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On the Use of IMSL Routines in Excel 7.0
Edward M. Rosen, EMR Technology Group
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The IMSL™ library is a  collection of nearly 1000  math-
ematical  and statistical subroutines written in FORTRAN.
The Library is supplied as part of Digital Visual FORTRAN
Professional Edition (1).  As such it forms an attractive source
of routines that can be of use in carrying out a variety of
chemical engineering calculations using Excel 7.0.

The basic mechanics of calling FORTRAN subroutines from
Excel 7.0 has been discussed  previously (2). However, use
of the IMSL™  Library  raises some additional coding is-
sues that are indicated in the example below. It is assumed
that a compiler is available for  the generation of the DLL’s
(dynamic link libraries) such as Digital Visual FORTRAN
(3).

An Example

The Van der Pol equation (1)

u”+ µ (u2 -1) u’ + u = 0,  µ> 0

is a single ordinary differential equation with a periodic limit
cycle (4). For the value of µ = 5, the equations are integrated
from t = 0 until the limit has clearly developed at t = 26. The
(arbitrary) initial conditions used here are u(0) = 2 and u’ (0)
= -2/3. The equation is solved as a  differential-algebraic
system by defining the first order system:
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Note that the initial condition for y
2
' (=0) is not consistent

(g
2
  is not equal to 0 at t = 0).  The IMSL™ routine DASPG

solves for this starting value using user written subroutine
GCN which is called by DASPG.

Implementation in Excel 7.0

IMSL™ subroutine DASPG solves a first order differential-
algebraic system of equations, g(t,y,y’) = 0 using the  Petzold-
Gear BDF method. It is called by

 CALL DASPG (N, T, TOUT, IDO, Y, YPR, GCN)

where

N -           Number of differential equations (Input)
T -           Independent variable, t (Input/Output)

TOUT-     Final value of the independent variable (Input)
IDO -        Flag indicating the state of the computation

   (Input/Output)
   IDO =1     Must be set on first entry T = t
   IDO =2     Set by DASPG after initial call

    
IDO =3     Must be set on last entry to release

      workspace
Y -            Array of size N containing the dependent

   variable values, y. This array  must  contain
   initial values. (Input/Output)

YPR -       Array of size N containing derivative values, y’.
  This array must contain initial values. The
   routine will solve for consistent values of y’
   to satisfy the equations at the starting point.

GCN -      User supplied subroutine to evaluate g(t,y,y’).
  The call is

  CALL GCN(N,T,Y,YPR,GVAL)

  where GCN must be declared EXTERNAL in
  the calling program.  The routine will solve for
  values of y’(t

o
) so that g(t

o
, y, y’) = 0.

 GVAL -   Array of size N containing the function
  values g(t,y,y’), (Output)

Figure 1 is a listing of subroutine DAE which calls IMSL™
routine DASPG. The routine has two attribute statements
(following the subroutine definition) beginning with !DEC$.
These are  needed to communicate with the VBA (Visual
Basic for Applications) macro which is part of the spread-
sheet.

Subroutine DAE carries out one step of the integration. It is
compiled into a DLL in the DOS window with the command

DF    /DLL:DAE    DAE.FOR

Figure 2 is a listing of the array function DAEV which is
written in VBA. This  function calls the DAE DLL whose
location is specified in the Declare statement at the top of
the function.  N is specified as LONG to be consistent with
FORTRAN.

The spreadsheet is shown in Figure 3. Note that N, Mu and
the time increment are all parameters which are passed on to
the array function DAEV and then to the subroutine DAE.
The DAEV function is invoked on the spreadsheet  (for the
first time increment) with:
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= DAEV($B$4, $C10,$D10,$E10,$F10,$G10)

where the area C11 to G11 is first selected and then
Crtl+Shift+Enter is entered.  Subsequent rows (time incre-
ments) are then copied from this row.

Figure 3 gives the results of the computation. A number of
the rows have been deleted for clarity.

Table 1 shows the final results obtained and is compared to
that given in the example supplied with Digital Visual FOR-
TRAN. In this work initialization (which calculates y’ from
g(t

o
,y,y’)) took place each step. In Reference (1) initializa-

tion took place only in the first step.

Table 1  Results of the Integration

This Work Reference(1)
Time   26.0 26.0
y

1
  =  u  1.46062               1.45330

y
2
  =  u’ -0.241912              -0.24486

y
1
' =  u’ -0.242119              -0.24713

y
2
' =  u” -0.089932              -0.09399

g
1

 0.000207 0.00227
g

2
 4.81E-05 0.000442

SUBROUTINE DAE (N, XU, T, TOUT, Y, YPR)
!DEC$ ATTRIBUTES DLLEXPORT::DAE
!DEC$ ATTRIBUTES ALIAS:’DAE’::DAE
USE NUMERICAL_LIBRARIES
EXTERNAL GCN
INTEGER N, IDO
REAL Y(N), YPR(N), T, TOUT , ZU
COMMON /TRANS/ZU
ZU =  XU
IDO = 1

10 CALL DASPG (N, T, TOUT, IDO, Y, YPR, GCN)
IF (IDO .EQ. 3) GO TO 99
IF (IDO .EQ. 2) THEN

IDO = 3
GO TO 10

   END IF
99 CONTINUE
   RETURN
   END
   SUBROUTINE GCN (N, T, Y, YPR, GVAL)
C        SPECIFICATIONS FOR ARGUMENTS

   INTEGER N
   REAL T, Y(N), YPR(N), GVAL(N) , XU
C        SPECIFICATIONS FOR LOCAL VARIABLES
   REAL EPS
   COMMON /TRANS/ZU
C
   EPS = 1./ZU

   GVAL(1) = Y(2) - YPR(1)
   GVAL(2) = (1.0 - Y(1)**2)*Y(2) - EPS*(Y(1) + YPR(2)

RETURN
END

Figure 1   Listing of FORTAN Subroutine DAE

Figure 4 is a plot of  y
1
  vs time. Reference (4) shows

similar plots.

