can be driven via a file server or used in individual mode via its own disc drive. The CALM software is written in Pascal and can be easily adapted to new areas. It allows group tutorials or individual revision and there is on-line continuous assessment based on the student’s responses to the tutorial questions.

This particular development complements lectures on stoichiometry, chemical kinetics, chemical equilibrium and design of the ideal batch reactor, plug flow reactor (PFR) and continuous stirred tank reactor (CSTR). O. C. Levenspiel’s “Chemical Reaction Engineering” is the recommended text for the course and the modules are loosely based on material from the first 6 chapters\(^2\).

STRUCTURE OF SYSTEM

Six reactor engineering modules have been developed to date, each consisting of a theory section and worked examples. The tutorial questions may include material from more than one module.

Theory Section

The system is only available after the students have covered the relevant theory in the lecture course and is used in addition to rather than in place of traditional tutorials. As the students are expected to have lecture notes with them, the theory sections are brief, providing only definitions, important formulae and a summary of the main concepts. At no stage is it necessary for the student to read long sections of text from the screen.

As an example, the theory section for the CSTR module consists of just four screens: a drawing of the reactor, a description of the idealities assumed, the design equation and the graphical representation of this equation. Text is revealed stage by stage on the screen, enlivened by the appropriate use of colour.

Graphics and animation are often used to aid understanding and maintain interest. For instance Figure 1 is the graphical representation of the CSTR design equation mentioned above. The graph is slowly plotted on the screen. After a key section from the student, the rectangular block is gradually drawn and shaded in to demonstrate the graphical design method.

Another example of the use of animation is from the theory section for batch reactors, to demonstrate their mode of operation. In a representation of the reactor, the liquid level slowly rises until the reactor is full. After a response from the student, a comment on the screen explains that the reaction is complete and the liquid level falls until the reactor is empty.

Worked Examples

A well structured worked example has the dual role of clarifying the theory and helping to develop a good problem solving technique. Hopefully the students will take the care in presenting their answers in written examinations. CAL comes into its own here as it allows the student to control the rate at which the solution is presented. This is demonstrated by Figures 2 and 3, two successive screens from a worked example in the stoichiometry module. A key response is required from the student to move on from one screen to the next.

It is important that the question remains highlighted at the top of the screen throughout the solution for the student to refer to. Note that all equations used are shown in algebraic form before the data is entered, to help reinforce the theory. The use of colour allows significant results to be highlighted, such as the calculated concentrations in Figures 2 and 3.
This design equation can be represented graphically by:

\[\frac{1}{-r_A} \]

The shaded area equals \(\frac{X}{CA_0} \)

Press ANY KEY to continue

Figure 1: Graphical Representation of CSTR Design Equation

WORKED EXAMPLE 1

Consider the constant volume reaction \(A + 2B \rightarrow C + 2D \)
\(CA_0 = 4 \text{ kmole/m}^3, CB_0 = 10 \text{ kmole/m}^3, CC_0 = 1 \text{ kmole/m}^3, CD_0 = 0 \).

Find final concentrations of \(A, B, C, \text{ and } D \) if 50% of \(A \) reacts.

Final concentration of \(B = CB_0 \times (1/2) \times CA_0 \times XA \)

\[= 10 \times \frac{1}{2} \times 4 \times 0.5 \]

\[= 6 \text{ kmole/m}^3 \]

Press ANY KEY to continue

Figure 2: First Screen from Worked Example on Stoichiometry

WORKED EXAMPLE 1

Consider the constant volume reaction \(A + 2B \rightarrow C + 2D \)
\(CA_0 = 4 \text{ kmole/m}^3, CB_0 = 10 \text{ kmole/m}^3, CC_0 = 1 \text{ kmole/m}^3, CD_0 = 0 \).

Find final concentrations of \(A, B, C, \text{ and } D \) if 50% of \(A \) reacts.

