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Abstract

 

Visualization is the use of computer graphics for scientific and engineering data analy-
sis. This chapter highlights the current directions for scientific visualization software
on personal computer and workstation platforms. 

 

Introduction

 

Scientific visualization does not require a computer, as demonstrated by many examples
in Edward Tufte’s milestone book, 

 

The Visual Display of Quantitative Information

 

. However,
since the late 1980s, the term has come to be associated with the use of computer graphics to
represent relationships in scientific data, especially for systems with very large quantities of in-
formation.

The use of computers as visualization tools began with techniques such as contour plot-
ting, line graphics, and 2-D image display. Two factors combined to give this field much more
prominence: an increase in the amount of data (due to computer simulation, image capture,
etc.) which has overwhelmed the user’s ability to process the information, and technological
advances in computers that have made much more sophisticated data representation possible
and affordable (Schmitz, 1994).

Early scientific graphics applications used 

 

de facto

 

 standard line graphics software librar-
ies, almost all written in Fortran. The most widespread of these was the PLOT subroutine li-
brary written by Calcomp to drive their pen plotters. This same library was then adapted to
support other hardcopy devices, e.g. electrostatic plotters, dot matrix printers, and graphics ter-
minal devices. The first graphics terminal to come into widespread use was the Tektronix 4010.
Almost all subsequent line graphics display systems supported Tektronix protocols, and even
on modern systems, e.g. X window terminals, one finds client software that accepts Tektronix
graphical escape sequences.

2-D data were visualized using contour or vector field representations, which relied on the
line graphics subroutine libraries. Image display routines were tailored to the specific display
hardware, so that use of this technique required writing interfaces to the graphics screen or
hardcopy device drivers.

As recently as 15 years ago, the use of color hardcopy in data analysis was rare, and tech-
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niques such as animation virtually unknown. This began to change in the mid 1980s, when re-
searchers gained access to higher performance computers and supercomputers, with concurrent
improvements in data gathering instrumentation. This presented the researchers with the chal-
lenge of finding means to interpret these huge quantities of data. This challenge was brought
to public attention with the 1987 report by the National Science Foundation, entitled 

 

Visualiza-
tion in Scientific Computing

 

. At about the same time, computer hardware supporting megapixel
bitmapped displays in 8-bit color became widely available. Higher-end graphics workstations
with specialized graphics hardware, while still largely out of reach of individual researchers,
began to appear as departmental or group resources.

Software development accelerated with the advent of graphics standards and vendor-sup-
plied libraries for simplifying the use of more sophisticated graphics techniques. The early
standardization efforts developed on three fronts: attempts to define a standard plot file format
that hardware vendors could then support for their display technologies, graphics systems stan-
dards to provide an interface layer between the hardware drivers and the application code at the
level of graphics “primitives,” and higher-level libraries that use the primitives and produce
standard plot files. CGM, the computer graphics metafile, is the standard file format surviving
from these efforts. GKS, Graphical Kernel System, remained as the 2-D graphics primitives
system. No clear winner emerged from the attempts to standardize the higher level libraries,
but examples of systems that developed from these efforts are NCAR, DISSPLA, and PLOT10.

As graphics technology developed, the need for standardization became more apparent.
The development of laser printers and color hardcopy devices paralleled the spread of Post-
Script. The advent of bitmapped terminals brought the X Windowing System, and as 3-D
graphics became more feasible, the standardization impetus that created GKS led to the effort
to define PHIGS. At the same time, developers of the 2-D high level libraries extended these
systems to provide support for 3-D data representation (e.g. hidden or ruled-surface plots, 3-D
line plots), as well as animation. 

The acceptance of standardized systems in 3-D display was hampered by the fact that the
vendors provided their own libraries that were in general more efficient than, and at least as
easy to use as, the standard libraries. For higher end visualization applications, the fact that only
a very small number of vendors had hardware to support those applications meant that porta-
bility was not a driving consideration. The dramatic drop in the cost of the hardware also made
software developers (especially those producing freeware) less hesitant to target the software
to a particular hardware platform. This is less of a problem than appears at first glance, because
of the trend for hardware vendors to license their software for other platforms, and because of
the standardization of windowing systems on workstations. Most modern visualization systems
ultimately rely on X window protocols, which are portable.