Conclusions

IMSL™ subroutines may be effectively called from Excel
7.0 but their use generally requires some coding in both
FORTRAN and VBA. The effort, however, seems well worth-
while and gives new life to this valuable legacy code.
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Declare Sub DAE Lib“D:\DIGITA~3\DLLS\DAE.DLL”
   (ByRef N As Long, ByRef Mu As Single, ByRef T As Single, _
   ByRef TOUT As Single, ByRef Y As Single, ByRef YPR As Single)

       Public Function DAEV(PRM, TT, Y1, Y2, YP1, YP2)

‘      PRM(1)   = Number of Equations
‘      PRM(2)   = Value of Mu
‘      PRM(3)   = Time Increment
‘      TT       = the current time
‘      Y1       = the current value of y(1)
‘      Y2       = the current value of y(2)
‘      YP1      = y’(1)
‘      YP2      = y’(2)

       Dim T As Single
       Dim TOUT  As Single
       Dim N As Long
       Dim Mu As Single
       Dim Delt As Single

       N = PRM(1)
       Mu = PRM(2)
       Delt = PRM(3)

       ReDim Y(1 To N) As Single
       ReDim YPR(1 To N) As Single
       ReDim EV(1 To 5) As Single

       T = TT
       TOUT = T + Delt

       Y(1) = Y1
       Y(2) = Y2
       YPR(1) = YP1
       YPR(2) = YP2

       Call DAE(N, Mu, T, TOUT, Y(1), YPR(1))
       EV(1) = T
       EV(2) = Y(1)
       EV(3) = Y(2)
       EV(4) = YPR(1)
       EV(5) = YPR(2)

       DAEV = EV

       End Function

                   Figure 2 VBA Array Function DAEV
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Solution of the Van der Pol Equation Using IMSL Routine DASPG

    Solved as a differential-algebraic system by defining a first order system

Number of Equations 2
Value of Mu 5
Step Size 0.1

Increment Time Y(1) Y(2) YPR(1) YPR(2)

0 0 2 -0.666667 -0.666667 0
1 0.1 1.958621 -0.260536 -0.260224 1.730957
2 0.2 1.938178 -0.16948 -0.169267 0.394544
3 0.3 1.922501 -0.14883 -0.148938 0.085246
4 0.4 1.907866 -0.145198 -0.145205 0.008979
5 0.5 1.893321 -0.145719 -0.146074 -0.01274

101 10.1 -0.865072 0.889704 0.89167 1.995529
102 10.2 -0.764277 1.141023 1.140842 3.136632
103 10.3 -0.631139 1.552824 1.557498 5.332912
104 10.4 -0.443047 2.274297 2.275965 9.593467
105 10.5 -0.15501 3.607771 3.608247 17.75351
106 10.6 0.31255 5.878559 5.877309 26.14278
107 10.7 1.011322 7.632876 7.630804 -1.864551
108 10.8 1.668629 4.766888 4.774143 -44.20763

256 25.6 1.551515 -0.21188 -0.21202 -0.060861
257 25.7 1.529896 -0.218337 -0.21849 -0.066558
258 25.8 1.507588 -0.225421 -0.22559 -0.073157
259 25.9 1.484524 -0.233237 -0.233423 -0.08086
260 26 1.46062 -0.241912 -0.242119 -0.089932

Figure 3  Spreadsheet Output (Abbreviated)

Figure 4.  Plot of y1 vs Time

Van der Pol Equation
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Introduction

The last two issues of CACHE News have included articles
demonstrating how partial differential equations can be
solved. Cutlip and Shacham (1998) used their own Polymath
package to carry out the necessary computations using the
Method of Lines (MOL), while Rosen (1999) has shown how
the Excel spreadsheet can be used for other finite difference
computations. Our purpose here is to show how easy it can
be solve such problems using the computer algebra system
Maple V.

The Method of Lines (MOL) is a versatile approach to ob-
taining numerical solutions to partial differential equations.
The method has been made popular in science and engineer-
ing largely through the work of W.E. Schiesser and cowork-
ers (see, for example, Schiesser, 1991; Silebi and Schiesser,
1992).

MOL can be used to deal with a wide variety of different
types of PDE systems involving various types of PDE and/
or boundary conditions. The fundamental idea behind MOL
is that the partial derivatives in any spatial direction are re-
placed by finite difference approximations, leaving only the
time derivatives (or first derivatives in one spatial direction
if the equation is independent of time). Application of MOL
to a PDE may lead to a system of purely ordinary differen-
tial equations (ODEs). Thus, all that may be needed to solve
these equations is a good numerical ODE solver. ODE solv-
ers are widely available including in the computer algebra
system Maple V. Quite often, however, application of MOL
leads to a mixed system of differential and algebraic equa-
tions or DAEs. While DAE systems sometimes can be solved
by converting them to ODE systems, or by tricking an ODE
solver into thinking that they are ODEs, it makes sense to
solve the DAE system using a DAE solver. The availability
of BESIRK, a DAE solver for Maple (Schwalbe et al., 1996),
makes implementation of MOL in Maple very easy indeed.

In what follows we demonstrate the use of Maple by consid-
ering the same example used to illustrate the article of Cutlip
and Shacham (1998). Actual Maple code (and results) are
provided for a problem in which we find the temperature
profiles in a slab as a function of space and time.

Engineering Computing with Maple:
Solution of PDEs via the Method of Lines

Ross Taylor, Clarkson University

Heat transfer in a slab is described by the following PDE:
> restart;
> PDE := diff(T(x,t),t) =
> alpha*diff(T(x,t),x,x): PDE;

T is the temperature and α is the thermal diffusion coeffi-
cient. Initially, the slab is at a uniform temperature (T

0
 ).

