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1. PDE models in chemical engineering

2. Finite difference approximations

3. PDE solution by finite difference

4. In-class exercise
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PDE Models in Chemical Engineering



Partial Differential Equation Models

ODE models have a single independent 
variable (a spatial coordinate or time)

Partial differential equation (PDE) models 
have 2 or more independent variables 
(spatial coordinates and/or time)

PDE models are very common in chemical 
engineering applications

Solution methods developed for ODE 
models are not directly applicable to PDE 
models

Here we will just introduce very basic 
concepts of PDE models and their solution



PDEs in Chemical Engineering

1-dimensional (1D) diffusion

2D diffusion
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PDEs in Chemical Engineering

1D convection

1D convection-diffusion

Steady-state 2D convection-diffusion
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Boundary Conditions

First-order ODE systems

» Initial value problems (IVPs) require an initial 

condition for each variable: yi(0)

» Boundary value problems (BVPs) require a 

boundary condition for each variable: yi(zi)

PDE systems

» Need an initial condition for each time 

dependent variable

» Need boundary condition(s) for each spatially 

dependent variable
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Example PDE Boundary Conditions

1D convection

» Initial condition: y(x,0) = y0(x)

» Boundary condition: y(L,t) = yL(t)

1D convection diffusion

» Additional “no flux” boundary condition:  
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Partial Differential Equation Models

Finite Difference Approximations



Finite Difference Approximations

The objective is to approximate derivatives of 

a function using only functional values

Definition of the derivative

First-order derivatives: xj+1 = xj+h
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First-Order Derivative Example

Function:

Use central difference approximation to approximate 
derivative at x = 1 (exact answer is -2.7067)

h = 1

h = 0.1
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Second-Order Finite Differences

Forward difference:

Backward difference:

Central difference:
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Second-Order Derivative Example

Function:

Use central difference approximation to approximate 
derivative at x = 1 (exact answer is 5.4134)

h = 1

h = 0.1

h = 0.01
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Simplified Notation

More convenient to express the formulas 

in terms of y = f(x)

First-order central difference

Second-order central difference
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Partial Differential Equation Models

PDE Solution by Finite Differences



Finite Difference Method

Consider a single PDE with time and one 
spatial coordinate as independent variables

The goal is to approximate the PDE as a set 
of time-dependent ODEs

Then the ODE system can be integrated to 
yield an approximate solution for the PDE

First the spatial domain is discretized into N
node points
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Finite Difference Method

Then the PDE is approximated at each node 

point with an ODE

The spatial derivatives are approximated by 

finite difference; e.g. central differences

Different formulas may be needed near the 

domain boundaries to implement the 

boundary conditions
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Finite Difference Method

The ODE system is integrated from the 

initial conditions to yield yj(t)

If h is “small”, then yj(t) will be a good 

approximation of y (xj,t) 

Can plot yj(t) versus t to visualize how y at 

a given location changes with time

Can plot yj(t) versus j to visualize how y at 

a given time changes with location



1D Convection-Diffusion Equation

Discretize equation

Approximate spatial derivatives at point j
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1D Convection-Diffusion Equation

Do not need an equation at j = 0 due to the 

boundary condition y0(t) = 0

Need a different formula at j = N because 

yN+1 is not defined

Apply backward difference and the 

boundary condition at j = N
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Summary of Equations
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pde_example_odes

function f = pde_example_odes(t,y)

u = 1;

D = 1;

N = 10;

h = 1/N;

y0 = 0;

for i=1:N

if i==1

f(i) = u*(y(i+1)-y0)/(2*h)+D*(y(i+1)-2*y(i)+y0)/h^2;

elseif i==N

f(i) = D*(y(i)-2*y(i-1)+y(i-2))/h^2;

else

f(i) = u*(y(i+1)-y(i-1))/(2*h)+D*(y(i+1)-2*y(i)+y(i-1))/h^2;

end

end

f = f';



Generate and Plot Results

>> N = 10;

>> yo = ones(1,N);

>> 
[t,x]=ode45('pde_example_odes',
[0 3],yo,[]);

>> figure

>> plot(t,x)

>> ylabel('y')

>> xlabel('t')

>> 
legend('x1','x2','x3','x4','x5','x6','x
7','x8','x9','x10')

>> t([1 126 244 478 950])'

ans =   0    0.2493    0.5009    0.9989    
2.0006

>> plot(j,x(1,:))

>> hold

Current plot released

>> plot(j,x(126,:))

>> plot(j,x(244,:))

>> plot(j,x(478,:))

>> plot(j,x(950,:))

>> ylabel('y')

>> xlabel('z')

>> 
legend('t=0','t=0.25','t=0.5','t=1','t=2')



Simulation Results (u=1, D=1, N=10)



Simulation Results (u=1, D=1, N=10)



Partial Differential Equation Models

In-class Exercise


