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Experimental Design

o Operating objectives o EXxperimental design problem
» Maximize productivity » Determine optimal input values
» Achieve target polymer

« Brute force approach

» Select values for the five inputs

o Input variables » Conduct and analyze
» Catalyst and co-catalyst experiment

concentrations » Repeat until best inputs are
» Monomer and co-monomer found

concentrations
» Reactor temperature

properties

o Statistical techniques
» Allow more efficient search of

o Output variables input space
» Polymer production » Handle nonlinear variable
» Copolymer composition Interactions

» 2 molecular weight measures » Account for experimental errog/g
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Controlled Inputs
(Factors)

The Experimental Design Problem

o Design objectives
» Information to be gained from
L CoFacas experiments
J  Input variables (factors)
» Independent variables

» Varied to explore process
operating space
» Typically subject to known limits

o Output variables (responses)
e » Dependent variables
‘ [ ..... } » Chosen to reflect design objectives

Diferent
Dparalons

Dutputs
{Responses)

» Must be measured

o Statistical design of experiments

» Maximize information with
minimal experimental effort

» Experimental plan determined in
advance ZA



Alternative Design Approaches

o Comparative experiments
» Determine the best alternative out of various options

e Screening experiments
» Determine the most important factors
» Preliminary step for more detailed analysis

o Response surface modeling
» Achieve a specified output target
» Minimize or maximize a particular output
» Reduce output variability

» Determine predictive model over large operating
regime
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Input Levels

 Input level selection
» Low and high limits define operating regime
» Must be chosen carefully to ensure feasibility

o Two-level designs
» Two possible values for each input (low, high)
» Most efficient and economical
» ldeal for screening designs

o Three-level designs

» Three possible values for each input (low, nominal,
high)

» Less efficient but yield more information

» Well suited for response surface designs

UMASS.



Response Surface Models

o Example

» Three factors (x,, X,, X3) and
one response (y)

o LiInear model
Y = By + BX + BoX, + BeXs

» Accounts for main effects
» Requires at least 4 experiments

o LInear model with Interactions
Y = [+ BX + BoXy + BoXg + BoX X, +
ﬁ13X1X3 + ﬁ23X2X3

» Includes binary interactions
» Requires at least 7 experiments

o Quadratic model

2 2 2
ﬂ23X2X3 + ﬂllxl + ﬂZZXZ + ﬁ33x3

» Accounts for response

curvature

» Requires at least ten
experiments

€

« Number of parameters per
response variab

Factors

2

3

4

Linear

3

4

5

Interaction

2

11

16

22

Quadratic

A
6

10

15

21

28

Y =By + BX + BoXy + BoXs + PoXXo + fragXiXg +
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General Design Procedure

© N o 0k~ W D

Determine objectives

Select input variables and their levels

Select output variables

Perform experimental design

EXxecute 0

Perform o

Statistical

esigned experiments
ata consistency checks

ly analyze the data

Modify the design as necessary
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Full Factorial Designs

o Basic features

» All permutations of factor levels considered

» L; = number of levels for factor I
» K = number of factors
» N = number of repeated experiments

 Total number of experiments: N = (L, L, --L,)n
« No duplication, same number of levels: N = Lk

Factors | Two-Level |Three-Level
2 4 9

3 8 27

4 16 81

5 32 243

6 64 729

7 128 2187
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Full Factorial Design Examples

e Designfork=3,L=2,n=1

» Input levels: -1 = minimum, +1 = maximum

Run |1 |2 |3 |4 |5 |6 |7 |8
X1 -1 |+1 (-1 |+1 |-1 |(+1 |-1 |+1
X, -1 |-1 |(+1 |+1 |-1 |-1 |+1 |+1
X3 -1 -1 (-1 |-1 |+1 (+1 |+1 |+1
o Common extensions
» Repeat runs for improved statistics
» Add center points runs to capture nominal behavior
Run|1 (2 (3 (4 |5 |6 |/ |8 9 110 |11
X, (-1 (+1/-1 (+1 |-1 |+1 |-1 (+1 |0 |0 |O
X, |-1]-1 |+1|+1 |-1 (-1 |+1 |+1 |0 |0 |O
X; (-1 ]-1 (-1 |-1 |+1 (+1 |+1 |+1 |0 |0 |O
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Reduced Design Methods
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Fractional Factorial Designs

o Terminology

» Balanced design —all input level combinations have
the same number of observations

» Orthogonal design — the effect of any factor sums to
zero across the effect of the other factors

Run |1 2 3 4 Sum

o Basic features

» Utilize a specified fraction of the full factorial design
» Both balanced and orthogonal

» Most useful for determining main effects

» Can determine interaction and/or quadratic effects
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Lo-Fractional Factorial Designs

o Full factorial design: k=3, L=2,n=1

Run 1 2 3 4 3) 6 I 8

X1 -1 | +1 -1 +1 -1 +1 -1 +1
X, -1 |-1 +1 +1 -1 -1 +1 +1
X3 -1 |-1 -1 -1 +1 +1 +1 +1

6 I

+1 -1
-1 +1
+1 +1
S 8

-1 +1
-1 +1
+1 +1
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Other Fractional Factorial Designs

o Two-level designs

Factors |3 4 5 6 I
Full 8 16 32 64 128
1/2 4 8 16 32 64
1/4 NA |4 8 16 32
1/8 NA |NA NA 8 16

» Three-level designs

Factors |3 4 5 6 I
Full 27 81 243 729 2187
1/3 9 27 81 243 729
1/9 3 9 27 81 243
1/27 NA |NA 9 27 81
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Fractional Factorial Design Example

o Polymer reactor: 5 inputs
o Full factorial design: N =Lk=2°=32

o Ys-fractional factorial design: N =8

Run | 1| 2 | 3 | 4 | 5 | 6 | 7 | 8 |Sum

X
w
I
=
+
=
I
=
+
=
+
=
I
=
+
=
OO0 OO0 |0
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Central Composite Designs

« Based on two-level full or « Circumscribed (CCC) -1 +1
fractional factorial design » Require 5 levels .
. Star points » New extreme values ccc ”'—"*
» Added to estimate response » Rotatable '|' T
curvature | S
» Twice as many star points as « Face Centered (CCF)
factors :
» Require 3 levels s = o
» Can represent new extreme _ CCF
factor values » Old extremes retained L :
_ _ » Not rotatable |
o 10 point design
» Two-level design with center :
point J o Inscribed (CClI) o
- - - 1 Ii.‘ .11 [ i‘l
» 4 star points with center point » Require 5 levels . t 1
. » Old extremes retained p—
e | . f,* » Rotatable
X
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Central Composite Design Example

2 -2 -2

2

2

o CCF design for 5 factors
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o This DOE is used for

MATLAB homework #1
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