> IC := t=0,T(x,t)=T[0]: IC;

At t = 0 the temperature at one side is changed (to a value
not yet specified, we shall call it (T

A
 )

> BC1:= x=0,T(x,t)=T[A]: BC1;

The other side is insulated and the temperature gradient is
zero.
> BC2 := x=L,diff(T(x,t),x)=0: BC2;

We are going to use the method of lines to solve this prob-
lem. The PDE applies to a sequence of values of T which are
identified by subscript i. The derivatives of T with respect to
x are to be replaced by second order finite difference ap-
proximations. The conversion to appropriate form is accom-
plished with the ‘convert/fddiff‘ command that is
part of this authors fdpack package and which we now
load into Maple (along with some other utilities).
> read ‘e:/maple/numerics/pde/fdpack.mpl‘:
> read ‘e:/maple/utils/utils.mpl‘:
> read ‘e:/maple/thermo/plots/tplot.mpl‘:
‘convert/fddiff‘ can derive finite difference approxi-
mations of any order, and with any (appropriate) number of
forward and backward steps. In this particular case the tem-
perature at each node is to remain a function of temperature
only, and we only replace the spatial derivatives with a sec-
ond order difference approximation. This is accomplished
by including a zero in the order argument and none in the
indexletters argument to ‘convert/fddiff‘ (in the
second position here since t appears in the second position
in the arguments to temperature in the original PDE).

∂
∂

α ∂
∂t

T x t
x

T x t( , ) ( , )=






2

2

t T x t T= =0 0, ( , )

x T x t TA= =0, ( , )

x L
x

T x t= =, ( , )
∂
∂

0

Example
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> PDE1 := convert(PDE,fddiff,
> order=[2,0], forward=[1,0],
> indexletters=[i,none]): PDE1;

The above equation holds for all interior points, 1 < i < n,
where n is the number of grid points. It is not valid for the
boundary lines (i = 1, i = n) since that would require us to
include fictitious points (i = 0, i = n+1).  The next step is to
specify n.
> n:=11;

n:=11
The line spacing is
> hspec := h[x]=L/(n-1): hspec;

The first boundary condition may be expressed as
> BC1a := convert(BC1[2],fddiff,
> order=[2,0], forward=[0,0],
> indexletters=[1,none]): BC1a;

The insulated surface boundary condition becomes
> BC2a:=convert(BC2[2],fddiff,
> order=[2,0],forward=[0,0],
> indexletters=[n,none]): BC2a;

The initial condition becomes
> inclist := [t=0,seq(T[m]=T[0],
> m=1..n)]: inclist;

We make a list of all the equations:
> eqnlist := [BC1a,seq(PDE1,
>  i=2..n-1),BC2a]: eqnlist;

… much more - similar - output omitted …

This is a differential algebraic equation (DAE) system, not a
purely ODE system. We can integrate this system using
BESIRK which we now read into Maple.
> read ‘e:/maple/numerics/integ/BESIRK‘:

BESIRK uses the 3rd order semi-implict Runge-Kutta
method of Michelsen (1976), combined with a Bulirsch-Stoer
extrapolation technique. It is a very efficient integrator and
found the solution at  t = 6000 seconds in a single large inte-
gration step. While these results are in almost perfect agree-
ment with the numerical results given by Cutlip and Shacham
it is not possible to obtain an accurate plot of the tempera-
ture profiles with only two points. We repeat the computa-
tion with a limit on the maximum step size is to ensure that
the resulting time history appears to be relatively smooth.
> parta := BESIRK(eqnlist2,inclist2,
> 0..6000,hmax=100):
We may plot the solution as a function of the independent
variable using the datatableplot procedure which is
part of the tplot package. The second argument to this
function is a list of the two variable names that are to be
plotted.

∂
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α
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T T T

h
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x
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3 4
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, ]

The parameters in the model are given numerical values:
> params := {alpha=2e-5,T[0]=100,L=1,
> T[A]=0}: params;

We now substitute the parameters into the list of equations:
> eqnlist2 := subs(hspec,params,eqnlist):
and into the list of initial values:
> inclist2:=subs(params,inclist):
The integration is carried out using the following command;
> parta := BESIRK(eqnlist2,
> inclist2,0..6000):
The output from BESIRK is an array, the first row of which
lists the names of each variable. Subsequent rows provide
the numerical values of these variables. We can select some
of the results with the datatable function from the
BESIRK package.  The output shown below this command
has the same structure as the actual output, but the numbers
have been rounded to 0.01 degrees Celcius. Also, the lines
surrounding the numbers do not appear in the actual Maple
output.
> datatable(parta,[t,seq(T[i],

α = = = ={ }. , , ,00002 100 1 00T L TA

>  i=[1,3,5,7,9,11])]);

t T

   

T

0

6000

   100

0

100

31.71

100

58.49

100

77.46

100

88.22

100

91.66

1 3 5 7 9 11

   

T

   

T

   

T

   

T
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> datatableplot(parta,[[t,T[2]],
> [t,T[3]],[t,T[4]],[t,T[5]]],
> color=black,axes=boxed,
> view=[0..6000,0..110],thickness=2);

A 3D plot of the solution as a function of time using the
MOLplot procedure which is part of the BESIRK package.
Maple is capable of displaying surfaces in a variety of dif-
ferent styles (here Maple has used it’s default patch style).
> MOLplot(parta,subs(params,
> rhs(hspec)),2..62,axes=boxed,
> contour,labels=[‘t‘,‘x‘,‘T‘],
> orientation=[-50,50]);

x h T T x t k
t

T x t= − = − 



∞0, ( ( , ) ( , )

