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Ordinary Differential Equation Systems

Matrix Representation of ODE Systems



Introduction

Sets of coupled ordinary differential 
equations (ODEs) are most conveniently 
represented and analyzed as ODE systems

Unique solutions of ODE systems are 
guaranteed to exist under reasonably mild 
assumptions

Systems of linear ODEs can be solved 
analytically using eigenvalues and 
eigenvectors 

Systems of nonlinear ODEs usually require 
numerical solution using tools such as 
MATLAB



ODE System Representation

2-dimensional nonlinear system

n-dimensional nonlinear system
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Nonlinear System Example

Batch chemical reactor

Nonlinear system representation
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Existence and Uniqueness of Solutions

Initial value problem (IVP)

Jacobian matrix

Theorem

» A solution is a differentiable vector function y = h(x) defined 

on some interval a < x < b containing x0 that satisfies the IVP

» Let f(x,y) be a continuous function with a continuous Jacobian

matrix in some domain containing the initial condition, then 

the IVP has a unique solution on some interval containing x0
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Conversion to ODE System

Second-order nonlinear ODE

State variable definition

System of 1st-order ODEs
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Ordinary Differential Equation Systems

Linear ODE Systems



ODE System Representation

2-dimensional linear system

n-dimensional linear system
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Homogeneous Linear Systems

Initial value problem (IVP)

» Let A(x) be a continuous function in some domain 
containing the initial condition, then the IVP has a 
unique solution on some interval containing x0

Solution form

» Given two solutions y(1)(x) and y(2)(x), any linear 
combination of these two solutions is also a solution: 
y(x) = c1 y(1)(x)+c2y

(2)(x) 

» The n linearly independent solutions y(1)(x), y(2)(x),…, 
y(n)(x) form a basis for the general solution

» General solution:
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Non-Homogeneous Linear Systems

Initial value problem (IVP)

» Let A(x) and g(x) be continuous functions in some 
domain containing the initial condition, then the IVP 
has a unique solution on some interval containing x0

Solution form

» The general solution has the following form where 
y(h)(x) is the solution of the homogeneous equation and 
y(p)(x) is a particular solution of the nonhomogeneous 
equation:

» The particular solution can be obtained using the 
method of variation of parameters (see text)
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Ordinary Differential Equation Systems

Linear ODE Systems with Constant 

Coefficients



ODE System Representation

2-dimensional linear system with constant 

coefficients

n-dimensional linear system with constant 

coefficients
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Linear System Example

Two storage tanks in series

Linear ODE system representation
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Conversion to Homogeneous System

Non-homogeneous linear system

Homogeneous linear system
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Matrix Diagonalization

Initial value problem (IVP)

Matrix diagonalization

» If the nxn matrix A has n distinct eigenvalues, the 

eigenvectors x(1), x(2), …, x(n) are linearly independent

» The nxn modal matrix X is formed with these eigenvectors 

as column vectors

» The similarity transformation D = X-1AX diagonalizes the 

matrix A
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Solution of the Diagonalized System

Variable transformation

Transformed equations

Solution of the decoupled equations
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Solution of the Original System

Variable transformation

Solution form 

If the eigenvectors x(1), x(2),…, x(n) of the constant 

matrix A are linearly independent, then the general 

solution of the IVP is: 
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Isothermal Batch Reactor

Chemical reactor model: A → B → C

Eigenvalue calculation: k1 = 1, k2 = 2

Linear ODE solution
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Isothermal Batch Reactor

Linear ODE solution

Apply initial conditions

Formulate matrix problem

Solution
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Plot of Solution



Ordinary Differential Equation Systems

In-class Exercise


