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Ordinary Differential Equation Models

Introduction



Motivation

The modeling process

» Perform designed experiments

» Develop mechanistic understanding

» Formulate mathematical model

» Utilize model for system analysis and design

Mathematical modeling

» Formal representation of quantitative knowledge

» Differentiates engineering from discovery science

Model types

» Empirical regression models

» Algebraic system models

» Ordinary differential equation (ODE) system models

» Partial differential equation (PDE) system models



The Modeling Process

Data generation
» Experimental design 

» Statistical data analysis

Model formulation
» Conservation principles and constitutive relations

» Parameter estimation and model validation

Model analysis
» Analytical or numerical solution

» Qualitative or quantitative analysis

Examples of model-based design and analysis
» Sizing a chemical reactor to achieve a desired conversion

» Determining the number of equilibrium stages in a 
distillation column to achieve desired product purities

» Synthesizing a plant flowsheet with favorable economics

» Developing a control system to maintain a process at a 
desirable steady state



ODE Models

Ordinary differential equation (ODE) models are 
ubiquitous throughout chemical engineering

ODE models are formulated by applying basic 
conservation laws (mass, energy, momentum, 
etc.)

The independent variable can be time or a single 
spatial coordinate

ODE models must be solved subject to boundary 
conditions that are imposed at a particular time or 
at a particular location in the spatial domain

Linear ODE models can be solved analytically

Nonlinear ODE models typically require 
numerical solution



Ordinary Differential Equation Models

Liquid Handling Tanks



Liquid Storage Tank

Standing assumptions

» Constant liquid density r

» Constant cross-sectional area A

Other possible assumptions

» Steady-state operation

» Outlet flow rate w0 known function of liquid level h
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Liquid Storage Tank

Mass balance on tank:

Steady-state operation:

Valve characteristics:

Linear ODE model:

Nonlinear ODE model:
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Liquid Storage Tanks in Series

V1 = A1h1
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Liquid Storage Tanks in Series

Mass balance on second tank

Linear ODE system
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Continuous Stirred Tank Heater

Assumptions:

Constant volume

Perfect mixing

Negligible heat losses

Constant physical 
properties (r, Cp)



Continuous Stirred Tank Heater

Mass balance

Energy balance

wwww
dt

Vd
ii =−== 0

)(r

 

0)0(
)(

)(

)()()(

TT
VC

QTTwC

dt

dT

QTTwC
dt

dT
VC

QTTwCTTCwTTVC
dt

d

p

ip

ipp

refprefipirefp

=
+−

=

+−=

+−−−=−

r

r

r



Binary Mixing Tank

Overall mass balance:
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Binary Mixing Tank

Component balance
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Binary Mixing Tank

Nonlinear ODE system:

2 equations and 2 unknowns (h, x3)

The ODEs are coupled through the 

variable h

Solution:  h(t), w3(t)
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Ordinary Differential Equation Models

In-class Exercise



Ordinary Differential Equation Models

Chemical Reactors



Batch Chemical Reactor

The reactor is charged with reactants 
A and B at concentrations CA0 and 
CB0 at time t = 0

The reaction proceeds until some 
final time t = tf

The reactor has constant liquid 
volume V

The reaction rates per unit volume of 
liquid are:
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Batch Chemical Reactor

Overall mass balance:

Component balances:
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Batch Chemical Reactor

Nonlinear ODE system:

3 equations and 3 unknowns (CA, CB, CC)

The ODEs are fully coupled

Solution:  CA(t), CB(t), CC(t)

0)0(3

)0(

)0(2

3

32

2

1

0

3

3

2

1

02

2

1

=−−=

=−−=

=−−=

CCBCABA
C

BBCBBA
B

AACABA
A

CCCkCCkCCk
dt

dC

CCCCkCCk
dt

dC

CCCCkCCk
dt

dC



Plug-Flow Chemical Reactor

Assumptions

» Pure reactant A in feed stream

» Steady-state operation

» Isothermal operation

» Constant physical properties (r, k)
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Plug-Flow Chemical Reactor

Overall mass balance:
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Plug-Flow Chemical Reactor

Component balance:

Solution:  CA(z)
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