If 50% of \(A \) reacts, \(XA = 0.5 \)

Final concentration of \(A = CA_0 \times (1 - XA) \)

\[= 4 \times (1 - 0.5) \]

\[= 2 \text{ kmole/m}^3 \]

Press ANY KEY to continue

Figure 3: Second Screen from Worked Example on Stoichiometry
Tutorial Questions

Figure 4 shows the final screen from a tutorial question concerning two continuous flow reactors in series:

![Diagram of two continuous flow reactors in series]

QUESTION:

\[\text{A \rightarrow R} \]

100 m³/hr of a 0.5 kmole/m³ solution of A is to be processed in a CSTR and PFR in series.

- PFR volume = 100 m³
- CSTR volume = 200 m³

\(r_A = \text{kmole/m}^3 \text{hr} \)

We want to see how the order of reactors affects conversion.

You will now be asked to input your answer(s): 6 parts.

- What is the space time for the CSTR (hr)? 72 ✔
- What is the space time for the PFR (hr)? 17 ✔
- With PFR first, what is intermediate conversion? 80 ✔
- With PFR first, what is final conversion? 89.2 ✔
- With CSTR first, what is intermediate conversion? 70 ✔
- With CSTR first, what is final conversion? 83 ✗

CORRECT ANSWERS: 2, 1, 80, 89.2, 70, 86.4

YOUR SCORE for this question: 5 out of a possible 6

Press ANY KEY to continue

Figure 4: Tutorial question on Continuous Flow Reactors

The question is quite complex, requiring an understanding of the PFR and the CSTR, but the student is assisted by the careful division of the question into relatively simple steps, such as the calculation of space times and intermediate conversions in this example.

Splitting the question in this way once again helps to develop problem solving skills. The subsequent part of the question only appears on the screen after the student has attempted the previous one. A great deal of thought is required in selecting sufficiently complex problems and in subdividing them.

Each question can be attempted at three levels of difficulty.

The simplest level gives the correct answer for each stage immediately the student has made an attempt. The intermediate one marks the attempt without correcting it if wrong, as in Figure 4. At the most difficult level, the marking is carried out after the question has been completed.

Figure 4 shows that graphics can be effectively used to clarify the question. Note also that although the required answers in this example are numerical, algebraic ones can be programmed - these can prove to be a greater test of the student.

STUDENT FEEDBACK

Individual students have used the system as well as supervised classes of up to twenty in the CALM laboratory. In order to assess its effectiveness, students using it have completed a questionnaire and the feedback has been very positive. The general opinion is that it serves its intended role as a backup to existing teaching methods extremely well and that it makes the theory become easier to follow, thus resulting in better understanding. A frequent comment is that a teaching aid of this type increases interest in the subject, leading to a greater willingness to study.

The development has been carried out by final year chemical engineering undergraduates as part of their degree assessment. As well as enhancing their programming ability, they have gained an increased understanding of the subject matter; designing the programmes was a searching test of their grasp of the theory.

FUTURE DEVELOPMENTS

It is intended to develop further CAL chemical engineering modules at Heriot-Watt. Within chemical reactor engineering, nonideal flow is a prime candidate as this is a topic that students traditionally have difficulty in understanding. In addition, residence time distributions can be effectively presented using animated graphics.

CAL is also being considered to assist the teaching of first year undergraduate courses such as the introduction to...
material balances. Providing a one-to-one learning environment and being available outside normal teaching hours, it can help with the difficult academic transition between school and university.

This system is one of several developments in CAL at Heriot-Watt University. Leading the way is the recently established Institute for Computer Based Learning. This Institute implements computer based learning methods across the whole university curriculum and pursues research into their impact on teaching. A key development is a "classroom of the future" in which the tools being developed will be used and assessed.

This development was made on a Research Machines Nimbus 186 and is limited to use on that machine. Copies are available on disc (requiring approximately 300 kbytes of system memory) from R.K.Tanner at Heriot-Watt University free of charge. Alternatively, an IBM version of the CALM software itself is now available from Dr J.H.Renshaw, Faculty of Mathematical Science, Southampton University, Southampton, United Kingdom.

ACKNOWLEDGEMENTS

The authors would like to thank Graeme Brown and Quentin Kirk who helped to develop the system as part of their undergraduate studies and Maureen Foster for her programming advice.

