Confidence Intervals

Point and maximum likelihood estimation

Confidence intervals on the mean and
variance
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Motivation

Parameters of distribution functions can be
estimated from samples

Normal distribution

» True mean  and variance o?
» Estimated mean X and variance s?

Because the number of samples is finite, these
estimate will have uncertainty

The objective Is to quantify the uncertainty as:
CONF {4, <6<6,}

» 0 1S the parameter estimate
» 0, and 0, define the uncertainty range

» 7 IS the confidence level that 6 is contained within
the range

» The larger vy is chosen, the larger the parameter range
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Random Sampling

o Random variable X
» Occur frequently in chemical engineering applications
» Molecular weight of a polymer product
» Film thickness of a solar cell

« Random sampling
» Obtain samples from a population with unknown statistics
» All outcomes must be equally likely to be sampled
» Meaningful statistics can be obtained from the samples

o Sample mean and variance

Sample mean X = HZ X; Sample variance s° = n—_12(x | —X)
-1 =1
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Point Estimation

o Point estimates

» Estimates that approximate unknown parameter
values of the population from which the samples
were randomly selected are calculated from the
samples

o Gaussian distribution

“X):ajﬂexp ‘%(Hj

1< N 1 < N2 A2
=) X, P =——» (X, =X)°=6
DRI n_ljz;( i = %)

X
o Binomial distribution

N .
f(x)=(xjpxq“ H=np = pP=
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Maximum Likelihood Estimation

Consider a random variable X with probability
distribution function depending on a single
parameter f(X,0)

Collect n random samples {x;, X,,..., X}

Likelihood function: probability that a sample of
size n will consist of precisely these values

1(%,,...%.,0) = (x,0)f(x,,8)- T (x,6)

Select 0 to maximize the likelihood:

8_I:O N 8InI:O
00 00
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Normal Distribution

o Multiple parameters: (X, ., o)

1

o~ 27T

f(x,u,0)= exp

1

2

o Likelihood function:

|

2
X—p
2
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Normal Distribution

« Logarithm of likelihood function:

Inl=—nIhv27 —nlho—h

o Estimates:

olinl oh 1
e Y (- ) =0
ou ou oo
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Confidence Intervals

Confidence Intervals on the Mean and
Variance :
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Confidence Intervals

o Definition

» An interval in which the unknown parameter is contained with a
certain probability v: CONF {0, <0<06,}

» v = confidence level

» 0, 0, = confidence limits depending on y

o t-distribution (governs confidence interval on mean)

2

~(m+1)/2
F(z) = ij;(u “H] du F(0)=1

» m = degrees of freedom
» Values tabularized (Table A9 in Appendix 5)

o Chi-square distribution (governs confidence interval on variance)
F(z)=C,_ joz e2y™A2dy z>0

» Values tabularized (Table A10 in Appendix 5)
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Confidence Intervals on the Mean

(Glé)nsider a normal distribution with unknown p and

Choose the confidence level vy

Use the following equation to determine the value ¢
from the t-distribution with m = n-1:

F(€)=2{1+7)

Compute the mean and variance of the sample {x,,
X9y s Xp }
Confidence interval:

CONF, {x—k<u<x+k} k=cs/+/n

The text also shows how to compute confidence
intervals on the mean for known o?
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Mean Confidence Interval Example 1

o Measurements of polymer molecular weight (scaled
by 10-°)

.25 136 1.22 1.19 133 1.12 127 127 131 1.26}

o Confidence interval

y=0.95 m=10-1=9 F(c)=0.975 c=2.26

X=1.26 s°=0.0049

. (2.26)~/0.0049

n =0.050 CONF, . {1.21< 1 <1.31}
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Mean Confidence Interval Example 2

« Consider a set of measurements with sample
mean X = 1 and variance s* = 0.1

« Assuming that X and s are unchanged by the
addition of samples, determine the sample
size n needed such that the mean has the
following confidence limits:

CONF,, {09<u<1.1} = k=0.1

o Trial-and-error solution using Table A9
shows that at least 7 samples are needed:

6 5 2.957 0.105
7 6 2.45 0.093
8 7 2.36 0.083
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Confidence Intervals on the Variance

Consider a Gaussian distribution with unknown p and
02

Choose the confidence level vy

Use the following equations to determine values c,
and ¢, from the chi-squared distribution with m = n-1:

F(c)=30-7) F(c)=31+7)

Compute the variance of the sample {X,, X,..., X, }
Confidence interval:

CONF, {k, <o’ <k} k =(n-1s?/c, k,=(n-1s?/c,
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Variance Confidence Interval Example 1

o Measurements of polymer molecular weight (scaled
by 10-°)

125 136 122 119 133 112 127 127 131 1.26)

o Confidence interval

y=095 m=9 F(c)=0.025 ¢, =270 F(c,)=0.975 c,=19.02

s*=0.0049 k, = (9)(0.0049) =0.0163 k, = (9)(0.0049) =0.0023
2.70 19.02

CONF, ,{0.002 < 5% <0.016 |
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Variance Confidence Interval Example 2

o Consider a set of measurements with sample
mean X = 1 and variance s = 0.1

« Assuming that X and s? are unchanged by the
addition of samples, determine the sample size
n needed such that the variance has the
following confidence limits:

CONF,,.{c? <011} = k =0.11

o Trial-and-error solution using Table A10
shows that more than 100 samples are needed:

___
2.70 0.333

101 100 4.2 0.135
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Central Limit Theorem

« The confidence limit methods were developed
only for the normal distribution

« The central limit theorem justifies the
application of these methods to other
distributions for large sample sizes

o Let {X,,....X, } be independent random
variables, each with the same mean u and
variance o2. Then:

» Y, = X +-+X_ has the mean nu and variance nc?

» If {X,,..., X, } are also normal variables, then Y,
IS a normal random variable
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Central Limit Theorem

« Consider following random variable Z:
5 _ Y, —Nu

n G\/ﬁ

o Central limit theorem:

» Z, 1s asymptotically normal with zero mean and
unlty variance in the sense that its distribution
function F,(x) satisfies:

1 X 42/
EL‘? du

« Implication: can determine confidence intervals
for non-normal distributions using previous
methods if sufficiently large sample sizes are
used (n > 20 for mean; n > 50 for variance)

im F, (9 = () =
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Testing the Central Limit Theorem
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Testing the Central Limit Theorem

Difference
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