

WAYNE STATE
UNIVERSITY

Developing a Machine Learning Course for Chemical Engineering

Alex Albaugh

AIChE National Meeting

October 4, 2025

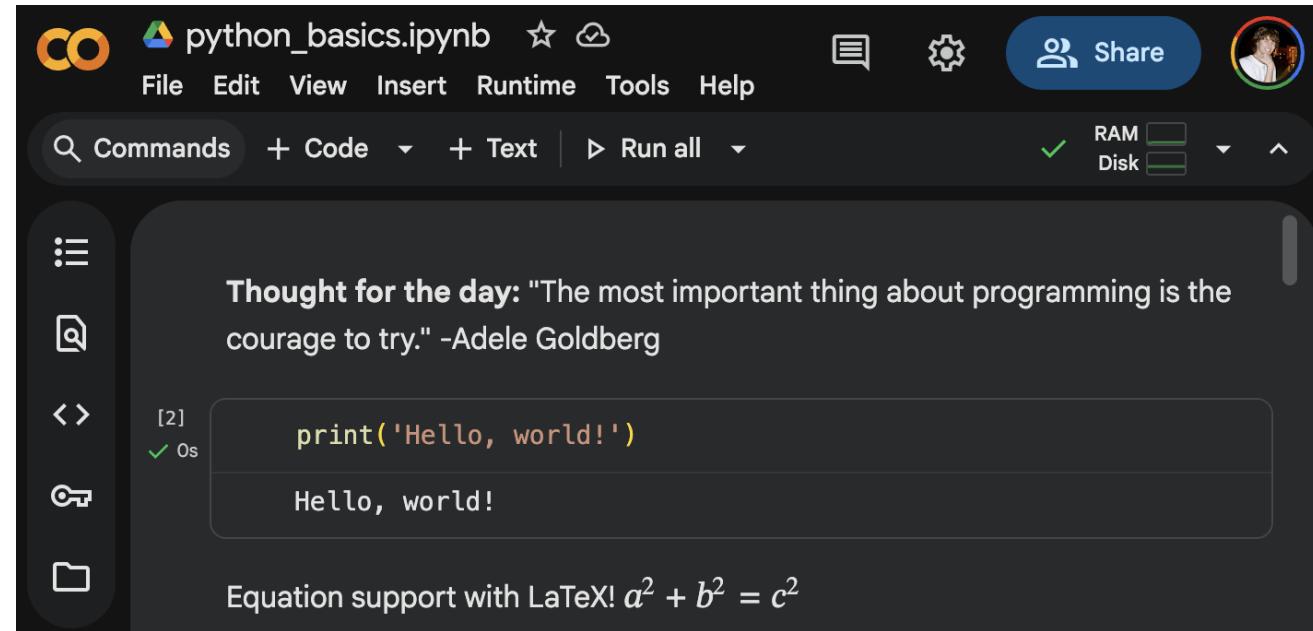
Boston, MA

A Course For All ChE/MSE Students

WAYNE STATE
UNIVERSITY

- Wayne State Chemical Engineering & Materials Science
 - 26,000 student public R1 university in Detroit, MI
 - 91 B.S. students
 - 19 M.S. students
 - 18 PhD. students
 - 13 faculty
- Motivation
 - Modernize curriculum
 - Expand elective offerings
 - Integrate computational methods
- Designed for B.S., M.S., and Ph.D. students
 - Cross-listed at upper division undergrad/PhD level
 - In-person, shared lectures
 - Students from biology, chemistry, physics
 - Not a programming course!

Python, Our Language of Choice

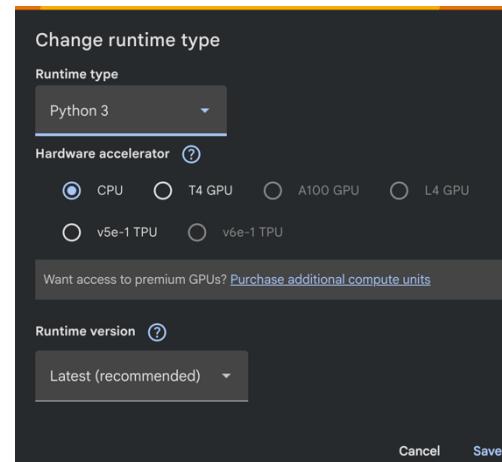

- Used in intro. programming course
- Widely adopted
- Portable
- User friendly
- Libraries for everything
 - numpy: computation
 - pandas: data I/O
 - matplotlib: plotting
 - sklearn: general ML
 - keras: neural networks
- Free

