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Partial Differential Equation Models

» ODE models have a single independent
variable (a spatial coordinate or time)

o Partial differential equation (PDE) models
have 2 or more independent variables
(spatial coordinates and/or time)

» PDE models are very common in chemical
engineering applications

n Solution methods developed for ODE
models are not directly applicable to PDE
models

» Here we will just introduce very basic
concepts of PDE models and their solution
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PDEs in Chemical Engineering

n 1-dimensional (1D) diffusion
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o 2D diffusion

oy(X, z,t) 0%y 0%y
—_ DX —2 + DZ —2
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Position in rod
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PDEs in Chemical Engineering

1 1D convection |

0.8

oy(x,t) oy

=y —
ot OX

» 1D convection-diffusion i

! depth (Zm)

n Steady-state 2D convection-diffusion
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Boundary Conditions

o First-order ODE systems

dy(t) _ dy(z) _
—q TLy) 5~ H@y)

» Initial value problems (I\VVPs) require an initial
condition for each variable: y;(0)

» Boundary value problems (BVPS) require a
boundary condition for each variable: y;(z;)

o PDE systems

» Need an initial condition for each time
dependent variable

» Need boundary condition(s) for each spatially
dependent variable
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Example PDE Boundary Conditions

» 1D convection
oy(x,t) oy

= U —
ot OX

» Initial condition: y(x,0) = y,(X)
» Boundary condition: y(L,t) =y, (t)

n 1D convection diffusion

ot OX OX
» Additional “no flux” boundary condition:
0,1
yO.t) _,
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Finite Difference Approximations

n The objective Is to approximate derivatives of
a function using only functional values

n Definition of the derivative
df (x) _ . f(x+h)—f(x)

dx h—0

o First-order derivatives: X;,; = X;+h

df (Xj) _ f(Xj+1)_ f(xj)

Forward
dfdx f hf
Backward (%) _ T0x5) = T(X;4)
i dx : h f
Central ( J) — ( J+1) ( 1_1)

dx 2h i
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First-Order Derivative Example

O

Function: y =10e™"

Use central difference approximation to approximate
derivative at x = 1 (exact answer Is -2.7067)

df() TG =f0)  df@ _ farh) - fa-h

dx 2h dx 2h
h=1
df @) _ fa+m-fa-h) _ 12— _ , 5004
dx 2h
h=0.1
df @ _ fa+h)—f@-h _ f@H-109) _, 40
dx 2h 0.2
h=0.01

df @) _ f@+h)-f@-h) _fLOD-f(099) .
dx 2h 0.02
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Second-Order Finite Differences

o Forward difference:  df (x;)  f(x;,,)— (X))
dx h

2 df (x;,,)  df (x;)
d”T(x;) __ dx dx
dx* h
f (Xj+2) — f (Xj+1) _ f (Xj+1) — 1 (Xj)
_ h h
h
_ f (Xj+2) —2f (Xj+1) + f (Xj)
h2

dzf(Xj) FOX) =21 (%) + T(X;2,)
dx? h?

d*f(x;) (X)) —2f(x)+f(x,)

axz h*

o Backward difference:

»  Central difference:
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Second-Order Derivative Example

» Function: y =10e™*

n Use central difference approximation to approximate
derivative at x = 1 (exact answer is 5.4134)

d*f(x) _ FO)-2F )+ f0x0) _ d’f@) _ faeh)-2f @)+ fa-h)

dx2 h2 dx h?

v h=1
d’f@) _ fa+h-2f@)+f@a-h) _f(2)-2f@®)+f(0) 7 4765
dx? h?2 1°

» h=0.1
d? f (1) . f(1+h)—2f () + f(1_h): f1.)-2f@)+ f(0.9) 5 4315
dx? h?2 0.1

» h=0.01
d*f(@) _ fa+m-2f@+fa-h) fEOY-2fW)+1(0.99) 40

dx® h? 0.01°
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Simplified Notation