The next set of improvements in visualization built upon the development of windowing
systems and graphical user interfaces to create data exploration systems that attempt to simplify
the visualization process. These systems are founded on two ideas; that the focus of the visu-
alization process should be on the flow of data through the stages of the process, and that the
visualization program itself can be constructed using a visual programming model. The re-
searcher selects the appropriate visualization modules, drags the module icons onto a work-
space area, selects the data inputs, links the modules together in the appropriate order, accesses
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the data, and waits for the process to display. An example of a visual programming system, Ex-
plorer from Silicon Graphics Inc., is shown in Figure 1. 

 

Figure 1.   Screen image building blocks from the Explorer pack-
age (Silicon Graphics Inc.).

 

Of course, more traditional scripting languages for visualization also exist, e.g. PV-Wave
(Precision Visuals, Inc.). Other visualization packages are customized for the needs of a par-

ticular class of problems, for example, Tecplot

 

TM 

 

(Amtec Engineering, Inc.) or Sterling SSV

 

TM

 

(Sterling Federal Systems, Inc.) which have capabilities for visualizing data from finite differ-
ence and finite element calculations in computational fluid dynamics. A key feature within ad-
vanced visualization packages are cutting tools which allow the user to cut sections away from
the object, model or graph to see inside the outer surface. A variant on arbitrary cutting planes,
are isosurface plots of variables such as temperature, streamlines or stress. For an interesting
example of visualization of a complex flow see Göde and Cuénod (1990). Some packages, such
as AVS (Advanced Visual Systems), Explorer (Silicon Graphics) and the Visualization Data
Explorer (IBM), are general purpose packages which provide visualization “environments” to
allow animation and visualization of machinery, as well as derived data from computer simu-
lations. The visualization software packages cited above are not an exhaustive list and are given
as examples from classes of visualization tools. Interested readers should consult hardware and
software vendors for more information.

Most recently, developers have been experimenting with ways to display data of more
than 3 dimensions, using non-visual cues such as sound, and more flexible and intuitive ways
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of interacting with the data, e.g. with stereo viewers or virtual reality systems wherein the re-
searcher uses a head-mounted display or other motion-sensitive detector to “move” the data.
The goal of visualization software development is to integrate it with the data generating pro-
cess, so that the researcher can explore the data interactively and use that information to modify
the numerical computations. 

Script language visualization systems increasingly incorporate numerical functions. Sim-
ilarly, numerical and symbolic manipulation programs have increasingly sophisticated graph-
ics capabilities. 

Graphics systems on personal computers have not traditionally been tailored to scientific
visualization, because these machines did not have the CPU power for complex calculations or
complex graphics. Numerical and statistical systems with 3D graphics support, as well as im-
age display and animation programs now run on personal microcomputer platforms. A number
of the more specialized visualization packages for the workstation platform have versions,
sometimes for limited problem classes, for personal computers.

The term scientific visualization has evolved to refer exclusively to more complex scien-
tific graphics: animation and/or exploration of data in 3 or more dimensions. The discussion of
visualization in this chapter is therefore also focussed on higher-end visualization require-
ments.

 

The Visualization Process

 

With all the impressive increase in hardware and software capabilities, it must be ac-
knowledged that the techniques of data visualization have become more difficult for the user.
In the past, most researchers wrote their own programs to call the subroutine libraries for line
graphics. Putting together a program for interactive manipulation of 3-D fluid flows is quite
another matter! Furthermore, software developers also find it difficult to create a generic pro-
gram that will do this kind of visualization for arbitrary data types, and of course programs tai-
lored to the users’ specific data requirements are costly. The result is that the user may be faced
a vast array of generic tools for gridding, color map manipulation, geometrical mapping, etc.,
but no clear idea of how the data fits into this toolset. 

Two things aid the user in getting started with visualization. One is that the most common
visualization tasks have been encapsulated into modules, for example: 3D plotting and anima-
tion in a projection calculation module, accumulation of single frames with playback into a
movie module, or object rotation and zooming within a rendering module. The second helpful
development is the explosion of freeware, user contributed modules, and user newsgroups for
all visualization systems.