REFERENCES

Interactive Computer Graphics: GNUPlot

By I.A. Furzer
Department of Chemical Engineering
University of Sydney
NSW 2006
AUSTRALIA

Abstract

GNUPlot can quickly produce plots, surface plots and contours. It is interactive with the user and in many cases only a 2 line instruction is required. The development work on GNUPlot has been done by a body of people working worldwide. It is freely available through E-mail. There are many teaching examples in mathematics, process control and chemical engineering simulation which can interact with GNUPlot. This paper provides enough information to use GNUPlot and more.

Introduction

GNUPlot is a graphical package with the strange name but it is a name to be remembered. It is highly interactive with the user and super friendly. If you have the function \(f(x) \) given by equation (1) then you might want to know if there are maxima or minima near the origin.

\[
f(x) = e^{2\pi x^3}
\]

It is fairly difficult to know the answer to this question without going through the usual gradient analysis. In the following solution the computer identification and prompt is given by,

\[
\text{furerz} \%
\]

the GNUPlot solution consists of only 2 lines

\[
\begin{align*}
\text{furerz} & \% \text{ gnuplot} \\
\text{gnuplot} & \% \text{ splot exp ((\sin(2\pi x))}
\end{align*}
\]

The graphical output is given in the snapshot of the screen shown in Figure 1. The first line calls GNUPlot and prints a copyright message then the gnuplot prompt. The instruction after the prompt is the powerful plot instruction followed by the function. The output is almost instantaneous and the location of the maxima and minima can be viewed with ease. This is what is meant by the expression, an interactive graphical package. To quit from GNUPlot type,

\[
\text{gnuplot} \> q
\]

Figure 1: Snapshot of the Sun Sparc 2 Workstation screen
3D Surfaces

GNUPLOT provides a super friendly facility for viewing 3D surfaces. This is particularly important in optimization when searching for maxima or minima. Consider the following function of \(x \) and \(y \).

\[
f(x, y) = \frac{x^2}{2} - \frac{y^2}{3}
\]

The GNUPLOT solution is

\[
\text{gnuplot} > \text{set contour base}
\text{gnuplot} > \text{splot} ((x**2)/2.0 - (y**2)/3.0)
\]

The interactive output appears on the screen as is shown in Figure 2. To quit from GNUPLOT type,

\[
\text{gnuplot} > \text{q}
\]

![Figure 2: Example of the splot instruction](image)

Contours

GNUPLOT can also provide contours very quickly. The contours of the function \(F(x, y) \) given by equation 2 can be seen with the following GNUPLOT solution:

\[
\text{gnuplot} > \text{set contour}
\text{gnuplot} > \text{splot} ((x**2)/2.0 - (y**2)/3.0)
\text{gnuplot} > \text{q}
\]

The interactive output is shown in Figure 3, with the contours projected onto the base of the figure. The two GNUPLOT instructions plot and splot can handle most graphical problems met by chemical engineers in an interactive manner. Most users of GNUPLOT can stop here, with only the plot and splot instructions.

Computer Systems

The above examples of GNUPLOT were all run on a Sun Spurce 2 Workstation. GNUPLOT has been tested on a wide range of computer systems that include Amiga, AT&T B1, DecStation 5000/2000, IBM PC XT, IBM PC AT, IRIS 4D/70G, IRIS 4D/25G, Next, Pyramid 90X, Sun 3, Sun 4, and Vax 6410. This list is being extended all the time and your computer system is almost certain to be covered by GNUPLOT. It should be noted GNUPLOT operates under a
Figure 3: Examples of contours on the base

wide range of operating systems including MSDOS and UNIX.
GNUPLOT is copyright by Thomas Williams and Colin Kelley
and they have provided permission for use provided the
copyright notice shown on Figure 1 is given. A large number
of contributors have developed GNUPLOT to Version 3.2 and
an updated version is expected soon. This worldwide effort has
been by Ed Kufstein, Gershon Elber, Kevin Russo, Alex Woo,
Russell Lang, Nick Strobel, Craig Johnston, Michael Schuh,
Wolfgang Moeller, Carsten Steger and Rob Cunningham.