Lesson 2: Python Basics

Google Colab, Our Environment of Choice

- Supports notebooks (.ipynb)
- No installation
- No version management
- No environment management
- Compatible with any machine
- “Explain error” feature
- Requirements:
 - Browser + internet
 - Google account
- Server-side compute
- Access to advanced hardware
- Free

python_basics.ipynb


File Edit View Insert Runtime Tools Help

Commands + Code + Text Run all RAM Disk

Thought for the day: "The most important thing about programming is the courage to try." -Adele Goldberg

```
[2] 0s
print('Hello, world!')
Hello, world!
```

Equation support with LaTeX! $a^2 + b^2 = c^2$

Lesson 2:
Python Basics

Tip: Share Data Sets via Github URL

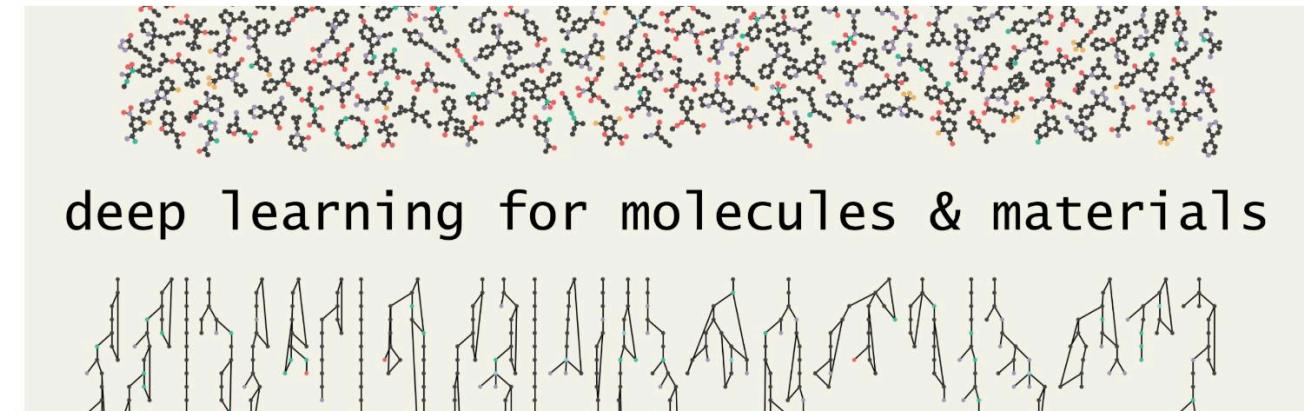
- Upload data sets to public Github
- Share URL
- Load directly from URL in Colab
- No download/upload issues
- Free

```
[2] #read data
✓ 0s df = pd.read_csv('https://raw.githubusercontent.com/albaugh/CHE7507/refs/heads/main/Lecture8/combined_cycle_power_plant.csv')

#set features
X = df[['AT', 'AP', 'RH', 'V']].values

#set target
y = df['PE'].values
```

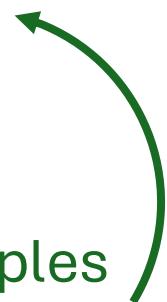
Lesson 8: Validation


Bridging Intro. ML and ChE Applications

An Introduction to Statistical Learning

with Applications in Python

Springer



Andrew White

Great chemical engineering and chemistry examples
Jumps in with advanced methods

Free

Excellent introduction to concepts with broad coverage
No chemical applications
Free

Lesson Structure: Theory + Practice

Convolutions

A convolution applies a filter to an input to find patterns that match the filter. For a 1-D input f with a 1-D filter g of length K , the convolution is:

$$(f * g)(m) = \sum_{i=0}^{K-1} f(m-i)g(i)$$

Let's look at example. Here our input sequence is $f = [0, 0, 0, 10, 10, 10, 10]$ and our filter is $g = [-1, 1]$.