The visualization process is well represented by the dataflow programming model. The
result at each stage depends strictly on the data input, not on the results of a previous execution,
so that the process can be envisioned as data traveling in a pipeline through various processing
steps. 

The basic steps are:

 

∑

 

Normalization: Scale the data to the values expected by the display sys-
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tem (e.g. 0-255 for 8 bit display devices). This step also includes any
scaling required to better analyze trends in the data (e.g. converting to
logarithmic values, filtering).

 

∑

 

Mapping: Define the display image according to the normalized data
and the computational grid - regrid from computational space to display
space. 

 

∑

 

Rendering: Add color, lighting, shading, projection information, display
the image and store it in display memory.

 

∑

 

Interaction and/or animation using the rendered images.

The rendering step is often very computationally intensive, involving calculating projec-
tion information, calculating and removing occluded surfaces, and calculating the effect of
light sources on the object’s appearance. Despite the complexity of this step, it is of less con-
cern for the user because it does not involve the scientific data, but rather the computer graphics
image. Most visualization systems provide modules to handle rendering as a “black box” from
the user’s standpoint.

The mapping step is the point at which the computer graphics is added to portray the sci-
entific data. The user will find this the most difficult step, because it requires an understanding
of both the science and the graphics. First, one must decide what graphical representation best
conveys the information about the data. For example, is a 3-D velocity field best rendered as a
stream of particles in a 3-D coordinate space, as vectors on a plane, or as streamlines? What
color scheme is best to display data values? Once these issues have been decided, the user must
determine how to use the visualization system to convert the data into the desired display rep-
resentation. The 3-D velocity field, for example, may not be defined over a regular 3-D matrix,
but regridding will be required in order that the data be converted to graphics primitives for the
renderer. Consider the set of mapping steps for the visualization of the energy conservation
equation for a heat transfer problem. The heat flow is evaluated over a regular grid, and then
output as a one-dimensional array, or lattice. This is then converted to a geometrical represen-
tation as expected by the renderer. A colormap is also attached when the geometrical represen-
tation is generated, as is a text legend for the color bar.

A crucial requirement in the visualization process is appropriate hardware. The rendering
and mapping steps can both require significant CPU power and memory. Animation is very de-
manding of disk space. Higher end graphics workstations, supporting display and interaction
of 3D solids, are distinguished from general purpose workstations by having options such as
24 or more bitplanes (memory specific to the storage of display frames), extra RAM for storing
distance information (often called a z-buffer), and specialized ASICs for encoding graphical
primitive instructions in hardware. Output of color images or animation will also require the
appropriate hardware to interface to the computer (color printers, video output, CD-ROM,
etc.).

 

Visualization Resources

 

In compiling a list of useful guides in visualization, one must cite in particular the US Na-
tional Center for Supercomputer Applications. Modules for visualization software systems on
PCs, Macintoshes, and workstations are all available here, as are programs developed in-house
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and made available to the research community. More information as well as the tools them-
selves are available by anonymous ftp from 

 

ftp.ncsa.uiuc.edu

 

.

Usenet groups for computer graphics, visualization, and specific visualization software
also exist. Users of Mosaic or Netscape and the World Wide Web can make use of the CUI
World Wide Web Catalog. A keyword search of the catalog for “visualization” yields a number
of entries. In particular the user should consult the NASA Ames annotation bibliography of sci-
entific visualization URLs for visualization examples and references to freeware.

The usenet group 

 

comp.graphics

 

 publishes a biweekly resource listing for computer
graphics systems that includes visualization software. This resource listing is also available at
usenet archive sites, for example 

 

rtfm.mit.edu

 

, and includes information on public domain and
commercial visualization software for all hardware platforms.

Finally, as more of the technical tasks in visualization get absorbed into automated proce-
dures, what the researcher will really need to know is how to make an effective visual presen-
tation; e.g. what colors to use, how much information can be conveyed without cluttering the
visualization, etc. For insight into that process, we would strongly recommend the books by
Edward Tufte mentioned previously, 

 

The Visual Display of Quantitative Information

 

, and the
second book, 

 

Envisioning Information

 

. These books make extensive use of examples of good
and bad visualizations, which, though static, provide valuable lessons that can be extended to
animations as well. 