There is an X11 version of GNUPLOT which operates
under Openwindows. This version is particularly important
for high speed workstations. It has been tested on Apollo 400S,
Convex C2, Cray 2, Cray Y-MP, IBM RS/6000, NeXT,
Sequent Dynix, Sun 3, Sun SPARC, Vax BSD and Vax Ultrust.

Demonstration Packages

GNUPLOT comes with a wide range of demonstration
packages to provide straight forward plot and plot examples
to more sophisticated examples demonstrating the full
range of GNUPLOT. The following demo files come with
GNUPLOT, bivariate, contours, controls, electron, errorbar,
hidden, param, polar, polar3d, simple, surface 1, surface 2,
using and world. It is very useful to examine these files and run
them with GNUPLOT to see a wide range of examples. To see
all the examples, perform the following GNUPLOT instructions
after moving to the demo directory.

```
fuizer % gnuplot
  gnuplot > load "all.demo"
  gnuplot > q
```

Improved Plots

Figure 3 shows the surface and contour plots of
equation (2). The surface plot contains a 10 x 10 grid which
often provides sufficient data to see the surface shape. Due to
the twisting of the curved surface, some lines are shown which
should be hidden. To improve the figure use,

```
fuizer % gnuplot
  gnuplot > set isosamples 20
  gnuplot > set hidden3d
  gnuplot > splot ((x**2)/2.0 - (y**2)/3.0)
  gnuplot > q
```

The output showing the improved quality of the surface is
shown in Figure 4. The surface is a hyperbolic paraboloid with
a saddle point minimum.

GNUPLOT has considerable computing power and the difference
equation give by May (1976) can be readily solved. May
was examining the bifurcating hierarchy of stable cycles
leading to random fluctuations of the following equation.

\[
x_{t+1} = ax_t(1 - x_t)
\]

(3)
Figure 4: Example of the 20 x 20 grid and hidden line removal

He found there was a stable cycle of period 3 and was able to demonstrate this phenomena by the intersections of the relationship between x_{i+3} and x_i when $a = 3.9$ and a line of slope 1 passing through the origin. The GNUPLLOT solution is given in the x range [0:1] by,

```
fuzzer % gnuplot
gnuplot> a = 3.9
gnuplot> one (x) = a * x * (1-x)
gnuplot> two (x) = a * one (x) * (1 - one (x))
gnuplot> three (x) = a * two (x) * (1 - two (x))
gnuplot> plot [0:1] three (x), x with lines
```

The intersections are shown on the output in Figure 5.

GNUPLLOT Installation

GNUPLLOT would normally be installed on your computer system by the resident UNIX guru. This section may contain some unfamiliar instructions for readers not familiar with UNIX. E-mail information on GNUPLLOT can be obtained from,

```
info-gnuplot@ames.arc.nasa.gov
```

The present tarred version of GNUPLLOT is

```
gnuplot3.2.tar.Z
```

This is available from sources in North America, Europe, Australia and elsewhere, see info-gnuplot. Files are transmitted worldwide through the ftp facility. There are deposited in the following directory,

```
/usr/local/src/gnuplot
```

These files contain a number of README files which should be read. README.Install contains compile instructions on the C compiler and the Makefile. The Makefile is modified to suit your computer system. The installation provides man pages and a help facility. GNUPLLOT documentation is in the docs directory and can be supplied interactively when an error is made, through the man pages or as a printed document. There is a considerable amount of work required in this installation but it is worth it.