∂
∂

The second part of the example in Cutlip and Shacham is to
repeat the above calculations with 20 and 30 sections. To
complete this part of the assignment it suffices to re-run the
above commands, the sole change being to set the number
of lines to 21 and 31 respectively. The third part of the prob-
lem is to repeat the first part where heat convection is present
at the slab surface with h = 25 W/m2K and a thermal conduc-
tivity (in the solid) of k = 10 W/mK.  The boundary condi-
tion for this situation becomes:
> BC1 := x=0,h*(T[infinity]-T(x,t))
>   = - k*diff(T(x,t),x): BC1;

h T T
k T T T

hx
( )

( )
∞ − = − − + −

1
3 2 11

2

4 3

Proceeding as before, the parameters in the model are given
numerical values as follows
> params := {alpha=2e-5,T[0]=100,L=1,
> T[A]=0, T[infinity]=0,k=10,h=25}:
> params;

We form a list of all the equations (with the parameters
included),
> eqnlist2 := subs(hspec,params,
> [BC1a,seq(PDE1,i=2..n-1),BC2a]):
The initial condition is unchanged from before.
> inclist2:=subs(params,inclist):
The numerical solution is obtained using BESIRK,
> partc := BESIRK(eqnlist2,inclist2,
> 0..6000,hmax=100):
and the results displayed:
> datatableplot(partc,[[t,T[2]],
> [t,T[3]],[t,T[4]],[t,T[5]]],
> color=black,axes=boxed,
> view=[0..6000,50..110],thickness=2);

{a .00002,T 100, L 1,T 0,k 10,

                                    h = 25,T = 0}

0 A= = = = =

∞

The actual time (in seconds on a 450 MHz Pentium PC)
needed to compute this solution can be found using the fol-
lowing command:
> BESIRKtime;

2.333

The boundary condition at the surface of the slab may be
converted to finite difference form as follows:
> BC1a:=convert(BC1[2],fddiff,
> order=[2,0],forward=[2,0],
> indexletters=[1,none]): BC1a;
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> MOLplot(partc,subs(params,
> rhs(hspec)),2..62,axes=boxed,
> style=patchcontour,
> labels=[‘t‘,‘x‘,‘T‘],
> orientation=[-50,50]);

Here we have used the patchcontour style for the 3D
surface plot.

The Maple worksheet for the example described above and
the code packages used here are available on the authors
web site (http://www.clarkson.edu/~chengweb/
faculty/taylor/maple/). Additional worksheets illustrating the
application of Maple to solve PDEs by the method of lines
or by finite difference methods also can be found there.
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Using Computational Fluid Dynamics as a Teaching Aid
for Chemical Engineering

Liz Marshall, Fluent Inc.

Computational fluid dynamics (CFD) is the term given to
the numerical solution of the Navier-Stokes equations of fluid
motion.  It encompasses not only the solution of the fluid
equations and mass continuity, but also the transport of many
other scalar variables that may be important in the flow.  For
example, the solution of heat transfer, species transport, re-
actions, turbulence, and multiple phases (solids and liquids)
can be involved in a simulation.  CFD has become widely
accepted in the industrial workplace as both a design tool
and troubleshooting device for many years.  It has been used
to model unit operations such as cyclone separators, spray
dryers, stirred tanks, risers, bubble columns, valves, and
packed bed reactors, for example.  During this time, increases
in computer speed, coupled with falling hardware prices, have
made CFD readily available to university departments around
the world as well.  Initially used as a research tool, it is now
entering the domain of the graduate and undergraduate cur-
riculum to serve as a virtual laboratory or visualization tool
for concepts being taught in the classroom.  Used in a vari-
ety of ways, CFD can be employed to teach students about
basic fluid behavior, to educate them on the workings of real-
world commercial codes, and to train them on how to make
the leap from process equipment to CFD model, through
appropriate assumptions and approximations.  Together, these
skills improve the students’ awareness of the physics involved
in chemical engineering applications, and give them the ad-
vantage of hands-on CFD experience as they enter the work-
place after graduation.

On an introductory level, CFD can be used to illustrate fluid
flow fundamentals that are part of their coursework.  Com-
mercial codes with a graphical user interface are easy to learn
to use with minimal training.  Guided by one or two tutori-
als, students can quickly learn how to set up different mod-
els for a variety of application examples.  One limiting fac-
tor, however, is the creation of the problem geometry and
grid, which can be time-consuming for beginners.  The grid
is a set of intersecting lines that divide up the domain into
small computational cells, where the conservation (transport)
equations are solved using algebraic methods.  The grid
hurdle can be overcome through the use of pre-built grids,
supplied to the students, or automatic grid (and model) build-
ing tools, such as those found in the software MixSim (for
stirred tanks).

One simple example that is easy to do and offers insight into
fluid behavior is laminar  pipe flow.  A simulation can be
performed in a 2D axisymmetric environment, where the

computational domain extends from the pipe axis to the wall
and for some arbitrary pipe length that exceeds the mini-
mum required for uniform inlet flow to fully develop (say,
10 or 20 pipe diameters).  The task for the students:  to “mea-
sure” axial pressure gradient as a function of Reynolds num-
ber once the flow has become fully developed in the pipe
(near the exit).  From the pressure gradient, students can
compute a resistance coefficient for pipe flow, λ (Schlicting,
1968):

where D is the pipe diameter, ρ is the fluid density, and u is
the average pipe velocity (or the inlet velocity).  It can be
shown that in the laminar regime, λ = 64/Re (Schlicting,
1968).  Students can test this dependence over a range of
Reynolds numbers by computing an experimental value for
λ and comparing to the analytic result.  Given a pre-built
grid, students can set the inflow boundary conditions and
fluid properties and perform the first calculation, recording
the computed Reynolds number and calculation results: pres-
sure and x-position at two locations.  The students can then
change one variable, such as inlet velocity, compute the new
Reynolds number, re-run the calculation, and record the new
measurements for pressure at the same two locations.  After
5 or 10 runs, the results for λ can be computed, plotted on a
graph, and compared with the analytic solution (Figure 1).