1st element
 $f = [0, 0, 0, 10, 10, 10, 10]$

$$g = [-1, 1]$$
$$(f * g)(0) = 0(-1) + 0(1) = 0$$

2nd element
 $f = [0, 0, 0, 10, 10, 10, 10]$

$$g = [-1, 1]$$
$$(f * g)(1) = 0(-1) + 0(1) = 0$$

▼ 2-D Convolutional Neural Network

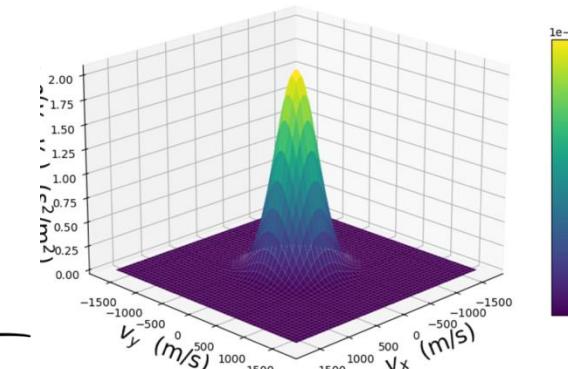
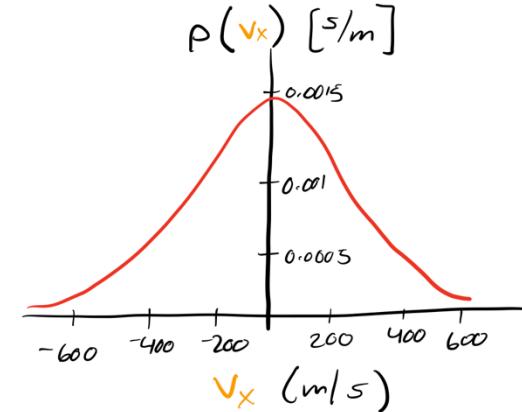
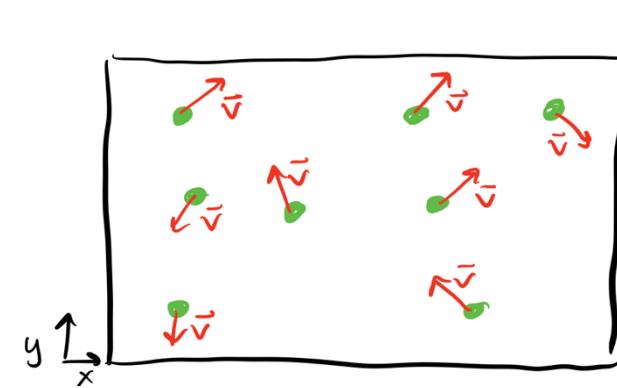
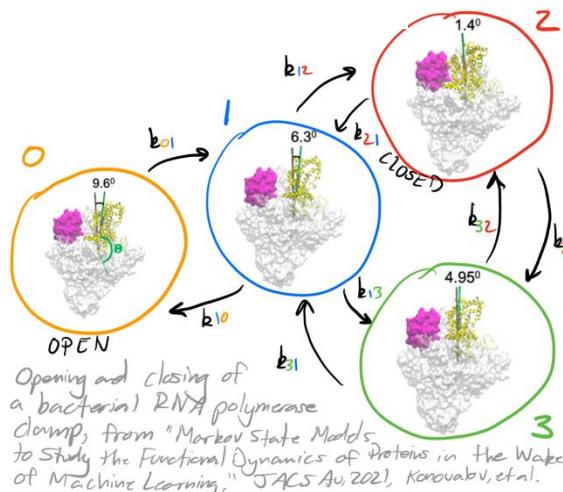
2-D CNNs are useful for image classification. In an engineering setting they can be useful for real-time monitoring of products on an assembly line. Since they are typically used for image classification, I don't have a great example to show you. Training an image classifier in lecture is going to be prohibitively expensive. I can, however, show you the syntax for building a 2-D CNN. Below is the Keras syntax that would build the CNN example at the end of lecture.

```
[ ] model = keras.Sequential([
    keras.layers.Input((32, 32, 3)),
    keras.layers.Conv2D(6, (3, 3), activation='relu', padding='same'), #convolution layer with 6 (3 x 3) filters and
    keras.layers.MaxPooling2D((2, 2)), #max pool layer with a 2 x 2 filter

    keras.layers.Conv2D(12, (3, 3), activation='relu', padding='same'), #convolution layer with 12 (3 x 3) filters and
    keras.layers.MaxPooling2D((2, 2)), #max pool layer with a 2 x 2 filter

    keras.layers.Conv2D(24, (3, 3), activation='relu', padding='same'), #convolution layer with 24 (3 x 3) filters and
    keras.layers.MaxPooling2D((2, 2)), #max pool layer with a 2 x 2 filter

    keras.layers.Flatten(), #flatten the convolution output from a series of matrices into a single 1-D vector
    keras.layers.Dense(500, activation='relu'), #feed the flattened convolutions through a dense layer with 500 neurons
    keras.layers.Dense(100, activation='softmax') #for classifications, the final layer works best with a 'softmax'
])





model.summary()
```