GNUPLLOT Environment

The UNIX shell information is kept in the file .cshrc. The following alias is helpful.

```
alias g gnuplot
```
The call to GNUPLOT is simplified to,

```bash
furner % g
```

The GNUPLOT documentation runs to 40 pages and no attempt will be made here to describe all the features. For presentation of figures for printing quality in a journal it is possible to alter the GNUPLOT environment through the set instruction to add a title, an x label, a y label and othertics and arrows. Two set instructions have already been used, set isosamples and set hidden3d. The set size instruction is useful in producing a square figure.

```bash
set size 0.66, 1
```

After a plot or splot run it is possible to preserve the graph as a postscript file for printing on a laser printer. There terminal is set to postscript, the output filename given and the graph is replotted by,

```bash
gnuplot > set term postscript portrait "Times-Roman" 14
```

To print the figure with a Sun Sparc2 Workstation use,

```bash
pl file.ps
```

It is possible to preserve all the previous GNUPLOT instructions before quitting. This is done through the save instruction. In the previous example to save everything on a file use,

```bash
gnuplot > replot
gnuplot > save "file.gnu"
gnuplot > q
```

To rerun this example at a later GNUPLOT session use the load instruction,

```bash
furner % g
```

Figure 5: May's example of period 3
No output appears on the screen, it is directed to file "file.ps".
If a large computer program in another language such
as Fortran generates a file containing x, y information, then this
file can be loaded into GNUPlot to generate a plot (or splot
with x, y, z info) output. For example the following data file
contains x, y data.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

The GNUPlot session is as follows.

```
gnuplot> plot "ceed6.dat" with linespoints
```

The output is shown in Figure 6.

Conclusion

GNUPlot is a very useful interactive graphic package which will handle most chemical engineering problems with speed. It has the advantage of permitting changes to the plot on the screen to get it right then outputting to a laser printer. Many examples in chemical engineering courses can be covered by this single graphical package, GNUPlot.

References

DICOF: A Package for Multivariable Controller Design in the Frequency Domain

By Osvaldo E. Agamennoni and Jose A. Romagnoli
Chemical Engineering Department
The University of Sydney
NSW 2006
AUSTRALIA

Introduction

DICOF is a set of .m files which run on MATLAB and allows the synthesis/evaluation of controllers for general delayed systems. The set of .m files in DICOF implements the design methodology of Agamennoni et. al. (1985, 1988 and 1992). Figure 1 shows the linear MIMO nominal plant modeled by the transfer matrix G(s), the controller transfer matrix K(s) and the precompensator transfer matrix E(s). In the DICOF context, K(s) notes the ideal controller (the controller that allows to achieve all the performance specifications) and C(s) a reduced order approximation to K(s).

DICOF is particularly oriented to evaluate the controller parameters of a multivariable control scheme that may be directly configured in a Distributed Control System (DCS). This configuration is possible by using standard blocks such as PI-1Ds, delay units and first order low pass filters (lag filters). However, DICOF allows also to synthesize high order controllers, and may be used either with SISO as well as MIMO systems. Delay compensation capability may be easily introduced. If the control system is affected by sluggish disturbances, DICOF allows to tune the controller parameters to introduce a disturbance rejection capability in the control scheme.

DICOF is also a valuable tool for teaching undergraduate and graduate control courses, since it provides an alternative way to design simple multiloop as well as multivariable robust controllers.

How to use DICOF

Now we will briefly describe how to use DICOF by using two examples. The first one is the following SISO delayed and open loop unstable system

\[g(s) = \frac{0.9}{s-0.7} \]

that may be stabilized with a unitary controller \(c=1 \). Then we will evaluate a delay compensator controller for the stabilized system \(g(s)(1+g(s)) \). The second example is the following MIMO system affected by disturbances.

\[G(s) = \begin{bmatrix} \frac{1}{s+1} & \frac{0.5}{s+2} \\ \frac{0.3}{s+2} & \frac{1}{3s+1} \end{bmatrix} \quad D(s) = \begin{bmatrix} 1 & 0 \\ \frac{5s+1}{5s+1} & 0 \end{bmatrix} \]

The following tables summarize the steps to follow using DICOF and the meaning of the output arguments.

