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Discrete Probability Distributions

 Random variable X can only assume countably many 
discrete values: x1, x2, x3, …

 Probability distribution function f(x)

 Cumulative distribution function

 Properties
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Binomial Distribution

 The binomial distribution is a discrete 
probability distribution that has applications 
in manufacturing, medicine and other fields

 The distribution governs the probability that 
an event A will occur a certain number of 
times in n independent trials

 The probability that A occurs in any one 
trial is P(A) = p

 The probability that A will not occur in any 
one trial is P(Ac) = q = 1-p

 The random variable X = number of times A 
occurs in n trials 



Binomial Distribution

 X = {0, 1, 2, …, n}

 If x = m, then A occurred in m trials and did 
not occur in n-m trials

 X has the probability distribution function:

 Limiting cases (x = 0, x = n):
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Binomial Distribution

 Mean and variance: 

 Equal probabilities of success and failure 

(p = q = 0.5)
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Binomial Distribution Example

 A plant manufactures solar thin films. 

Assume the probability of manufacturing a 

single acceptable film is P(A) = p = 0.99.

 What is the probability that only a single 

film in a lot of 50 films will be defective?
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Poisson Distribution

 If p  0 and n  ∞ such that  = np  constant, 
the binomial distribution converges to the Poisson 
distribution:

 Mean and variance:  2 = 

 When applicable, the Poisson distribution is more 
convenient to use then the binomial distribution
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Poisson Distribution Example

 A plant manufactures solar thin films. 

Assume the probability of manufacturing a 

single defective film is P(A) = p = 0.005.

 What is the probability that a lot of 100 films 

will contained more than 2 defective films?
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Continuous Probability Distributions

 Random variable X can assume infinitely many real 

values

 Cumulative distribution function:

 Probability distribution function:

 Properties
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Normal Distribution

 By far the most commonly used continuous 
probability distribution is the normal 
distribution

 Also called the Gaussian distribution and the 
“bell shaped curve”

 Probability density function
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Normal Distribution

 Cumulative distribution function

 Standardized normal distribution ( = 0, 2 = 1)

dv
v

xF
x

 


















 


2

2

1
exp

2

1
)(














 
  









x
zxFduez

z u

)()(
2

1
)( 2

2



Computing Probabilities

 Interval probabilities

 Sigma limits

 Samples outside the 3 sigma limit are termed outliers








 








 








 ab
aFbFbXaP )()()(

%7.99)33(

%5.95)22(

%68)(













XP

XP

XP



Normal Distribution Tables

 Values of the standardized normal 
distribution are tabulated in Tables A7 and 
A8 in the text

 Tables A7 provides probabilities for given 
x values (cumulative distribution)

 Table A8 provides x values for given 
probabilities (inverse cumulative 
distribution)

 To use the table note that:
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Normal Distribution Example 1

 The temperature of a bioreactor follows a 
normal distribution with an average temperature 
of 30oC and a standard deviation of 1oC.  What 
percentage of the time will the temperature be 
within +/-0.5oC of the average?

 Calculate probabilities at 29.5oC and 30.5oC, 
then calculate the difference:
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Normal Distribution Example 2

 The molecular weight of 10 polymer samples 
has been measured (all x10-5):

 Compute the probability that a given sample 
will have molecular weight less than or equal 
to 1x10-5 if the true mean and variance are 
unknown

 2.13.18.01.17.04.15.11.19.02.1x

32.06808.01)47.0(1)47.0(
0662.0

12.11
)1()1( 







 
 FXP









n

j

jn

n

j

jn
xxsxx

1

2

1
122

1

1 0662.0)(12.1 



Binomial and Normal Distributions

In-class Exercise