Figure 1.  Plot of resistance coefficient, λλλλλ, as a function
of Reynolds Number.  “Experimental” (CFD) values
are compared with theory.

λ
ρ
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u
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Students can make some runs in the transitional regime (Re
> 2000) to see when the simple dependence starts to break
down.   A similar exercise can be repeated for fully turbulent
flow at a later time in the course when turbulence is intro-
duced.

A second example for more advanced students illustrates the
flow patterns produced by different impellers in a stirred tank.
Two-dimensional simulations performed using MixSim can
take advantage of a library of time-averaged impeller data
for a large selection of impellers.  The setup of a model takes
minutes, and the calculation is automatically launched.
Results can be compared through the use of streamlines or
velocity vectors.  For example, students can visualize the
difference between the flow field produced by a Rushton
turbine (Figure 2) and one produced by a pitched-blade tur-
bine (Figure 3) (both compliments of Lightnin) operating in
the same tank and at the same speed.
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Blending times can be computed in a transient calculation
that uses a frozen flow field, and tracks the species concen-
tration in the tank (at point locations or as average values
with standard deviation).  The flow for the pitched-blade tur-
bine is used to illustrate this.  In Figure 4, a small amount of
tracer is added to the tank as a layer across the top.

The properties of the tracer are identical to those of the back-
ground fluid in the tank.  With this assumption, the fluid
properties will not change as the fluids mix, so the converged
flow field shown in Figure 3 can be used for a transient spe-
cies calculation to track the blending.  In Figure 5, the ratio
of the standard deviation to the average mass fraction of tracer
is shown to tend toward zero as time increases and the mix-
ture becomes more uniform.

Figure 2.  The flow pattern created by a Rushton
turbine

Figure 3.  The flow pattern created by a pitched-blade
turbine

Figure 4.  A layer of tracer species is added to the top of
the vessel at time t=0.

Figure 5.  The ratio of standard deviation to average
value of tracer mass fraction is plotted against time,
showing nearly complete blending after 50 seconds.

The “measured” value of about 50 seconds for complete
blending can be compared to a correlation for the time to
achieve 99% uniformity in a vessel with a single pitched
blade turbine (Fasano, et al., 1994):
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where N is the shaft speed in revolutions/sec, D is the impel-
ler diameter, T is the tank diameter, and Z is the liquid height.
Using the parameters for the case illustrated here, a time of
60 seconds is predicted to achieve 99% uniformity.  The CFD
result is in reasonably good agreement with the correlated
value.  As additional exercises, students can vary the param-
eters in the above equation (and repeat the CFD analysis) to
see if the correlation correctly predicts the trends (i.e. more
rapid blending for faster shaft speed, and so on).

A third example allows students to visualize flow patterns
inside 3 dimensional objects that would ordinarily be diffi-
cult to observe by ordinary means.  For example,  the blend-
ing of two species in a tee-junction can be inferred by mea-
surement in the downstream section of pipe, but the details
at the site of the junction itself are difficult to probe.  With
CFD on a ready-built 3D grid, students can examine 3D sur-
faces of species concentration (or contours of mass fraction
on a plane, as is shown in Figure 6) to illustrate the effects of
incoming velocity ratio or fluid property ratios on the mix-
ing.  They can also see the extent of any recirculation that
forms downstream of the junction.

Figure 6.  Introduction of  “species a” into a pipe at a
3D tee-junction is easily visualized using CFD

Examples such as this provide visual reinforcement to con-
cepts learned in the classroom, and for many students, it is
the visual connection that helps them remember the key con-
cepts for later use.

Other valuable experience can be gained from CFD exer-
cises in coursework. First, there is the familiarity with the
tool itself.   In-school experience helps shorten the learning
curve for continued use of CFD codes on the job.  Second,
while the basics of the more advanced numerical methods
used need not be a part of the undergraduate curriculum,
much of the basic formulation can help students better un-
derstand broader concepts.  For lessons in applied mathemat-
ics, for example, consider the transformation of a differen-
tial equation into an algebraic conservation equation.  This
lesson can be demonstrated on the board for a unit cell, start-

ing with a volume integration on the cell that is converted to
a surface integration by way of the divergence theorem.  Stu-
dents can then perform “experiments” on simple CFD prob-
lems that use only a handful of rectangular cells.  Students
can record fluxes of conserved quantities such as mass and
momentum into and out of a single cell (or a group of cells)
to demonstrate that the laws of conservation are obeyed.    At
a higher level, students can explore the differences in face
values as they are generated by a variety of interpolation
schemes. (Interpolation schemes are used to convert cell-
centered values of problem variables to cell-face values.)  In
the process, they can understand when a linear interpolation
between point values works (heat conduction in a uniform
material) and when it doesn’t (pipe flow), and why.  Paral-
lels can be drawn between similar systems, and contrasts
can be made between different ones.  Students will emerge
with a better sense of the underlying physics governing the
systems studied.

Despite the fact that CFD can be used in many ways as a
virtual laboratory, it serves another important purpose that
should not be overlooked.  It forces the student to think about
the process to be modeled in an objective way, in which the
individual components are “ranked” in order of significance.
The student must first ask:  What am I trying to learn from
the simulation?  Once this direction is established, other ques-
tions follow.  For example, is a 2D model possible?  If so,
what flow features will be missing?  Where should the com-
putational domain boundaries be placed?  Where is a fine
grid needed and where can a coarse grid be used?  Is the gas
law required and why or why not?   Answers to these ques-
tions force the student to think about a process in a manner
that might not happen otherwise.   It is critical thinking such
as this that helps to cement the important features of unit
operations into the student’s experience base, for later use
on the job.