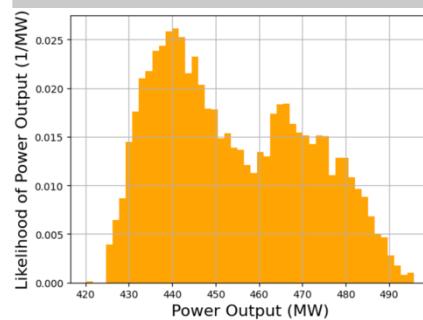
Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 32, 32, 6)	168
max_pooling2d (MaxPooling2D)	(None, 16, 16, 6)	0

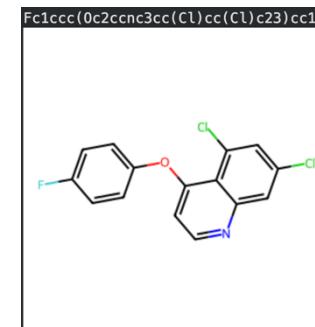
Content: Review of Building Blocks

Concept	Examples
Python programming, packages	
Linear algebra	Process modeling, Markov models, chemical reaction networks
Statistics	Kinetic theory of gases, Maxwell-Boltzmann statistics

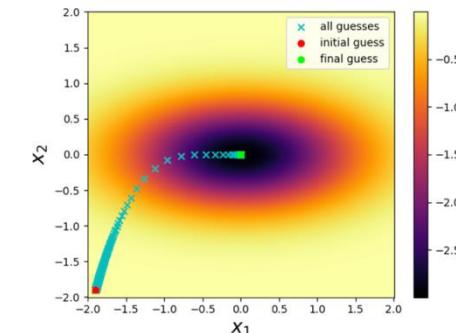
Lesson 4: Linear Algebra


Lesson 21: Statistics

Content: Core Machine Learning Concepts

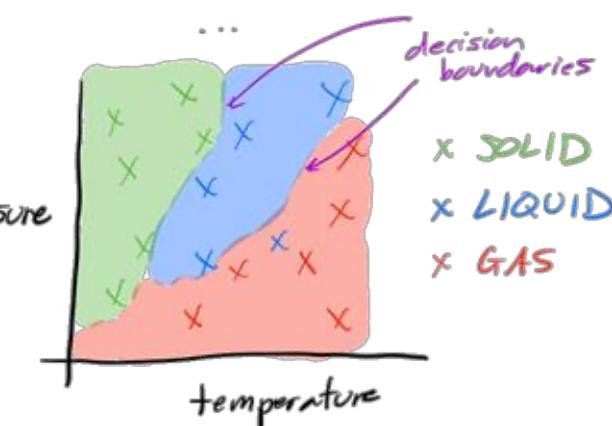
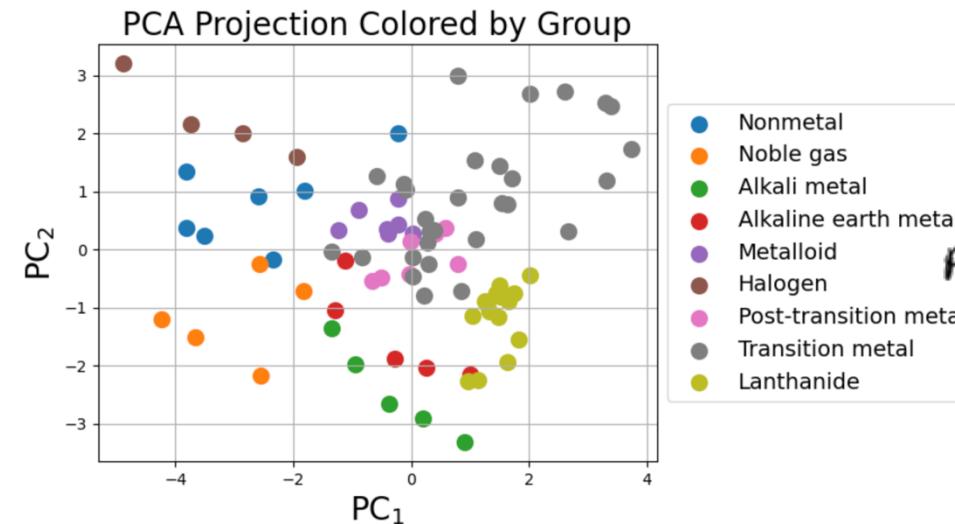
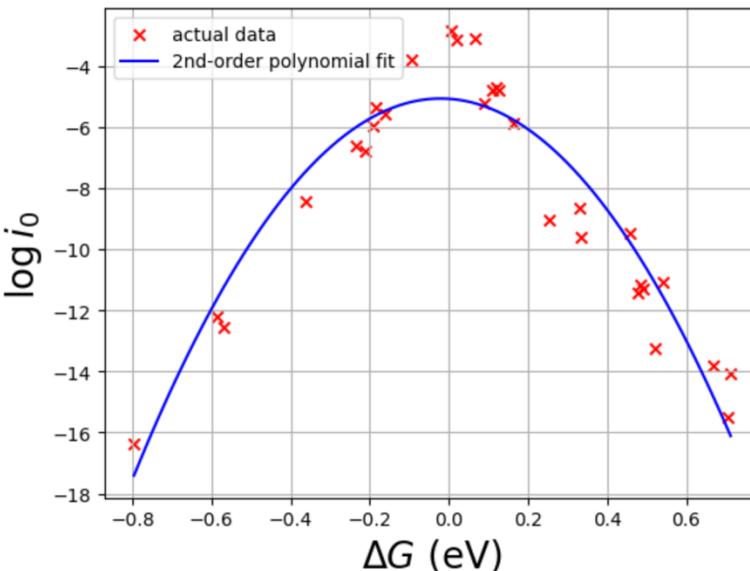


