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Introduction to ODE Stability

Linear ODE System Stability



Introduction

o Stability 1s a concept that only applies to time
dependent ODEs

o Basic i1dea

» Consider a nonlinear ODE system with the origin as a
steady-state point:

dy _
E_f(y) — f(0)=0

» Does the system return to the origin if perturbed away
from the origin? If so, the system Is stable. Otherwise,
the system iIs unstable.

Yot) y©=c = lmy®=0

o Linear system stability Is completely determined by
the eigenvalues
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Different Types of Stability
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Asymptotic stability
» System converges to a point
» Precludes limit cycle solutions

Stability ;4
» System remains bounded
» Allows limit cycle solutions

Global stability

» Stability guaranteed for any initial condition
» Strongest form of stability

i (o2}
3

Local stability

» Stability guaranteed only in some vicinity of the
Initial condition
» Typical form of nonlinear system stability
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Linear Stability Analysis

» General solution form for
distinct eigenvalues:

2y xMet

y(t) =cxPe* +¢,xe
» Analysis procedure Imaginary
» Compute the eigenvalues of A

» The system is asymptotically
stable if and only If Re(A;) <0
fori=1,2, ..., n

» The origin is unstable if
Re(A;) >0 forany i

» Stability allows zero
eigenvalues

Real



Two-Dimensional Linear Systems

Yory = A=A 4
dt
n The qualitative nature of the solution is
determined by the eigenvalues
» Improper node — real, distinct eigenvalues
» Proper node — real, repeated eigenvalues
» Saddle point — real eigenvalues with different signs
» Center — Imaginary eigenvalues
» Spiral — complex eigenvalues
» Degenerate node — no eigenvector basis (rare)

o Asymptotic stability still requires
eigenvalues to have negative real parts
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Phase Planes
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Linearization of Nonlinear Systems

Linear stability analysis can be extended to
nonlinear systems through linearization

First the steady-state solutions of the nonlinear
system are determined

Second the nonlinear system is linearized about a
steady state to generate a linearized system

Third the stability of the original nonlinear system
IS deduced from the eigenvalues of the linearized
system

The analysis is local because the linearized system
is only a “good” approximation of the original
nonlinear system “near” the steady state

The procedure must be repeated at each steady
state of interest
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Linearization of One-Dimensional System

o Nonlinear ODE model

dy oy
E—f(y) f(y)=0

o First-order Taylor series expansion about steady state

& e[ ) vom[E) oy
dt_f(y)+[8yj(y)(y y) (ayjm(y y)

n Generate linear ODE model

_ dy’ (of
y'(t)=y()-y = (—] y' =ay’
dt 8y (Y)

7A
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Chemical Reactor Example

o Nonlinear ODE model

dc,
dt

2A—% 5B

= H(C,y ~C,)-2KC = 1(C,)

» FInd steady-state point (q =2,V =2, Cx =2, k=0.9)

F€) = (€ ~C.)-24C} =2 (2-C,) - 205} =0

C’+C,-2=0

= _ ~15 1P - (4)D)(-2) _ -1+3

\ =1-2
(2)@) 2
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Chemical Reactor Example

o Linearize about steady-state point:

dC, ~ f((TA)+£ of j C,

dt — @CA c

0

ic,
dt

= [_C_:A ~ (2)(2)(0'5)6A]C:A = _3C,IA

7A
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Two-Dimensional System

o Nonlinear ODE model

d o
%ﬂl(yl,yz) = f(V..¥,)=0
d o
fﬂz(yl,yz) = 1, (¥, Y,)=0

o First-order Taylor series expansion

d of of _
y1~f(y1 Y2)+[ 1) (Y, — y1)+[ 1) (Y, - )
(Y) (Y)

dt O A oY,
dy, _ of, of, e
- L (V1 y2)+£ay1](y)(y1 y1)+(ay2j (Y. —Y,)

0
/A
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Two-Dimensional System

o Linearized ODE model

d I / /
d—y[l:aﬂ)ﬁ""aizyz dy’ ’ . ’ B
dy. = =AY =J()y' Y0)=y,-yY
d—’[2 = Ay Y1’ +a,, y;

7A
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Linearized Stability Analysis

o Procedure

» Linearize the nonlinear model at a steady state to
determine the A matrix

» Compute the eigenvalues of A

» The steady state Is locally asymptotically stable
If Re(A;) <O0fori=1,2,...,n

» The steady state Is unstable if Re(A;) > 0 for any |
» More advanced methods needed iIf Re(A) =0

o Comments

» Nonlinear systems may have more than one
stable state

» Both steady states and limit cycle solutions can
be stable

» Each stable state has a certain domain of
attraction with respect to the initial conditions
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Biochemical Reactor Model

o Model equations

dX JT
—=-DX +u(S)X =1,(X,S S)=—"
~ #(S) (X, S) (S) K.+
dS 1
— =D(S,-9)- w(S)X = 1,(X,S)

L XIS

n Steady-state equations

DX+ u(B)X =0 ()=t
Ks+3S
D(S, ~§) - u(§)X =0
YX/S

o Two steady-state points
KD

1 —D X:YX/S(SO_S—)

Non-Trivial : #(S)=D=S =
S,

Washout : S = X =0
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Biochemical Reactor Model

o Linearize the biomass concentration equation

] ez o0

dX’
dt

N

f(X sz+[

zero

=[u(S)-DJx"+

of,
oX

fn X

i XS

P<S4_§;_(}<s4'§)2

Sl

o Linearize the substrate concentration equation

dS’
dt

~-f(x S)

zero
1 S

/

Yiis Ks+$

[61‘
+
~ L oX

D |S’
+§>2J*
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Biochemical Reactor Model

n Parameter values
» Ke=1.2g/L, n,,=0.48 hl, Yy = 0.4 g/g
» D=0.15h?, S;=20¢g/L

o Non-trivial steady state

§ - KD =0.545g/L X =Y, ,.(S,~S)=7.78¢g/L
:um_D
» Linearized model ddl'=a11X'+a125'
t
ds’ , ,
E:amx +a228
u X u XS
=0 =T __ Tt 1472
all a12 KS n S (KS n S )2

s+S (KS+S_)

K“mx - “mxsz]+D_—3.529

UMASS.



Biochemical Reactor Model

o Matrix representation

X dy 0 14127
= — _— = =
Y dt |-0.375 -3.529 Y=

o Elgenvalues

—A 1.472
A-Al|= - 1, =-0.164 1,=-3.365
—0.375 —-3529-1
1 Conclusion

» Non-trivial steady state is asymptotically stable
» Result holds locally near the steady state
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Biochemical Reactor Model

» Washout steady state: S =S, =20g/L X =0g/L
o Linearized model coefficients

,leaXS—
— — - D=0.303 =0
Ay K.+ 5 Ay,
a, =— L A7 113 a,, =— 3 A S X_82 +D=0.15
Y, s Kg+S Yes [ Ks+S (Ko +5)
o Elgenvalues
0.303-4 0
A-2l|= = 1,=+0.303 4 =+0.15
-1.132 0.15-A4
n Conclusion

» Washout steady state is unstable
» Suggests that non-trivial steady state is globally stable
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