
Confidence Intervals

1. Point and maximum likelihood estimation

2. Confidence intervals on the mean and 

variance

3. In-class exercise

4. Central limit theorem
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Motivation

 Parameters of distribution functions can be 
estimated from samples

 Normal distribution
» True mean m and variance s2

» Estimated mean    and variance s2

 Because the number of samples is finite, these 
estimate will have uncertainty

 The objective is to quantify the uncertainty as:

» q is the parameter estimate

» q1 and q2 define the uncertainty range

» g is the confidence level that q is contained within 
the range

» The larger g is chosen, the larger the parameter range
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Random Sampling

 Random variable X

» Occur frequently in chemical engineering applications

» Molecular weight of a polymer product

» Film thickness of a solar cell

 Random sampling

» Obtain samples from a population with unknown statistics

» All outcomes must be equally likely to be sampled

» Meaningful statistics can be obtained from the samples

 Sample mean and variance
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Point Estimation

 Point estimates
» Estimates that approximate unknown parameter 

values of the population from which the samples 
were randomly selected are calculated from the 
samples

 Gaussian distribution

 Binomial distribution
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Maximum Likelihood Estimation

 Consider a random variable X with probability 
distribution function depending on a single 
parameter f(x,q)

 Collect n random samples {x1, x2,…, xn}

 Likelihood function: probability that a sample of 
size n will consist of precisely these values

 Select q to maximize the likelihood: 
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Normal Distribution

 Multiple parameters: f(x,m,s)

 Likelihood function:
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Normal Distribution

 Logarithm of likelihood function: 

 Estimates:
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Confidence Intervals

Confidence Intervals on the Mean and 

Variance

Jerzy Neyman

1937



Confidence Intervals

 Definition

» An interval in which the unknown parameter is contained with a 

certain probability g:

» g = confidence level

» q1, q2 = confidence limits depending on g

 t-distribution (governs confidence interval on mean)

» m = degrees of freedom

» Values tabularized (Table A9 in Appendix 5)

 Chi-square distribution (governs confidence interval on variance)

» Values tabularized (Table A10 in Appendix 5)
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Confidence Intervals on the Mean

 Consider a normal distribution with unknown m and 
s2

 Choose the confidence level g

 Use the following equation to determine the value c
from the t-distribution with m = n-1:

 Compute the mean and variance of the sample {x1, 
x2,…, xn}

 Confidence interval:

 The text also shows how to compute confidence 
intervals on the mean for known s2
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Mean Confidence Interval Example 1

 Measurements of polymer molecular weight (scaled 

by 10-5)

 Confidence interval
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Mean Confidence Interval Example 2

 Consider a set of measurements with sample 
mean = 1 and variance s2 = 0.1

 Assuming that    and s2 are unchanged by the 
addition of samples, determine the sample 
size n needed such that the mean has the 
following confidence limits:

 Trial-and-error solution using Table A9 
shows that at least 7 samples are needed:

1.0}1.19.0{ CONF 95.0  km

n m c k

6 5 2.57 0.105

7 6 2.45 0.093

8 7 2.36 0.083
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Confidence Intervals on the Variance

 Consider a Gaussian distribution with unknown m and 
s2

 Choose the confidence level g

 Use the following equations to determine values c1

and c2 from the chi-squared distribution with m = n-1:

 Compute the variance of the sample {x1, x2,…, xn}

 Confidence interval:
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Variance Confidence Interval Example 1

 Measurements of polymer molecular weight (scaled 

by 10-5)

 Confidence interval
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Variance Confidence Interval Example 2

 Consider a set of measurements with sample 
mean = 1 and variance s2 = 0.1

 Assuming that and s2 are unchanged by the 
addition of samples, determine the sample size 
n needed such that the variance has the 
following confidence limits:

 Trial-and-error solution using Table A10 
shows that more than 100 samples are needed:
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Confidence Intervals

In-class Exercise



Confidence Intervals

Central Limit Theorem



Central Limit Theorem

 The confidence limit methods were developed 
only for the normal distribution

 The central limit theorem justifies the 
application of these methods to other 
distributions for large sample sizes

 Let {X1,…,Xn } be independent random 
variables, each with the same mean m and 
variance s2. Then:

» Yn = X1+
…+Xn has the mean nm and variance ns2

» If {X1,…,Xn } are also normal variables, then Yn

is a normal random variable



Central Limit Theorem

 Consider following random variable Zn:

 Central limit theorem:
» Zn is asymptotically normal with zero mean and 

unity variance in the sense that its distribution 
function Fn(x) satisfies:

 Implication: can determine confidence intervals 
for non-normal distributions using previous 
methods if sufficiently large sample sizes are 
used (n > 20 for mean; n > 50 for variance)
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Testing the Central Limit Theorem

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p

x

 

 

t-distribution (m=5)

t-distribution (m=100)

Gaussian distribution



Testing the Central Limit Theorem
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