WAYNE STATE
UNIVERSITY


Concept	Examples
Regression, classification	Handwriting classification, FDA approval prediction
Bias-variance, training/testing/validating, regularization	Sabatier principle, power plant output prediction
Featurization	SMILEs strings, molecular descriptors, molecular features
Optimization	Optimizing reactor conditions
Ethics	LLMs & copyright law, ML in medical decision making, environmental impact

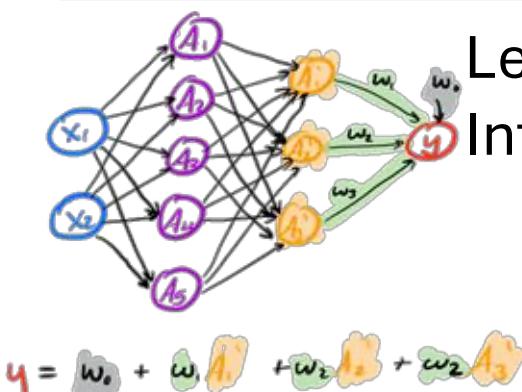
Lesson 8:
Validation

Lesson 15:
Featurization

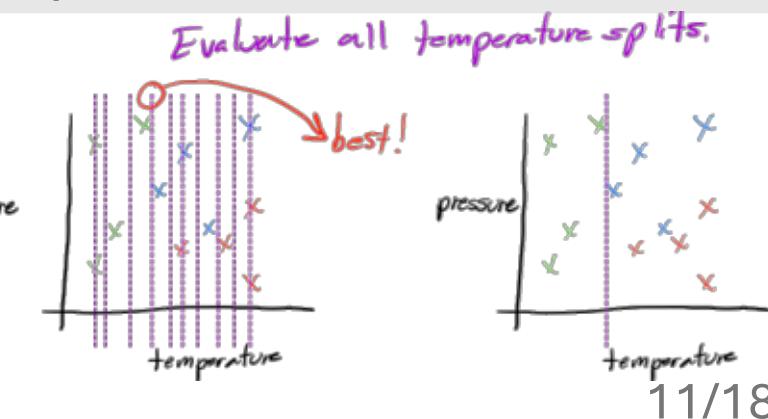
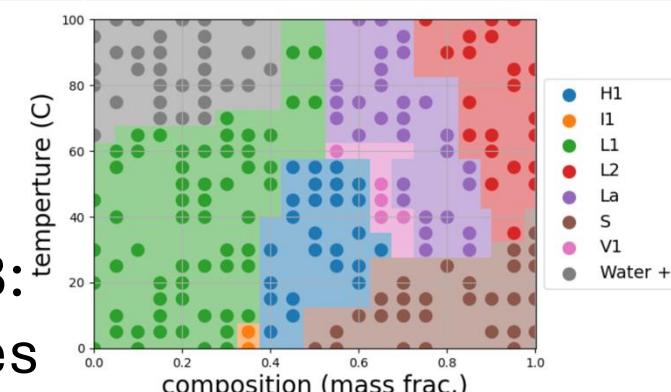



Lesson 9:
Optimization

Content: Basic Machine Learning Methods

WAYNE STATE
UNIVERSITY


Concept	Examples
Regression (linear, multiple, polynomial, ridge, LASSO, logistic)	Control of liquid tank height, Sabatier principle
Principal component analysis	Periodic table analysis
K-nearest neighbors, K-means	Phase classification