The collection of papers edited by Cunningham and Hubbold (1992) provides an interest-
ing cross-section of experiences in education with various visualization tools. While there are
many exciting possibilities with multimedia and even hypermedia, certain common problems
recur in the use of visualization in education. The general availability of reasonable hardware
with adequate graphics performance cannot be taken for granted, especially in developing
countries. More importantly, the plethora of specialized graphics platforms means that the
learning module must be portable for any kind of extended life in the fast changing world of
computer hardware. The time needed to prepare an instructional module is considerable and
there is a lack of authoring tools that are flexible and allow portability of the module. The in-
structional module must be accessible by students who are at different levels of ability with the
scientific subject at hand so that there is help for the novice and depth for the student who wish-
es to try more difficult cases. The use of visualization in education is definitely limited in the
traditional lecture mode, but is particularly well suited for self-study and enrichment exercises.

 

An Example of Visualization Techniques - Flow in a Driven Cavity

 

As an illustration of a simple method of getting useful graphical information for a problem
of interest in chemical engineering, we take the program 

 

cavpit

 

, part of the MINPACK-2 test
problem collection from the Army High Performance Computing Research Center and Ar-
gonne National Laboratory (Brett et al., 1992). Program 

 

cavpit

 

 solves the steady-state Navier-
Stokes equation for the 2-D driven cavity flow problem. The modified program uses MATLAB
to display the streamline contours, velocity contours, and velocity vectors at several values of
the Reynolds number (Kus, 1994).

The program makes use of the MATLAB sockets toolkit written by Barry Smith. The tool-
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kit uses Internet protocols to establish socket-based communication between an application
program and a MATLAB session. The toolkit provides an object library of routines for passing
a matrix (the streamline values) to MATLAB, and a MEX function that waits for the matrix
and then returns it to the MATLAB macro. The macro then calculates the vorticity contours
and the velocity vectors from the streamlines, and uses the MATLAB graphics functions to plot
these quantities. The macro for calculating and plotting the data is given in Figure 2. Plots of
vorticity, streamlines and velocity vectors for Reynolds number 400 are shown in Figure 3 (a
- c). 

 

function cav(portnumber)

%

%  Waits at socket portnumber 5005 until a matrix arrives

% 

%  This file is for the cavity program

%

%

if ( nargin == 0 ) portnumber = 5001; end;

for ii=0:10000

  m = receive(portnumber);

  if ( sum(size(m)) ~= 0 ) 

    nvar = size(m,1)

    n = nvar-1

    nx = sqrt(n)

    ny = n/nx 

    for j = 1: nx

      for i = 1:ny

        psi(i+1,j+1) = m((i-1)*nx+j,1) ;

      end

    end

    for j = 1:nx+2

      psi(1,j) = 0.0 ;

      psi(ny+2,j) = 0.0 ;

    end

    for i = 1:ny+2

      psi(i,1) = 0.0 ;

      psi(i,nx+2) = 0.0 ;

    end

    xc = m(nvar);

    tc = num2str(xc)

%      Streamlines plots

    V = [ -.11 -.1 -.08 -.06 -.04 -.02 -.01 ...

         -1.0e-5 1.0e-6 1.0e-5 1.0e-4 1.0e-3 2.0e-3 ] ;

       

    figure(1);
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    contour(psi,V); 

    title([ ‘Streamline Contours for Flow in a Driven Cavity for Reynolds Number R  =  ‘,tc]);

%      Equivorticity plots

    hx = 1/(nx+1); hy = 1/(ny+1);

    for j = 1:nx-1

      for i = 1:ny-1

        v(i+1,j+1) = -(psi(i+2,j+1)-2*psi(i+1,j+1)+psi(i,j+1))/(hx*hx) ...

