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Motivation

o The modeling process
» Perform designed experiments
» Develop mechanistic understanding
» Formulate mathematical model
» Utilize model for system analysis and design

» Mathematical modeling
» Formal representation of quantitative knowledge
» Differentiates engineering from discovery science

» Model types

Empirical regression models

Algebraic system models

Ordinary differential equation (ODE) system models
Partial differential equation (PDE) system models
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The Modeling Process

» Data generation
» EXperimental design
» Statistical data analysis

o Model formulation
» Conservation principles and constitutive relations
» Parameter estimation and model validation

o Model analysis
» Analytical or numerical solution
» Qualitative or quantitative analysis

n Examples of model-based design and analysis
» Slzing a chemical reactor to achieve a desired conversion

» Determining the number of equilibrium stages in a
distillation column to achieve desired product purities

» Synthesizing a plant flowsheet with favorable economics

» Developing a control system to maintain a process at a
desirable steady state
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ODE Models

Ordinary differential equation (ODE) models are
ubiquitous throughout chemical engineering

ODE models are formulated by applying basic
conservation laws (mass, energy, momentum,
etc.)

The Independent variable can be time or a single
spatial coordinate

ODE models must be solved subject to boundary
conditions that are imposed at a particular time or
at a particular location in the spatial domain

Linear ODE models can be solved analytically

Nonlinear ODE models typically require
numerical solution
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Liquid Handling Tanks



Liquid Storage Tank

o Standing assumptions
» Constant liquid density p
» Constant cross-sectional area A

o Other possible assumptions
» Steady-state operation
» Outlet flow rate w, known function of liquid level h



Liquid Storage Tank

Mass balance on tank:

d(,0Ah) dh
=W. —W, A—=W. — W,
dt NP A

o

J in out
accumulati on

Steady-state operation: 0=w, —w, = W,=W,

Valve characteristics:
Linear w, =C,h Nonlinear w, = cvﬁ

Linear ODE model: dh
pAE =w.—C,h h(0)=h,

Nonlinear ODE model: i

A=W ~C,~h h(0)=h,
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Liquid Storage Tanks in Series

i Wy

l l

X

o Mass balance on first tank

d(pAN)
dt

=W, =W, =W, _Cvlhl

d_hl _ Wi — Cvlhl
dt PA

hl (O) — th



Liquid Storage Tanks in Series

o Mass balance on second tank

d (pAth) — Wl —W2 — Cvlhl _CV2h2

dt

% _ Cv1h1 — Cvzhz h2 (0) = hzo

t PA;
n Linear ODE system

dn, w -C

b _MoZab (o)<,
t PA

% = Cuft =Gl h,(0) = hy,
t PA;
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N.ﬂ

Continuous Stirred Tank Heater

Assumptions:

> "o Constant volume
n Perfect mixing
o Negligible heat losses

o Constant physical
properties (p, C))
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Continuous Stirred Tank Heater

1 Mass balance

d(pV)
dt

o Energy balance

=0=w.-w = WwW=w

SIVC, (T =T )]=wC, (T, ~T, ) -, (T -T,)+Q

ref

dT
PVC,y - =WC, (T, ~T)+Q

d_T: wC (T, -T)+Q TO)=T,
dt pVC %
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Binary Mixing Tank

W1, Xg Wy, X,

Key assumption:
the tank is perfectly
mixed

o Overall mass balance:

d(pV)
dt

:W1—|—W2—W3 V:Ah

dh w +w, —w,
dt OA

h(0) = ho



Binary Mixing Tank

» Component balance

d (oVx,)
dt

dx,  d(pV) dx,

d(pVX,)
= oV —+X = oV —+ X, (W, + W, — W
dt 1% gt 3T gt 1% gt 3( 1 2 3)

dx,
pV e + X, (W, + W, —W,) = WX, + W, X, — W, X,

% _ Wl(Xl _ X3) + W, (Xz — X3)
dt yola\g

X3 (O) = Xq9
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Binary Mixing Tank

[

[

[

[

Nonlinear ODE system:
dh  w, +w, —w,

h(0)=h
" A (0)=h,
dx, W (X —X,)+W,(X, —X
3 — 1( 1 3) 2( 2 3) X3(O):X3o
dt OAR

2 equations and 2 unknowns (h, X5)

The ODEs are coupled through the
variable h

Solution: h(t), wi(t)
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Ordinary Differential Equation Models
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Batch Chemical Reactor

2A+B—>C A+C—2>5D B+3C—=>D

o The reactor Is charged with reactants
A and B at concentrations C,, and
Cgoattimet=0

o The reaction proceeds until some
final time t =t;

o The reactor has constant liquid
volume V

. The reaction rates per unit volume of
liquid are:

I = klc,iCB I, = kZCACC I; = k3CBC§
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Batch Chemical Reactor

o Overall mass balance:

V) o = vy=v
dt

» Component balances:

: (\(/ij) =211, = _2k1CiCBV —K,CaCcV

d(VvVC
(\;t ) _ —1, -1, =-k,C:C.V —k,C,CV

dVCe) _ r,—r,—3r,=kC:C.V -k,C,C.V -3k,C,CV
dt 7
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Batch Chemical Reactor

o Nonlinear ODE system:

dC
th — _2k1C§\CB - kZCACC CA(O) — CAo
dC
dtB — _k1C§CB B kSCBCCB) Cs(0) =Cg
dC

S =kC 2C, -k,C,C. —3k,C,C3 C.(0)=0

n 3 equations and 3 unknowns (C,, Cg, C()
o The ODEs are fully coupled

2 Solution: C,(t), Ca(t), Co(t)
/A
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Plug-Flow Chemical Reactor

qo’ CAo

7 A——B
r=kC,
o Assumptions
» Pure reactant A in feed stream
» Steady-state operation
» Isothermal operation
» Constant physical properties (p, k)



Plug-Flow Chemical Reactor

qi’ CAi k_ qo’ CAO |

Z

1 Overall mass balance:

(pq)z - (pq)z+Az =0
%’_J (¢ P J

Mass in Mass out

lim (q)z o (q)z+Az -0
Az—>0_ A7 )
dg
——1=0 = —
dZ — ql qO q



Plug-Flow Chemical Reactor

» Component balance:

(AC4), —(AC4) .., ~KC,AAZ =0

Aln A out A consumed
lim g (CA)Z _(CA)Z+A2 _ kCA -0
Az—0[ A A7

_99C e 2o
A dz

+kC,=0 C,(0)=C,

q dC,
A dz

n Solution: C,(2)
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