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>dets:</td>
<td>delay of compensation of each loop noted as (\Theta) in fig 1.</td>
</tr>
<tr>
<td>dens:</td>
<td>denominators of the controller (C(s)).</td>
</tr>
<tr>
<td>nums:</td>
<td>numerators of the controller (C(s)).</td>
</tr>
<tr>
<td>lagfs:</td>
<td>lag filters to be used in each loop.</td>
</tr>
<tr>
<td>err2:</td>
<td>2-norm of the approximation error.</td>
</tr>
<tr>
<td>General steps</td>
<td>Steps for example 1</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Edit a .m file with the plant matrix transfer function</td>
<td>function(f)=plant1(s)[\begin{align*}g_{1}=0.9\exp(-s)/(s+0.7), \quad f_{sg}/(1+e)\end{align*}]</td>
</tr>
<tr>
<td>Define z with the desired closed loop polynomial of each loop</td>
<td>0.3 s+1 [\gg z=[3 \ 1]]</td>
</tr>
<tr>
<td>Define dtc with the disturbance time constant to be rejected in each loop</td>
<td>>> dtc=[0];</td>
</tr>
<tr>
<td>For PI controller set lagf=[0]; Otherwise, define a vector with possible lag values.</td>
<td>>> lagf=[2.4 .6 .8 1];</td>
</tr>
<tr>
<td>Set tdelay=[0] if a delay compensation is not required. Otherwise, define tdelay with possible delays of compensation.</td>
<td>>> tdelay=[.9 .95 1 1.5];</td>
</tr>
<tr>
<td>Define the order of the controller dl. (1=PI, 2=PID, 3,...)</td>
<td>>> dl=2;</td>
</tr>
<tr>
<td>Define the frequency range of the approximation. fred=1 is the default range of DICOFS. fred=1 reduce the final frequency,</td>
<td>>> fred=1.5;</td>
</tr>
<tr>
<td>Use DICOFS function</td>
<td>>> [dels,dens,nums,lagf,\text{err}s2]=dicof(\text{plant}'z,dl,lagf,tdelay,dl,fred);</td>
</tr>
</tbody>
</table>

With a and dtc, and the evaluation of b in figure 1 is straightforward. Figures 2-4 show the time simulation for examples 1 and 2. With respect to the second example, an alternative controller was evaluated by setting dtc=[0] to show the disturbance rejection effect of the previous controller. The following table summarizes the time simulation experiences.

<table>
<thead>
<tr>
<th>Example</th>
<th>Figure</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Unitary step in the reference</td>
<td>Output</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Unitary step in disturbance input 1 at t=0[min.] and a unitary step in input 2 at t=10[min.].</td>
<td>Output 1 with (-----) and without (____) disturbance rejection</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Unitary step in disturbance input 1 at t=0[min.] and a unitary step in input 2 at t=10[min.].</td>
<td>Output 2 with (-----) and without (____) disturbance rejection</td>
</tr>
</tbody>
</table>
If there is anyone interested in getting a copy from us, please contact us either by mail, e-mail or Fax as shown below:

Prof. J.A. Romagnoli
Chemical Engineering Department
University of Sydney
NSW 2006
AUSTRALIA
E-mail: jose@chemeng.ceu.oz.au
Fax: (02) 692 2854

The cost of the program is:
-$250 for Universities;
-$1000 for companies.

References

CACHE
Model Predictive Control Toolbox
(CACHE-Tools)

MATLAB Functions for the Analysis and Design
of Model Predictive Control Systems

Model Predictive Control Toolbox
Site-License

[] $160 for CACHE-supporting departments
[] $250 for non-supporting departments
[] $1000 for non-supporting companies
[] 3 1/2" PC-diskette [] 3 1/2" Macintosh-diskette

Name: ____________________________
Address: __________________________

Make check payable to CACHE Corporation and send to:
CACHE Corporation
P.O. Box 7939
Austin, TX 78713-7939
POLYMATH Order Form

If you decide to obtain POLYMATH for testing (see form below), please be aware of the following:

1. You may reproduce the program as many times as you like for students and other faculty.
2. Your department chairman will be informed of the testing.
3. If you decide to use POLYMATH in your department after 3 months, your department will be billed for $125.00, and $75.00 for each successive year thereafter. This fee covers any updates or new versions.
4. If you decide not to use POLYMATH after 3 months, you must return (or certify you have erased) all copies made.
5. Educational supporting material will be available from CACHE later in the year at $50.00 per copy.

