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Probability Distributions

Discrete Probability Distributions



Background

 Experimental measurements can be thought of as 
random samples from an underlying, unknown 
probability distribution

 The actual probability distribution can be 
reconstructed from an infinite number of samples

 More practically the probability distribution must 
be assumed or deduced from the available 
samples

 Key properties of the probability distribution can 
be estimated from a finite, usually small number 
of samples 

 A few distributions are commonly used for 
statistical data analysis



Probability Distributions

 Random variables
» Experimental measurements are not reproducible in a 

deterministic fashion

» Each measurement can be viewed a random variable X

» Defined on sample space S of an experiment

 Probability distribution f(x)
» Determines probability of particular events

» Discrete distributions: random variables are discrete 
quantities

» Continuous distributions: random variables are 
continuous quantities

 Cumulative probability distribution function F(x)
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Discrete Probability Distributions

 Random variable X can only assume countably many 
discrete values: x1, x2, x3, …

 Probability distribution function f(x)

 Cumulative distribution function:

 Properties:
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Discrete Distribution Example 1



Discrete Distribution Example 2

 Assume that the probability of performing 
exactly x successful experiments in a row is 
governed by:

 What is the probability that you will perform 
either 2 or 3 successful experiments in a row?
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Probability Distributions

Continuous Probability Distributions



Continuous Probability Distributions

 Random variable X can assume infinitely many real 

values

 Cumulative distribution function:

 Probability distribution function:

 Properties

 


x

dvvfxF )()(

dx

xdF
xf

)(
)( 











1)(

)()()()(

dvvf

dvvfaFbFbXaP
b

a



Continuous Distribution Example 1

 Probability distribution function:

 Cumulative distribution function:

 Probability of events:
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Continuous Distribution Example 2

 Assume that the probability of obtaining a thin 

film thickness measurement of x microns is 

governed by:

 Determine the constant c such that f(x) is a 

legitimate probability distribution function
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Continuous Distribution Example 2

 Compute the cumulative probability function F(x)

 Compute the probability that the measured 

thickness x will be 0.5 microns or less
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Probability Distributions

In-class Exercise



Probability Distributions

Expectations and Moments



Mean and Variance of a Distribution

 Discrete distribution

 Continuous distribution

 Symmetric distribution
» If f(c-x) = f(c+x), then f(x) is symmetric with 

respect to the mean m = c
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Expectations and Moments

 Moments for continuous distributions

 Interpretation

» The mean is the first moment

» The variance is the second central moment

» The mean and variance calculated from samples 
are called the sample mean and variance
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Expectations and Moments Example 1

 Given the following probability distribution, 

compute the true mean and variance
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Expectations and Moments Example 2

 Given n samples randomly drawn from a 
distribution with true mean m = 1 and 
variance 2 = 4, compute the sample mean    
and variance s2

 Effect of sample size n:

x

Size Sample Mean Sample Variance

5 1.619 4.630

10 1.220 4.827

50 1.005 3.965

100 0.836 4.626

1000 1.050 3.884

10000 0.995 3.962