In summary, CFD is a tool that is ready to be exploited in the
chemical engineering curriculum at both the undergraduate
and graduate levels.  Computers are inexpensive and power-
ful enough that simulations of significance can be run as an
aid to classroom teaching.   There are many levels of expo-
sure that are possible, from fundamental to advanced, and at
each level, valuable insight can be gained into the systems
being studied in the classroom.  As an added benefit, stu-
dents will have fun with CFD, particularly if they can make
color images or animations of fluid behavior that they will
remember for years to come.
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The objective of this case study is the preliminary design
and economic evaluation of an alkylation process for the
production of ethylbenzene from ethylene and benezene.   The
intent is to expose the student to a traditional chemical engi-
neering process.  The scope of the study is such that groups
of 3-4 students should be able to complete the design in 3
months.  The major focus of this design is the creation and
development of a suitable process flowsheet, simulation of
the flowsheet by the simulator HYSYS, economic evalua-
tion and cost minimization, and HAZOP analysis of the fi-
nal process.

The problem begins with a statement of the design specifi-
cations.  Students are then required to consider alternatives
for the reactor type (fixed or fluidized bed), reactor condi-
tions (liquid or vapor phase) and separation scheme.  These
choices affect the layout of the flowsheet and lead to several
design alternatives.  Students are expected to analyze the
various process alternatives based on economic, safety, and
environmental factors.  Included in this case study is a floppy
disk containing the HYSYS simulation file and GAMS in-
put files for modeling the heat integration.

The problem statement was posed by Professor Costas D.
Maranas and prepared by James E. Lease, Gregory L. Moore,
Ryan M. Scofield and Joseph D. Sevick in the department of
Chemical Engineering at the Pennsylvania State University.

Process Design Case Study
Volume 7

To order this case study,  please fill out form below:

Name:

Address:

This case study is available in two forms:

(a) Hardcopy with binder and disk with HYSIS input file
CACHE Supporting department $40
Non-supporting department $80

(b) CD-ROM containing text of case study and HYSIS
file.  Large flowsheet diagram is also provided.

CACHE Supporting department $15
Non-supporting department $30

Number of copies option (a)

Number of copies option (b)

Total Price
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Design of an Ethylbenzene Production Plant
Preliminary Design and Economic Analysis

         Please send order and payment to:

The CACHE Corporation
P.O. Box 7939

Austin, Texas 78713-7939
Fax:  (512) 295-4498
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Introduction

We have developed a visual encyclopedia of chemical engi-
neering equipment for use in all undergraduate chemical en-
gineering courses. The purpose of this encyclopedia is to
provide students with a basic understanding of what chemi-
cal engineering equipment looks like and how it works.  It is
intended for use for use as a general reference for students in
courses spanning the introductory course through the
capstone design course, as well as for classroom presenta-
tion, for example prior to covering a given chemical engi-
neering topic.

The over 100 pieces of chemical engineering equipment are
organized into the nine categories shown in Table 1, and an
index/glossary is also provided for ease of access.

Table 1 - Categories of Chemical Engineering Equipment

Process Parameters
Flowmeters

Transport and Storage
Chemical Separations

Mechanical Separations
Heat Transfer

Reactors
Polymer Processing
Materials Handling

Organization

The description for each piece of equipment is divided into:
General Information, Equipment Design, Usage Examples,
Advantages / Disadvantages, and References.  This leads the
user from a brief description of how the equipment works to
more in-depth details of its operation; examples of indus-
tries in which the equipment is used; comparisons with other
types of equipment; and resources for more information.
Note that information needed to design equipment is not in-
cluded.

At the heart of the encyclopedia are pictures of actual equip-
ment, obtained from equipment manufacturers, animations
showing how the equipment works, and pictures of applica-
tions of the equipment in a wide variety of fields.  Figures 1
through 4 show typical screens from some of the applica-
tions.

For more information on the encyclopedia and other materi-
als produced by our laboratory and distributed by CACHE,
please visit http://www.engin.umich.edu/labs/mel.  It con-
tains an online example that demonstrates a subsection of
the encyclopedia.

Acknowledgments

This encyclopedia was developed with funds from National
Science Foundation Grant 9555125.  Their support is grate-
fully acknowledged.

Visual Encyclopedia of
Chemical Engineering Equipment for

Macintosh and Windows 95/NT

Figure 1.  Equipment design of blow molding with
clickable pop-up windows

Susan Montgomery
University of Michigan, Chemical Engineering Department,

Multimedia Education Laboratory



Figure 2.  Animation depicting an inverted bucket
steam trap in action
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Figure 3.  Introduction to fixed bed ion exchange

Figure 4.  Typical usage example screen
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Material and Energy Balances Multimedia Modules

for Macintosh and Windows 95/NT
Susan Montgomery

University of Michigan, Chemical Engineering Department
Multimedia Education Laboratory

We have developed a set of multimedia computer modules
to help students in the introductory chemical engineering bal-
ances course understand and practice the key concepts of
the course. Modules are divided into two categories, as shown
in Table 1, and include modules that allow students to solve
material balance problems in three different applications, and
modules that provide practice using charts and used to solve
material and energy balance problems.  These modules are
described in more detail below.

Table 1 - Summary of Multimedia Modules

Material Balance Problems        Chart Tutorials

• Biological Systems • Pxy and Txy diagrams
• Car pre-paint system • Psychrometric charts
• Wastewater treatment • Enthalpy-concentration

 plant diagrams

Biological Systems

This module helps students in the introductory chemical en-
gineering course understand and practice the application of
material balances to biological systems of different dimen-
sions using an algorithm for the solution of material balance
problems.  In-depth interactions focus on mass balance prob-
lems involving cell metabolism, an artificial kidney, and a
cheese factory, as shown in Figure 1.

Figure 1. Sample interaction screen, biological
systems module

Car Pre-Painting System

This multimedia tour is used as part of an open-ended project
for a material balance course, in which students create the
flowsheet for the phosphate coating system at Ford Motor
Company’s Wixom plant, then suggest modifications for
waste minimization.  A sample data screen is shown in Fig-
ure 2.

