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Vector Norms

o A scalar measure of vector magnitude
« Notation: [|x||

o COmmon norms

1-norm X[, =[x |+ xa |+ + %]
2 —norm (Euclidean) \X\Z:\/xf+x22+---+x§
0 —NOrm X[ = max‘xj‘
/
5—norm A YL

o Example: xT=[2 -3 0 1 -4]

1—norm x|, =2 +|-3+[0]+ [ +|-4=10
2—norm (Euclidean) x|, =+/(2)? +(-3)? +(0)* + (1) + (-4)* =+/30
00 — NOIM x| = max‘xj‘ — 4
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Vector Norms

o Properties
» |X|| Is a non-negative real number
» |[X[|=01fandonly if x =0
» |[kx]] = [K[[|]]
» |IX +y|| <=||X|| + ||y|| (triangular inequality)

o Example: Euclidean norm 2 a2

X, =V %5

» First three properties hold trivially
» Triangular inequality can be proved (see text)
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Matrix Norms

« A scalar measure of square matrix magnitude
 Notation: ||A||

« For any matrix A there exists a constant ¢ such that:
|AX]| < clx|

« Equivalent definitions of matrix norm:

1A = max 2 =
S e



Matrix Norms

« COmmon norms

1-norm (column sum) A = max Zn:‘ajk‘
=1

o—norm (rowsum) A = max i‘aik‘

Frobenius norm |A]. = \/ZZ aj

=1 k=1

o Example
BHE
A= A=
-1 1 -1 2
1—norm (columnsum)  |A| = mkaxi‘ajk‘ =3 HA‘1H1 =3

2
co—norm (rowsum)  |A[ = m?xé‘ajk‘ =3 [A7Y =3 7
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Matrix Norms

« Must satisfy same properties as vector norm
» ||A]| Is @ non-negative real number
» ||All=0i1fandonly if A=0
» |[KA = [K[[IA]
» ||A + Bl <= [|Al]| + ||B|| (triangular inequality)

« Additional properties
Ax| < | Al
|AB| <|A|B|
A" <] A
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llI-Conditioned Matrices

o Matrix inversion: Ax=b 2> x=A1b
» Assume A Is a perfectly known matrix

» Consider b to be obtained from measurement
wIith some error

o Terminology

» Well-conditioned problem: “small” changes in
the data b produce “small” changes in the
solution X

» |ll-conditioned problem: “small” changes in the
data b produce “large” changes in the solution X
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llI-Conditioned Matrices

Caused by nearly linearly dependent
equations = nearly linearly dependent rows
and columns

Characterized by a nearly singular A matrix
Solution is not reliable

Common problem for large linear algebraic
systems

lll-conditioning quantified by the condition
number
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l1I-Conditioned Matrix Example

o Example

0.9999 —1.0001X_ 1
1 1 1+

» € represents measurement error in b,
» Two rows (columns) are nearly linearly dependent

o Perform Gauss-Jordan elimination to find A1
[A I]— 09999 -10001 1 O
11.0000 —-1.0000 0 1

0.9999 —1.0001 1 0
0 2.0002x10* -1.0001 1
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l1I-Conditioned Matrix Example

o Gauss-Jordan elimination cont.

1 -1.0002 1.0001 0
0 1 —5000 4999.5

1 0 -5000 5000.5
0 1 -5000 4999.5

o Solution

o _ A _| 5000 50005] 1] [ 0.5+5000.5
B | -5000 4999.5(1+¢&| |-0.5+4999.5¢
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l1I-Conditioned Matrix Example

Actual solution
. _| 05+5000.5 o, [ 05
| —0.5+4999 5¢ " T 1205

10% error (¢=0.1)

0.5+(5000.5)(0.1) | [500.55
{—o.5+(4999.5)(o.1)_ {499.45}

Small error in the data produced a large change In
the solution

Need a measure of matrix ill-conditioning to
identify this problem
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Condition Number

o Definition: x(A) = ||A]| |

Al

o A “large” condition num
an 1ll-conditioned matrix

o Well conditioned matrix example

5> 1 1
A=1 4 2
1 2 4

K(A) = HAH1HA‘1H1 = (7) % (30) = 3.75

A=
56

12
—2
—2

ber (> 1000) indicates
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Condition Number Example 1

o lll-conditioned matrix example

A 1.0001 1 a1 1.0001 -1
| 1 1.0001 - 0.0002| -1 1.0001

1

<(A) = |Al|A7], = (2.0001) o

(2.0001) = 20002

« Effect of ill-conditioning on solution

e | x| %
1.0001 1 . 1 0 05 05
1 1.0001| |1+¢ 001 -495 505

0.001 -45 5.5
0.0001 O 1.0
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Impact of the Condition Number

o Effect of data errors (see text for derivation)

OX ob
aebrs = Bl
X o
» Ob Is the error in the data and 6x is the resulting error in
the solution
» Scalar measures of the errors are obtained using vector
norms
» The errors are scaled by norms of the data and of the
solution

» The scaled error in the solution is bounded above by the
scaled error in the data
o Implications

» The condition number determines how much the data
error affects the solution

» The upper bound can be very conservative
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Condition Number Example 2

N A

A~ N -

N b~ -
B~ N

or
0.1
_0.1_

Estimate : |0, < x(A)

14
0

0]
bl

- 2.0143
— 4.9857

| 9.0143

Actual : H5XH1 =0.0429 << 0.429

OX =

(0.0143
0.0143

0.0143

0.3
=(3.75)—(16) =0.429
Xl = 27522 19
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Condition Number Example 3

o Hilbert matrix

1 1 1 1
2 n-1 n
1 1 1 1
2 3 n n+1
1 1 1 1
n-1 n 2n-3 2n-2
1 1 1 1
. n n+1 2n-2 2n-1 |

n=3

A 4

o Effect of n on condition number

19
1.6x10%
1.5x10/
1.5x1010

wl— N

Al Wk N
gl »k W
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Condition Number Example 4

o Effect of matrix size on condition number

» Generated 100 random matrices for each n value
withn=1, 2,5, 10, 20, 50, 100, 20, 500, 1000

» Averaged the 100 condition numbers for each n

o Large matrices are very likely to be ill-
conditioned o

0
0 1 00 200 300 400 500 600 700 800 900 1000
Matrix size n UMASS.