Lesson 20: PCA, KNN, K-Means



Content: Advanced ML Methods

Concept	Examples
Auto-differentiation, backprop.	
Neural networks (dense, convolutional, recurrent)	MOF H_2 loading prediction, small molecule solubility prediction
Discriminant analysis	Periodic table classification
Decision trees, random forests	Surfactant phase behavior
Molecular simulation	Covid-19 protein spike, machine-learned potentials
AlphaFold	Protein structure from sequences

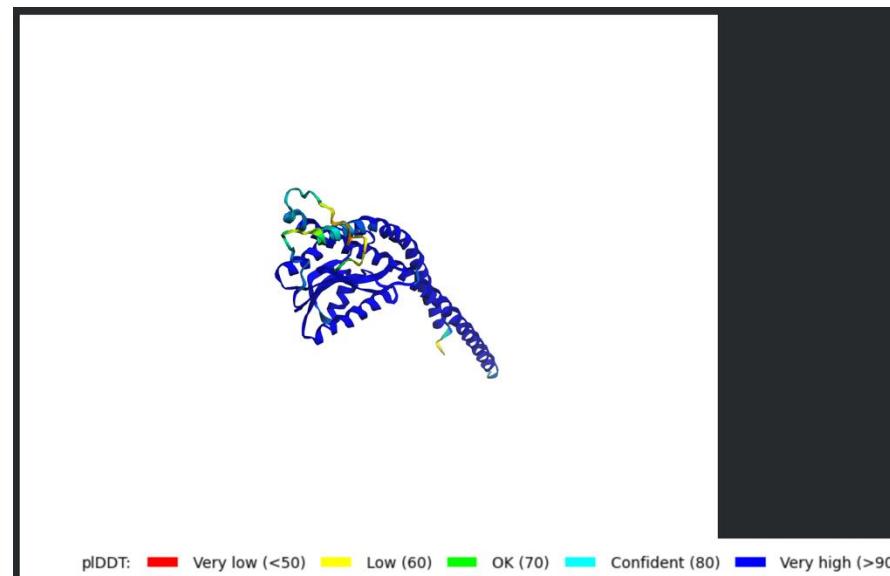
Lesson 10:
Intro to NNs

Lesson 23:
Decision Trees

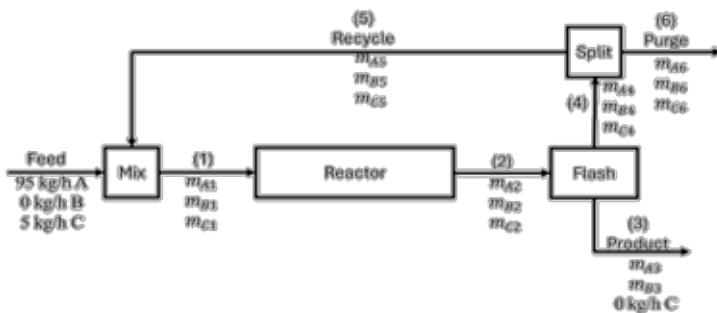
Tip: Run AlphaFold Easily with ColabFold

ColabFold v1.5.5: AlphaFold2 using MMseqs2

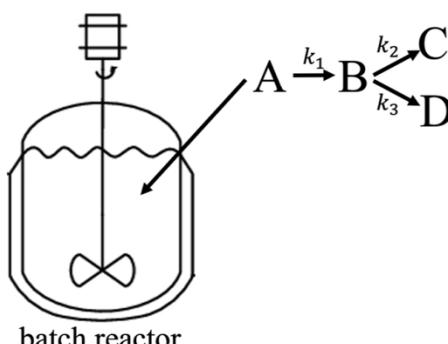
Easy to use protein structure and complex prediction using [AlphaFold2](#) and [AlphaFold2-multimer](#). Sequence alignments/templates are generated through [MMseqs2](#) and [HHsearch](#). For more details, see [bottom](#) of the notebook, checkout the [ColabFold GitHub](#) and [Nature Protocols](#).


Old versions: [v1.4](#), [v1.5.1](#), [v1.5.2](#), [v1.5.3-patch](#)

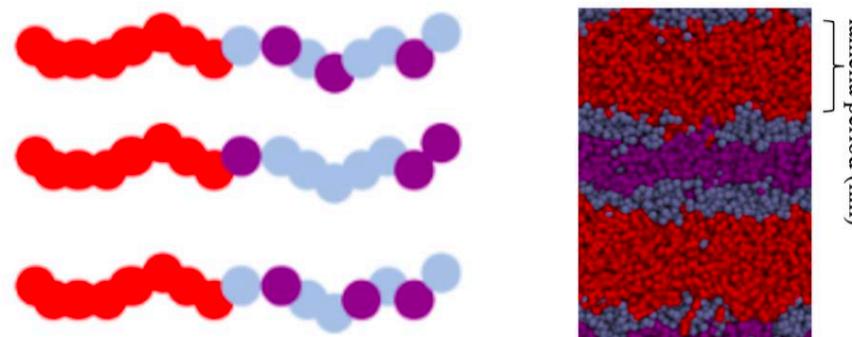
[Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. *Nature Methods*, 2022](#)