Please send me a copy of POLYMATH for the IBM/PC. I have read and understood the conditions described above.

Date: __________________

Requested Disk:
[] 5 1/4" Double Density
[] 5 1/4" High Density
[] 3 1/2" High Density

Name __________________
Address __________________

Machine __________________

Make check payable to CACHE Corporation and send to: CACHE Corporation
P.O. Box 7639
Austin, TX 78713-7939

CACHE News Page 19
FLOWTRAN TAPE ORDER FORM

___ I am interested in preparing a FLOWTRAN tape.

___ I am interested in obtaining a FLOWTRAN tape.

If you have checked either of the above, please complete the following information. If you have two computers you want to consider, duplicate this form and submit both completed forms and your preference.

1. Computer make and complete model number:

2. Operating system version:

3. FORTRAN compiler version:

4. Magnetic tape facility:

5. No. of tracks:

6. Drive speed in bits/inch:

Send form to:
Professor J. D. Seader/CACHE
3290 MEB
University of Utah
Salt Lake City, UT 84112

Note: You will be required to sign a User’s Agreement that must be approved by Monsanto. The cost of the tape, payable to CACHE, is $250. The charge to CACHE-supporting departments is $175.

FLOWTRAN BOOKS ORDER FORM

Please send me:
Flowtran Simulation - An Introduction, 3rd edition; Pauls.
No. of copies: _____ at $16.95/copy

Name: __________________________
Address: ________________________

Send form to: ULRICH’S Bookstore
ATTN: Heather Senior
549 E. University Avenue
Ann Arbor, MI 48109

Add $1.50 per copy for mailing and handling in the U.S.
A check must accompany all orders by individuals. Also available in quantity at regular quantity discounts to established book retailers. Make checks payable to Ulrich’s Bookstore.
<table>
<thead>
<tr>
<th>Description of Item</th>
<th>Quantity</th>
<th>Supporting</th>
<th>Non-supporting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Monograph - Volume 1</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Monograph - Volume 2</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Monograph - Volume 3</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set (1, 2, and 3)</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Case Study - Volume 1</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Case Study - Volume 2</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Case Study - Volume 3</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Case Study Set (1, 2, and 3)</td>
<td></td>
<td>$20</td>
<td>$35</td>
<td></td>
</tr>
<tr>
<td>GPSS</td>
<td></td>
<td>$15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIP</td>
<td></td>
<td>$50</td>
<td>$75</td>
<td></td>
</tr>
<tr>
<td>Process Design Case Study Volume 4</td>
<td></td>
<td>$15</td>
<td>$35</td>
<td></td>
</tr>
<tr>
<td>Process Design Case Study Volume 5</td>
<td></td>
<td>$20</td>
<td>$40</td>
<td></td>
</tr>
<tr>
<td>Process Design Case Study Volume 6</td>
<td></td>
<td>$55</td>
<td>$80</td>
<td></td>
</tr>
<tr>
<td>Purdue Laboratory Simulation Modules</td>
<td></td>
<td>$225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChemSep (without/with documentation)</td>
<td></td>
<td>$100/$135</td>
<td>$100/$135</td>
<td></td>
</tr>
</tbody>
</table>

Name:

Address:

CACHE Corporation
P.O. Box 7939
Austin, TX 78713-7939

For a complete listing of CACHE products, send for a CACHE catalog.
INDUSTRIAL CONTRIBUTORS
TO CACHE

The following companies have recently contributed financial support to specific CACHE activities:

DuPont Committee on Educational Aid

Tektronix

Xerox Foundation
Topics in this issue of the CACHE Newsletter:

Multimedia Instructional Modules for the Chemical Engineering Laboratory

Interactive Computer Graphics: GNUPLPOT

DICOIF: A Package for Multivariable Controller Design in the Frequency Domain

Microcomputer Chemical Engineering Programs

Computer Aided Learning in Chemical Reactor Engineering