                     -(psi(i+1,j+2)-2*psi(i+1,j+1)+psi(i+1,j))/(hy*hy) ;

      end

     end

    V = [ -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 ] ;

      

    figure(2); 

    contour(v,V); 

    title([ ‘Vorticity Contours for Flow in a Driven Cavity for Reynolds Number R  =  ‘,tc]);

    for j = 1:nx

      x(j) = j*hx;

      y(j) = j*hy;

      for i = 1:ny

        vx(i,j) = (psi(i,j+1)-psi(i,j))/hy ; 

        vy(i,j) = -(psi(i+1,j)-psi(i,j))/hx ;

      end

     end

%

%      transpose the x and y matrices to take account of matlab’s coordinate

%      system conventions for the quiver function

     vx = vx’;

     vy = vy’;

     figure(3);

     quiver(x,y,vx,vy,4);

     title([ ‘Velocity Vector for Flow in a Driven Cavity for Reynolds Number R  =  ‘,tc]);

  else

    break;

  end;

end;

 

Figure 2.   Matlab code for generating graphics for driven cavity 
problem.
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Figure 3.   Images of streamlines, velocities and vorticity for 
driven cavity problem.

 

MATLAB is then an example of a numerical computation program that has incorporated
graphical capabilities into its language. The actual plotting is done with a few simple com-
mands; 

 

contour

 

 for the streamline and vorticity contours, and 

 

quiver

 

 to generate the velocity
vector plots, plus commands for labeling the axes and putting titles on the graphs. Simple 3-D
plots are also done by invoking only a few commands; for regridding the domain over which
the function is defined if needed, and for display the data or function as a scatter plot, wire
frame plot, or surface plot. 

 

CACHE Activities

 

Elements of visualization are seen in a number of CACHE Corp. products for use in un-
dergraduate education. An effective use of visualization is seen in applications where there is
a large amount of data generated at one time or over a number of simulations which must be
compared. The level of interaction between the user and the software is important to effectively
use graphics to aid the student in understanding a concept. 

Interactive computer modules for chemical engineering instruction by Fogler and co-
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workers (1993) is an example of interactive use of graphics to aid the student to explore the use
of simulation models. Collections of modules exist for material and energy balances, fluids and
transport, separations and reaction kinetics. 

Visualization and graphics can also be used to provide a simulation of an industrial pro-
cess experiment. Students can work with realistic models of existing industrial processes to de-
velop strategies for operation and optimization through the use of dynamic simulation. The
Purdue-Industry Simulation Modules (Squires et al.,1991) provide modules, developed
through the support and collaboration of industrial sponsors, for hydrodesulfurization, catalytic
reforming, emulsion polymerization, methyl acetate production and process heat transfer.

The Chemical Reactor Design Tool (see p. 121) and the Transport Module (see p. 129)
both make extensive use of graphics. The data entry is done in X-windows, which provides a
screen-oriented input. The power of these educational tools, however, is in the graphical out-
put. Indeed, the programs are designed so that the graphs are the only output the user studies;
a text file is created only for trouble shooting and special purposes. Line plots, 2D contour
plots, and 3D perspective views can be chosen for the solution variables as well as derivatives,
such as the difference between the catalyst temperature and fluid temperature, the diffusion
term, or in the case of the Navier-Stokes equation, the vorticity.

 

 Thermodynamic Visualization

 

West (1992) argues that a visual thinking approach to problem solving is particularly use-
ful in fields where large amounts of information have underlying physical relationships. An ex-
ample of such a discipline is thermodynamics. Professor Kenneth Jolls and co-workers at Iowa
State University have developed visualization tools tailored to the needs of thermodynamics
problems, especially those involving equations of state. Thermodynamic concepts are difficult
for the average student to assimilate on the first pass and learning is made more difficult with
the complex mathematical formulae which are necessary to describe vapor-liquid or reaction
equilibria. Jolls et al. (1991) effectively show how thermodynamic information can be captured
in graphical images in a package called 

 

Equations of State

 

, which is available and used by a
number of universities. Modern computing environments allow one to tackle more complex
multicomponent equilibrium problems using color and shading techniques to capture added di-
mensionality which is lost in wireframe drawings. As the number of species goes beyond three,
a decision must be made on what specific features need to be rendered since it becomes
counter-productive to superimpose too much information on a diagram. Binary and ternary sys-
tems, common to problems in the undergraduate thermodynamics course, are especially ame-
nable to visualization. 

