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Probability Theory

Basic Concepts



Statistical Thinking

Experimental measurements can be viewed as
variables that are subject to random variations

This randomness cannot be predicted in a
deterministic sense

Such variables are known as random variables

The chance of a random variable having a
particular value Is governed by probability theory

Data can be thought of as random samples from
an underlying, unknown probability distribution

A goal of statistics Is to extract information about
the probability distribution from a usually small
number of samples
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Mean and Variance

o Data: multiple measurements of the same quantity
X X %

o Definitions
» Range: R=X_.. — X,

» Median: middle value when values are ordered
according to their magnitudes

» Important properties:

Mean X=1 Zx

Variance Z(x —x)? Standard deviation s

» The mean represents the average value
» The variance Is a measure of variability
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Mean and Variance Example

o Datasetl
x=1{0.25 050 0.75 1 1.25 1.50 1.75}

1
x=?2xj =1

=L

o These two data sets are very different despite having
the same mean
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Histograms

« Large data sets are conveniently represented
graphically in histograms

o Data are binned into intervals based on their
values

 The number of occurrences Is plotted verses
the bin values to represent the variability

Occurrences
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Occurrences

Effect of Data Set Size

« Estimation of statistical properties is
Improved as the number of samples increases

X

25 samples
Mean = 0.16
Variance = 0.82

Occurrences

0
X

250 samples
Mean = -0.003
Variance = 0.92
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Probability Theory

EXxperiment: process of measurement or
observation

Trial: performance of a single experiment

Outcome: the result of a trial (also called a
sample)

Sample size n: the number of trials
performed

Sample space S: set of all possible outcomes

Events: subsets of the sample space

Key idea: each sample represents a value of
the random variable
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Probability Theory Example

Experiment: measurement of polymer thin
film thickness

Trial: performance of a thickness
measurement on a single thin film

Outcome: the thickness measurement

Sample size n: the number of thin films
measureo

Sample space S = {too thin, acceptable, too
thick}

Events: too thin, acceptable, too thick

But cannot realistically measure the
thickness of every thin film manufactured
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Events

Sample space divided into events (A, A,, A,, ...)
Union and intersection of events

Union A U A, =all points in either set
Intersection A " A, =all points in both sets

S=AUVAUAU---
Disjoint and complement events

Disjoint events A NA =9
Complementevents A UA =S ANA =g

Thin film example
» Three events: too thin, acceptable, too thick
» The union of the three events is the sample space
» The events have no intersection and are therefore disjoint
» Each event is the complement of the other two events
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Definition of Probability

o Simple definition for finitely many equally likely
outcomes:

number of pointsin A
P(A) = ——1 P(S)=1
number of points in S

o Relative frequency for disjoint events:

number of times A. occurs
1:rel( ) — 1:reI(A)<1

frel (S) 1 frel (Ai - AZ) — 1:rel (Ai) + frel (Az) frel (Ai M Az) — O

o P(A)) satisfies the following axioms of probability:

0<P(A)<1 P(S)=1
P(AUA,U-)=P(A)UP(A) U~ P(ANAN-)=P(A)AP(A)N =
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Basic Theorems of Probability

« Complementation: P(A7) =1-P(A))

o Addition rule for mutually exclusive events
P(AUVA L---UA)=P(A)+P(A)+---+P(A,)

o Addition rule for arbitrary events
P(AVA)=PA)+P(A)-P(ANA)

« Conditional probability of A, given A,

P(A, | A) = P(’;&(z)’*)

P(ALNA) =P(A)P(A [ A)=P(A)P(A|A)

 Independent events

P(ANA)=P(A)P(A) P(A|A)=P(A) P(A|A)=P(A) o



Probability Examples

« Probability that at least one coin will turn heads
up from five tossed coins

» Number of outcomes: 2° =32

»

»

»

»

»

»

»

Pro
Pro
Pro

0a
0a

0a

31/32

« Probability of getting an odd number or a number
less than 4 from a single dice toss

Pro

0a
0a
0a

0a

nility of each outcome: 1/32
nility of no heads: P(A‘) =1/32

ility at least one head: P(A) = 1-P(A°) =

pility of odd number: P(A) = 3/6
nility of number less than 4: P(B) = 3/6
oility of both: P(ANB)=2/6

D(A)+P(B)—P(ANB)=3/6+3/6-2/6=2/3

nility of either:
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Permutations

Permutation — arrangement of objects in a
particular order

The number of permutations of n different objects
taken all atatimeis: nl =123 n

The number of permutations of n objects divided
Into ¢ different classes taken all at a time 1s:

n!
n!nt---n|

n+n,+---+n =n

Number of permutations of n different objects
taken k at a time 1Is:
Nn!

Without repetitions n(n—-1)(n—-2)---(n—k +1) = :
(n—k)!

k

With repetitions n
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Permutation Examples

« Box containing 6 red and 4 blue balls

» Compute probability that all red balls and then all blue
balls will be removed

»Nn,=6,n,=4
» Probability
1 oM

= =—~0.005 =0.5%
nY/n!n,! 10!

o Coded telegram

» Letters arranged In five-letter words: n=26,k=5
» Total number of different words: nk=26°=11,881,376

» Total number of different words containing each letter

no more than once:
n! 20!

(n —.k)! " (26-5)!

= 7,893,600
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Combinations

o Combination — selection of objects without regard
to order

o Binomial coefficients

Real number a

a) a(@a-1)(@a-2)---(a—k+1)
(ka k!
_n(n-1Y(n-2)---(n-k+1)  n

- k! T KI(n—k)!

n
Integer 0<k <n (k}

o Number of combinations of n different objects
taken k at a time Is:

k)~ Kki(n—k)!
n+k-1) (n+k-1)!
k ) ki(n-1)

: .. n n!
Without repetitions ( j

With repetitions (
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Combination Examples

» Effect of repetitions
» Three letters a, b, c takentwo atatime (n =3, k=2)
» Combinations without repetition

(nj:(?’]: 3 =3 ab ac bc
K 2) 21(3-2)!

» Combinations with repetitions
n+k-1) (4) 4 & ab ac bc
k ) (2) 214-2)! = aa bb cc

o 500 light bulbs taken 5 at a time
» Repetitions not possible

- ) (500 |
» Combinations [P 2 2% 555044686600
K)~| 5 ) BI500—5)!
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