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Ill Conditioned Matrices

Vector and Matrix Norms



Vector Norms

 A scalar measure of vector magnitude

 Notation: ||x||

 Common norms

 Example:  xT = [2  -3  0  1  -4]
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Vector Norms

 Properties

» ||x|| is a non-negative real number

» ||x|| = 0 if and only if x = 0

» ||kx|| = |k| ||x||

» ||x + y|| <= ||x|| + ||y|| (triangular inequality)

 Example: Euclidean norm

» First three properties hold trivially

» Triangular inequality can be proved (see text)
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Matrix Norms

 A scalar measure of square matrix magnitude 

 Notation: ||A||

 For any matrix A there exists a constant c such that:

 Equivalent definitions of matrix norm:
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Matrix Norms

 Common norms

 Example
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Matrix Norms

 Must satisfy same properties as vector norm

» ||A|| is a non-negative real number

» ||A|| = 0 if and only if A = 0

» ||kA|| = |k| ||A||

» ||A + B|| <= ||A|| + ||B|| (triangular inequality)

 Additional properties
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Ill Conditioned Matrices

Ill Conditioning



Ill-Conditioned Matrices

 Matrix inversion:  Ax = b  x = A-1b

» Assume A is a perfectly known matrix

» Consider b to be obtained from measurement 
with some error

 Terminology

» Well-conditioned problem: “small” changes in 
the data b produce “small” changes in the 
solution x

» Ill-conditioned problem: “small” changes in the 
data b produce “large” changes in the solution x



Ill-Conditioned Matrices

 Caused by nearly linearly dependent 
equations  nearly linearly dependent rows 
and columns

 Characterized by a nearly singular A matrix

 Solution is not reliable

 Common problem for large linear algebraic 
systems

 Ill-conditioning quantified by the condition 
number



Ill-Conditioned Matrix Example

 Example

» e represents measurement error in b2

» Two rows (columns) are nearly linearly dependent

 Perform Gauss-Jordan elimination to find A-1
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Ill-Conditioned Matrix Example

 Gauss-Jordan elimination cont.

 Solution
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Ill-Conditioned Matrix Example

 Actual solution

 10% error (e = 0.1)

 Small error in the data produced a large change in 

the solution

 Need a measure of matrix ill-conditioning to 

identify this problem
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Ill Conditioned Matrices

In-class Exercise



Ill Conditioned Matrices

Condition Number



Condition Number

 Definition:  k(A) = ||A|| ||A-1||

 A “large” condition number (> 1000) indicates 
an ill-conditioned matrix

 Well conditioned matrix example
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Condition Number Example 1

 Ill-conditioned matrix example

 Effect of ill-conditioning on solution
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Impact of the Condition Number

 Effect of data errors (see text for derivation)

» db is the error in the data and dx is the resulting error in 
the solution

» Scalar measures of the errors are obtained using vector 
norms

» The errors are scaled by norms of the data and of the 
solution

» The scaled error in the solution is bounded above by the 
scaled error in the data 

 Implications
» The condition number determines how much the data 

error affects the solution

» The upper bound can be very conservative
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Condition Number Example 2
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Condition Number Example 3

 Hilbert matrix

 Effect of n on condition number
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Condition Number Example 4

 Effect of matrix size on condition number

» Generated 100 random matrices for each n value 

with n = 1, 2, 5, 10, 20, 50, 100, 20, 500, 1000

» Averaged the 100 condition numbers for each n 

 Large matrices are very likely to be ill-

conditioned 