» More convenient to express the formulas
In terms of y = f(x)

o First-order central difference

df (Xj) _ f(xj+1)_ f(xj—l) N dyj' _ yj+1_yj—1
dx 2h dx 2h

n Second-order central difference

df(x)  F0xa)=2F () + F(x,0) N d®y;  Yia—2Y;+Yia

dx? h? dx? h?
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Finite Difference Method

Consider a single PDE with time and one
spatial coordinate as independent variables

o
W]y, y, L 4y
dt i dx dx”

The goal Is to approximate the PDE as a set
of time-dependent ODEs

Then the ODE system can be integrated to
yield an approximate solution for the PDE

First the spatial domain is discretized into N
node p0|ntS Xo X1 X2 XN XN XN

0 h 2h (N-2)h (N-1)h  Nh
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Finite Difference Method

o Then the PDE Is approximated at each node
point with an ODE

dy.
]
e X, Y,
o The spatial derivatives are approximated by
finite difference; e.g. central differences
dy.
]
E =1 (Xj 1 yj—l’ yj , yj+1)
o Different formulas may be needed near the
domain boundaries to implement the
boundary conditions
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Finite Difference Method

[

[

[

[

The ODE system is integrated from the
Initial conditions to yield y;(t)

If h is “small”, then y;(t) will be a good
approximation of y (x;,t)

Can plot y;(t) versus t to visualize how y at
a given location changes with time

Can plot y;(t) versus ] to visualize how y at
a glven time changes with location
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1D Convection-Diffusion Equation

ay(X,t) _ ay +D azy y(O,t) =0 ayé])-(’t) =0 Y(X,O) =1

n Discretize equation

oy;(t)  dy; 0%,

=u—+D

A Oy _
ot OX G Yo(t) =0 OX =0 ;=1

o Approximate spatial derivatives at point |

ayj(t) :uayj +Dazyj' iy yj—I—l_yj—l_I_D yj+1_2yj "‘yj—l

ot OX OX* 2h h?
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1D Convection-Diffusion Equation

o Do not need an equation at j = 0 due to the
boundary condition y,(t) =0

» Need a different formula at ] = N because
Yn+1 1S NOt defined

o Apply backward difference and the
boundary conditionatj =N

W) _ W, Y _ 5O Yn _ o Y= 2Ynat Y

ot OX OX* OX* h?
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Summary of Equations

YO(t) =0
8yj'(t) —u yj—l—l_ yj—l D yj+l_2yj + yj—l
ot 2h h?
W) _ 5 Ynu—2Ynat Yuoo
ot h?
yj(o):]'



pde example odes

function f = pde_example_odes(t,y)
u=1;
D=1,
N =10;
h =1/N;
y0 =0;
for 1=1:N
if i==1
f(1) = u=(y(1+1)-y0)/(2*h)+D*(y(i+1)-2*y(i)+y0)/n"2;
elseif I==N
f(1) = D*(y(1)-2*y(1-1)+y(i-2))/n"2;
else
f(1) = u*(y(1+1)-y(1-1))/(2*h)+D*(y(i+1)-2*y(1)+y(i-1))/h"2;
end
end
f=1,
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Generate and Plot Results

o> N = 10; >> t([1 126 244 478 950])'
>>y0 = ones(1,N); ans= 0 0.2493 0.5009 0.9989
- 2.0006
[t x]=ode45(pde_example odes', >> plot(j,x(1,))
[0 3],yo,[1); >> hold
>> figure Current plot released
>> plot(t,X) >> plot(j,x(126,:))
>> ylabel('y") >> plot(j,x(244,’))
>> xlabel('t") >> plot(j,x(478,:))
I>ezend('xl','x2','x3','x4','x5','x6','x >> Plot(x(950.5)
7''x8','x9','x10" >> ylabel(y’)

>> xlabel('z")

>>

legend('t=0','t=0.25''t=0.5','t=1','t=2"
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Simulation Results (u=1, D=1, N=10)
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Simulation Results (u=1, D=1, N=10)

t=0
t=0.25

08 t=0.5
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