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Gauss Elimination

Gauss Elimination Method



Square Linear Algebraic Systems

 Scalar representation

 Matrix representation:  Ax = b

 Homogeneous system:  b = 0

» Trivial solution:  x = 0

» Seek non-trivial solutions

62

332

21

21

2211

22222121

11212111











xx

xx

bxaxaxa

bxaxaxa

bxaxaxa

nnnnnn

nn

nn





































































nnnnnn

n

n

b

b

b

x

x

x

aaa

aaa

aaa











2

1

2

1

21

22221

11211

bxA



Triangular Systems

 Example

 Solution

 Gauss elimination
» Transform original system into diagonal form

» Accomplished by elementary row operations
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Gauss Elimination

 Augmented matrix

 Elementary row operations

» Interchange of two rows

» Multiplication of a row by a non-zero constant

» Addition of a constant multiple of one row to 
another row

» Operations on columns are not allowed because 
only the rows represent equations

 Perform row operations until augmented system 
becomes triangular
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Gauss Elimination

Gauss Elimination Examples



Gauss Elimination Example #1

 Form augmented matrix

 Eliminate x1 from second and third equations
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Gauss Elimination Example #1

 Eliminate x2 from third equation

 Solve triangular system

 Solution is unique
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Gauss Elimination Example #2

 Form augmented matrix

 Eliminate x1 from second and third equations

 Equations:

 Infinite number of solutions
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Gauss Elimination Example #3

 Form augmented matrix

 Eliminate x1 from second and third equations

 Equations:

 No solution exists
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Gauss Elimination

In-class Exercise



Gauss Elimination

Matrix Rank and Pivoting



Matrix Rank

 After Gauss elimination the augmented 

matrix [A|b] can be represented in row 

echelon form [R|f]:

 The rank r of the matrix A is equal to the 

number of non-zero rows of R
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Matrix Rank

Ax = b

 No solution exists if r < n and at least one 
number {fr+1,…,fn} is non-zero. The system is 
called inconsistent 

 The system is called consistent and solutions 
exist if:
» r = n or

» r < n and all the numbers {fr+1,…,fn} are zero

 Example 1: r = 3 = n (unique solution)

 Example 2: r = 2 < n = 3 and f3 = 0 (infinite 
number of solutions)

 Example 3: r = 2 < n = 3 and f3 = -1 (no 
solutions)



Gauss Elimination Example #4

 Form augmented matrix

 Exchange equations 1 and 3 to obtain the 

largest possible non-zero pivot a11. Multiple the 

pivot equation by -0.5 and add to the second 

equation.
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Gauss Elimination Example #4

 Exchange equations 2 and 3 to obtain the 

largest possible non-zero pivot a22. Multiple the 

pivot equation by -0.5 and add to the third 

equation.

 Solve triangular system

 Small pivots can cause numerical problems
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Gauss Elimination Example #5

 Form the augmented matrix:

 Do not pivot. Instead multiple the first equation 

by -0.4003/0.004 = 1001 and add to the second 

equation using 4 significant digits.

 Solution of triangular system not equal to true 

solution
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Computational Efficiency

 Gauss elimination requires two steps

» Forward elimination to form a triangular system

» Back substitution to solve the triangular system

 To solve a nxn system of equations the 

number of operations f scales as:

» Elimination: f(n) = O(n3)

» Substitution: f(n) = O(n2)

 If each operation requires 10-9 seconds:

Step n  = 1000 n  = 10000

Elimination ~1 seconds ~10 minutes

Substitution ~0.001 seconds ~0.1 seconds