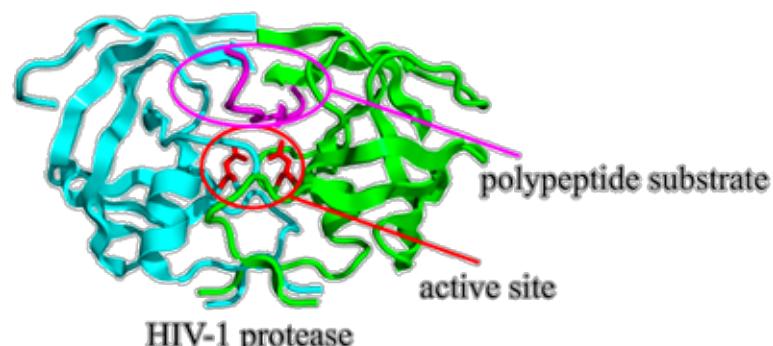

> Input protein sequence(s), then hit Runtime -> Run all

```
[ ] ⏎ query_sequence: " MAGAKDIRSKIASVQNTQKITKAMEMVAASKMRKSQDRMAASRPYAETMRKVIGHLAHGNLEYKHPYLEDRDVKRVGYLVSTDRLGLAGGLNINLFKKLLAEMKTWTDK "
```



Relate Assignments to Real Applications


2. **Solving a Process Flow Diagram with Linear Algebra.** A reactor-separator-recycle section is a common paradigm in chemical processing. Calculations involving recycle streams can be a pain to do by hand. In the following process, we feed a stream of mostly A and a little C into a reactor where some A is converted to B. C is inert and does not participate in the reaction. After the reactor, the stream is fed to a flash drum where the bottom stream is a concentrated stream of our product B. The top stream is split into a purge and a recycle. The recycle is mixed with the feed stream and fed back into the reactor. Our mass flow rates are given as m_{Xi} where $X = A, B, C$ is the species and $i = 1, 2, 3, 4, 5, 6$ is the stream number.


2. **Optimizing a Chemical Reactor.** A batch chemical reactor is a closed reaction vessel that is charged with reactants at time $t = 0$. The reaction proceeds for a certain amount of time before the products are extracted. Using an external jacket, we can control the temperature of the reactor. We are designing a reactor to optimize the depicted reaction scheme. Our reactant is species A, which undergoes a first order reaction with rate constant k_1 into species B. Species B can then undergo a reaction into species C with rate constant k_2 or species D with rate constant k_3 . Species B is the desired product and we want to maximize its concentration.

5. **(CHE 7507 only) Polymer Layers, Recurrent Layers.** A block polymer consists of a section made of one type of polymer and a section made of a different type of polymer. These block polymers form alternating layers, called lamellae. A computational study looked at how the composition of a block affects the width (period) of these layers based on the composition of one of the block polymer sections. You can find this study here: <https://pubs.acs.org/doi/full/10.1021/acs.macromol.3c02401>

2. **Fighting a Virus with Machine Learning.** Pictured below is HIV-1 protease, a critical component of the human immunodeficiency virus (HIV). HIV-1 protease is an enzyme, which is a protein that catalyzes a chemical reaction. Enzymes have active sites where the chemical reactions take place. Specifically, a protease cuts (cleaves) another protein into pieces. HIV-1 protease is critical in the "life cycle" of the virus because it cuts long proteins into functional pieces. Because it is critical to virus reproduction, HIV-1 protease is a drug target. An inhibitor is a molecule that can bind to an enzyme active site and cause it to stop work, essentially clogging up the enzyme. HIV-1 protease inhibitors are a common class of drug for treating HIV infections.