Figure 2. Data sheet for a process step, car pre-painting
system module

Wastewater Treatment Plant

This module introduces students to the applications of
material balances in wastewater treatment processes.  After
reviewing the basics of wastewater treatment, students can
take a tour of the Ann Arbor Wastewater Treatment Plant.
A quiz includes material balance questions corresponding
to each section of the plant, such as the one shown in
Figure 3.
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Figure 3. Mass balance on secondary treatment
process, wastewater treatment plant module

P-xy and T-xy Diagrams

This interactive module helps students understand the use
of Pxy and Txy diagrams in describing binary liquid-vapor
systems with tutorials as shown in Figure 4. The module
also includes an introduction to industrial uses, and three
quizzes to evaluate their understanding of the diagrams and
their use.

Figure 4. Tutorial on reading Pxy diagrams, Pxy and
Txy diagrams module

Psychrometric Charts

Using this module, students learn how to read and use psy-
chrometric charts, and are exposed to industrial applications
in which they are used, as shown in Figure 5.  Three quizzes
help students evaluate whether they understand the compo-
nents of the chart, how to locate a point on the chart, and how
to follow a process using the chart.

Figure 5. Cooling tower usage example, psychrometric
charts module

Enthalpy Concentration Diagrams

This module helps students review how to read and use
enthalpy concentration diagrams, and explore applications
in which enthalpy concentration diagrams are used.  A quiz
helps students determine if they understand the components
of the diagram, how to locate a point on the diagram, and
how to follow a process using the diagram to solve material
and energy balance problems.  A sample quiz question is
shown in Figure 6.
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Figure 6. A multiple choice energy balance quiz
question, Enthalpy concentration diagrams module

Instructor’s Booklet

A booklet that accompanies these modules describes in
more detail each of the sections, and also shows which
chapters in Felder and Rousseau’s and Himmelblau’s
textbooks [1, 2] each module corresponds to.

For more information on this CD and other materials
produced by our laboratory and distributed by CACHE,
please visit http://www.engin.umich.edu/labs/mel.

Acknowledgements

This CD was developed with funds from National Science
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Standard Order Form and send with payment to:

CACHE Corporation
P.O. Box 7939
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We accept credit cards (Visa/Mastercard),
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Objective and Scope

PSE 2000 is the seventh in the triennial series of international
symposia on process systems engineering initiated in 1982.
The purpose of the meeting is to bring together the commu-
nity of researchers and practitioners who are involved in the
creation and application of computing based methodologies
for planning, design, operation, control, and maintenance of
chemical processes.  The special focus of PSE meetings is on
the integration of the enabling technologies and application
domains to address the special needs of the chemical process
industries.  Particular emphasis is given to the integration of
and interfaces between application domains and the adapta-
tion of process systems methodologies to nontraditional prob-
lem areas.

The composition of the meeting is international by design,
with representation from the three main geographic zones of
Asia and the Pacific, Europe and Africa, and the Americas.
The conference was initiated by the Executive Committee of
the Process Systems Engineering Symposium Series which
draws its representation from the Asian Pacific Confedera-
tion of Chemical Engineering, the European Federation of
Chemical Engineering, and the Inter American Confedera-
tion of Chemical Engineering.  In keeping with the interna-
tional scope of the conference series, the previous confer-
ences in the series were held in Trondheim, Norway (1997);
Kyongju, Korea (1994); Montebello, Canada (1991); Sydney,
Australia (1988), Cambridge, England (1985); and Kyoto,
Japan (1982).  PSE 2000 will be the first time the conference
is convened in the US.

7th International Symposium
on

Process Systems Engineering (PSE)

July 16-21, 2000
Keystone Resort & Conference Center

Keystone, Colorado, USA

Location

The Keystone Resort & Conference Center is located in the
heart of the Rocky Mountains, yet only 90 minutes west of
Denver, Colorado, on Interstate 70.  The Resort, located in
the ski resort of Keystone, a few miles from Lake Dillon, is
serviced by regularly scheduled limo/mini-bus transporta-
tion directly from the Denver International Airport.  The
Conference Center, the largest and most versatile such com-
plex in the Rocky Mountains, has received national awards
for its facilities and amenities.  A full range of accommoda-
tions from hotel rooms to condominiums and over 25 res-
taurants are available, all within a short walking distance
from the Conference Center.  A full range of outdoor activi-
ties are available to guests ranging from championship golf,
tennis, hiking, mountain biking, white water rafting, horse-
back riding, 4-wheel drive touring, and sailing.

Program Structure

The conference will open with a reception on Sunday
evening, July 16, 2000 and will close at noon on Friday.
The program will feature single track plenary sessions in
the mornings and parallel sessions consisting of oral and
poster presentations in the evenings.  The morning sessions
will consist of a keynote speaker followed by three plenary
speakers.  The plenary papers will be selected by the Pro-
gram Committee from among the papers contributed to the
conference on the basis of technical quality and
innovativeness.  The contributed program is anticipated to
consist of 2/3 oral presentation and 1/3 poster presentations.

Sponsored by
CACHE Corporation

Computing & Systems Technology Division
of American Institute of Chemical Engineers

In association with
Asian Pacific Confederation of Chemical Engineering

European Federation of Chemical Engineering
Inter American Confederation of Chemical Engineering
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Topics of interest include but are not limited to the follow-
ing:

Integration of Design & Control
• Design for controllability
• Design for safety & environment
• Design of intentionally dynamic processes

Integration of Control & Operations
• Real time dynamic plant optimization
• Abnormal situation management
• Supply chain optimization

Integration of Design & Operations
• Design for maintainability
• Multipurpose facilities
• Design & verification of operating procedures

Non-traditional applications of process systems
engineering
• Materials & formulation design
• Systems methodology in bioinformatics
• Systems approaches to business decisions

Education in process systems engineering
• Role of process systems in ChE education
• Innovations in computer-aided educational tools
• Training of practitioners in new systems tools

Special attention will be given to contributions from indus-
try and to developments which feature a collaboration be-
tween industry and university researchers.  Educational de-
velopments for both beginners and practitioners are wel-
comed.