Tip: UCI ML Repo for Lots of Clean Datasets

WAYNE STATE
UNIVERSITY

UC Irvine Machine Learning Repository

Toxicity			Superconductivity Data			HIV-1 protease cleavage		
Donated on 5/4/2022			Donated on 10/11/2018			Donated on 4/24/2015		
The dataset includes 171 molecules designed for functional domains of a core clock protein, CRY1, responsible for generating circadian rhythm. 56 of the molecules are toxic and the rest are non-toxic.			Two files contain data on 21263 superconductors and their relevant features.			The data contains lists of octamers (8 amino acids) and a flag (-1 or 1) depending on whether HIV-1 protease will cleave in the central position (between amino acids 4 and 5).		
Dataset Characteristics	Subject Area	Associated Tasks	Dataset Characteristics	Subject Area	Associated Tasks	Dataset Characteristics	Subject Area	Associated Tasks
Tabular	Biology	Classification	Multivariate	Physics and Chemistry	Regression	Multivariate	Biology	Classification
Feature Type	# Instances	# Features	Feature Type	# Instances	# Features	Feature Type	# Instances	# Features
-	171	1203	Real	21263	81	Categorical	6590	1

AI Use In Class

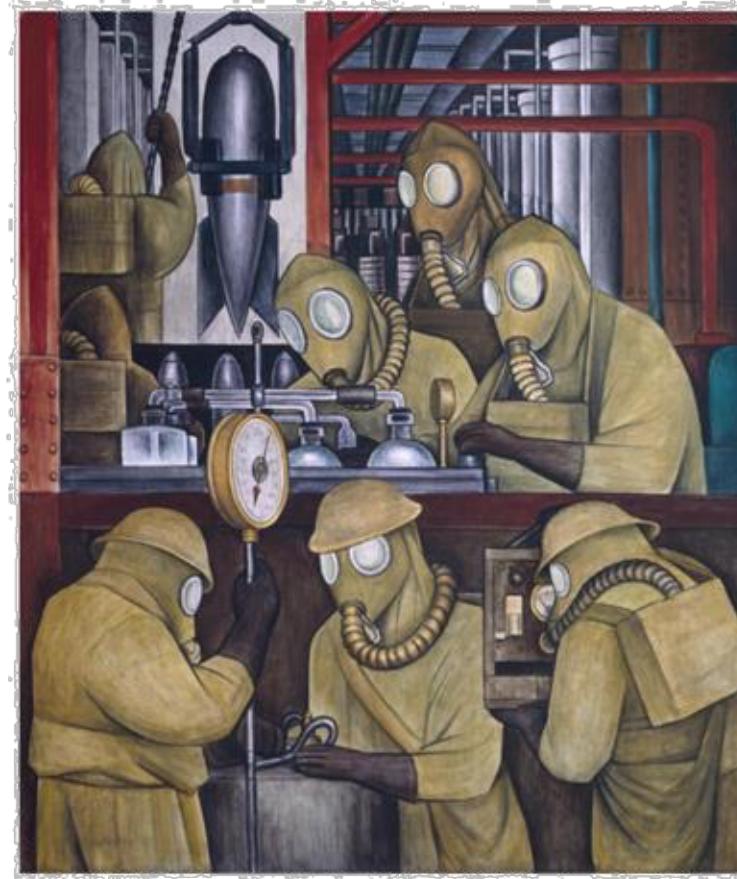
- LLM use (Claude, Copilot, ChatGPT) is permitted for programming
 - Not a programming course!
 - Introduce students to AI tools
 - Asked students to describe AI use on assignments
 - Use in a controlled environment
- Some problems are marked “No AI”
 - Honor system
 - How do I enforce this or design around it?
- Explore how LLMs work
 - Relationship between thermodynamic and LLM temperature
 - Shortcomings and legal issues

Student Feedback

- “I appreciated that we started with learning some basics of python because as a beginner that was interested in the class, **I worried that it would be harder for me to keep up with the coding.**”
- “remove most of the introductory stuff”
- “The scope of practical application, based on this courses learning objectives, has the opportunity to extend far beyond foundational chemical engineering practices. I enjoy this course because it introduces students to coding (Python), machine learning/data analytic techniques, and the **opportunity to experiment with large language models and AI platforms.**”
- “It is really interesting to see the applications of machine learning in a variety of topics, in addition I got to see the relevant topics **combining information from previous classes** such as Schrodinger's equation of states from Physical Chemistry or reaction kinetics and reactor design.”
- “The assignments helped us **experiment and practice** the concepts we learned.”
- “I enjoyed the way your slides on each topic sort of **introduced topics from the ground floor-up.**”

Acknowledgements

- Jeffrey Potoff, Wayne State
- Camille Bishop, Wayne State
- Ali Seyed, Wayne State
- Yamil Colón, Notre Dame
- Jindal Shah, Oklahoma State
- Bingqing Cheng, UC Berkeley
- Cory Simon, Oregon State
- Teresa Head-Gordon, UC Berkeley


AI Tools Are Not Good or Bad, They Are What We Make Them

WAYNE STATE
UNIVERSITY

“Commercial Chemical Operations”

“Manufacture of Poison Gas Bombs”

Questions?