Application & Fees

The conference application fee is $495 for registrations re-
ceived before April 15, 2000 and $595 for registrations re-
ceived after that date.  The conference fee includes one copy
of the proceedings volume, the Sunday conference opening
reception, the conference banquet (Thursday evening), and
refreshments during program breaks.  A separate meal plan
will be available for attendee selection.

For additional information, please refer to the conference web page: http://www.atom.ecn.purdue.edu/~pse2000/
or send an email to pse2000@ecn.purdue.edu
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Foundations of Molecular Modeling and Simulation
(FOMMS):  Applications for Industry

July 23-28, 2000
Keystone Resort

Keystone, Colorado, USA

Presented by
CACHE Corporation and

Thermodynamics and Transport Properties
Programming Group of the American Institute of

Chemical Engineers

Sponsors
U.S. National Science Foundation

Molecular Modeling Program of the Mexican
Petroleum Institute (IMP)

Molecular Simulations, Inc.
Warner-Lambert Company

U.S. National Institute of Standards and Technology
Taylor and Francis (publishers of Molecular Physics)

Background

Computational quantum chemistry and molecular simula-
tion methods have now become useful tools for the chemi-
cals, fuels, biologics, and materials industries.  In the com-
ing decades, we even can look forward toward the possibil-
ity of molecular design of products and materials, seamlessly
integrated with the design of the processes to manufacture
them.  These developments have come about because of fun-
damental advances in theory, methods and computing tech-
nology.

In recognition of these extraordinary developments and op-
portunities, a new conference entitled “Foundations of Mo-
lecular Modeling and Simulation” (FOMMS) has been es-
tablished by the non-profit educational foundation, CACHE
Corporation, in collaboration with the Thermodynamics and
Transport Properties programming area of the American In-
stitute of Chemical Engineers.  The first FOMMS confer-
ence will be held at Keystone Resort, CO, on July 23-28,
2000, with the theme “Applications for Industry”.

The target audience for the conference includes practitio-
ners (both from industry and academia), those interested in
becoming practitioners (both in industry and academia), and
industrial managers who wish to learn about the technology.
Content will be balanced between molecular simulation and
computational chemistry, along with a look to the future of
chemical product design and the supporting computational
environments.

All talks are invited, and there are no parallel sessions.  Two
poster sessions will provide opportunities for attendees to
present their work.  One afternoon will be devoted to a soft-
ware/hardware demonstration session for providers to show-
case their products and services.  Large blocks of time, in-
cluding receptions, will be available for informal discussions,
aiding interaction between conference participants.

A proceedings volume will be produced and published as
part of the CACHE proceedings series.  Each invited talk
will represent a reviewed and edited manuscript that will
serve as a state-of-the-art review.  Contributed posters will
be represented by peer-reviewed shorter contributions.  We
aim to produce a proceedings volume that will be a land-
mark publication in the field.

Tentative Conference Oral Session Titles

Bridging Scales from the Molecular to the Process Level
Applying Molecular Modeling and Simulations in Industry
Molecular Simulations in Biological Applications
Molecular and Materials Modeling
Simulating Polymers
Developing Force Fields
Bridging Quantum Chemistry and Molecular Simulations
Catalysis and Reaction Engineering
Looking to the Future
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Confirmed Invited Speakers

Alexis T. Bell, University of California, Berkeley
Jozef Bicarano, Dow Chemical Engineering
J. Stephen Binkley, Sandia National Laboratories
Ann M. Chaka, Lubrizol
Anthony M. Dean, Exxon Research and Engineering Co.
Michael F. Doherty, University of Massachusetts
Jack Dongarra, University of Tennessee
Richard A. Friesner, Columbia University
Keith E. Gubbins, North Carolina State University
Gary A. Huber, University of California-San Diego
Klavs F. Jensen, Massachusetts Institute of Technology
Daniel Kleier, DuPont
Stephen L. Mayo, California Institute of Technology
Keiji Morojuma, Emory University
Jens K. Norskov, Technical University of Denmark
Julio M. Ottino, Northwestern University
Athanassios Z. Panagiotopoulos, Univeristy of Maryland
Michele Parrinella, Max-Planck-Institut fur
Festkorperforschung

Gregory J. McRae, Massachusetts Institute of Technology
Jack A. Smith, Union Carbide Corporation
Ulrich W. Suter, ETH Zurich
Dominic J. Tildesley, Unilever
Donald G. Truhlar, University of Minnesota

Application and Fees

To promote an atmosphere of small group interactions, at-
tendance at FOMMS 2000 will be limited to 200 partici-
pants and is by invitation based on this application.  Appli-
cations must be postmarked by January 15, 2000.  Invita-
tions, which will contain detailed registration and payment
information will be sent as soon as your application is ac-
cepted, but no later than February 1, 2000.  The conference
fee includes registration, proceedings, welcoming reception,
hospitality and coffee breaks, and the conference banquet.
The conference fee is $675 for registrations paid on or be-
fore March 15, 2000 and $775 for registrations paid between
march 16, 2000 and May 14, 2000.  Registrations and fees
will not be accepted after June 1, 2000.

For more detailed information please see the web site at http://www.ecs.umass.edu/FOMMS
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AEA/Hyprotech

Air Products and Chemicals

Aspen Technology

Dupont

Eastman Chemical Company

Industrial Contributors to CACHE
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Fluent Inc.

Merck & Company

Mobil Technology Company

Parke-Davis

Union Carbide