Thermodynamic visualization can be used as a tool for studying more advanced phenom-
ena such as phase stability (Jolls and Butterbaugh, 1992) or process unit modeling (Jolls et al.,
1994).
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Conclusions

 

Visualization using computer graphics systems has undergone a remarkable change in the
last thirty years. The student can use a number of packages which have many graphics modules
already included to facilitate the analysis of data. Advanced visualization packages allow the
use of more complex data representations on both personal computer and workstation plat-
forms. A major need, for educational uses, remains authoring systems that provide flexible use
of graphics while not burying the underlying scientific concepts that are being addressed. For
research uses, visualization is a necessary component for large data set analysis and is ad-
dressed by a number of software vendors on various workstation platforms. The frontiers of
visualization have pushed beyond what can be expressed as a simple two-dimensional mono-
chrome line images to include interaction modes for color, sound, motion and touch. As data
sets become larger, choices need to be made about the manner in which to represent (or interact
with) the data which means that users cannot avoid learning about the opportunities, as well as
the limitations, of the visualization process.
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Abstract

1996 is a special year in the history of computing. It marks the 50th anniversary of the
public announcement of the ENIAC, the first general-purpose electronic digital com-
puter, the 25th anniversary of the first commercial microprocessor, the Intel 4004, and
the 15th anniversary of the first IBM PC, whose basic structure and open architecture
set the standard for subsequent personal computer development.

Most technological developments of consequence pass through the familiar S curve of
slow initial growth, then a period of rapid acceleration, and finally another slow-growth
phase of important, but marginal, improvement. For the digital computer, the slow
growth period lasted about 15 years. The acceleration phase began with the introduction
of the transistor in the late 1950s, received additional thrust with each new transforming
technology (time-sharing, integrated circuits, real-time minicomputers, networking, the
microprocessor, interactive graphical operating systems and programming environ-
ments, supercomputers and parallel machines, high speed communications, the Inter-
net, the World Wide Web, etc.), and continues unabated to this day.

We describe past developments and current trends in the areas of computing hardware,
communication, and software and make a few predictions about the state of computing
in general and in chemical engineering education in the year 2001.

Introduction

Only “yesterday” those two most prominent dates of 20th century fiction, Orwell's 1984
and Clark's 2001, seemed far into the future. Today, 1984 (do you remember your IBM PC AT
or Macintosh 128?) is long past, and Big Brother is (almost) nowhere in sight. 

2001 looms over the horizon, a mere half-decade away. And Clark's HAL, malevolent and
almost infallible, also seems nowhere in sight. But, of course, he won't be “born” until 1997,
so there is still time! One certainty is that HAL will look nothing like Kubric's 1969 vision of
him. No astronaut in full space suit will float among HAL's innards. More likely, all of HAL's
parallel processing capability will be encompassed in many microprocessors, housed in a
“box” of quite modest size.

Neither Orwell nor Clark should be faulted for his vision. Predictions about the future of
technology have not been particularly accurate. Verne was right about moon travel, and in his
1863 novel Paris in the Twentieth Century  correctly imagined the automobile, electric lights,
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and the fax machine, but was wrong about many others. Edward Tenner, in his recent Why
Things Bite Back, argues convincingly that most predictions about technological developments
turn out to be either off the mark or just dead wrong. 

Two of my favorite predictions, both from Vannevar Bush (inventor of the analog com-
puter and World War II production czar), show how long-term right and short-term wrong the
same person can be about the same subject:

“ ... The MEMEX will be for individual use, about the size of a desk with dis-
play and keyboard that will allow quick reference to private records, journal ar-
ticles and newspapers, and perform calculations ...” 

in As We May Think (1945)

“ ... Will we soon have a personal machine for our own use? Unfortunately not!”

in MEMEX Revisited (1967)

Incidentally, Bush, a consultant for IBM, is reputed to have told the IBM Board in 1955
that no more than 100 IBM 650s should be built, since they could do all the computing that the
World needed done! 

Even short-term prediction is fraught with peril. Few would have predicted in 1993 that a
hyperlinked World Wide Web would transform computing from a machine-centered view to a
network-centered one almost overnight. Despite such revolutionary surprises, technology in-
stills a sense of unfolding promise, making prediction almost impossible to resist. Hence my
title, 2001 (granted, I’m not looking all that far into the future!).

Hardware

Hennesey and Patterson, in their superb 1995 text Computer Architecture (a must-read for
anyone interested in low-level computer structure and functionality), briefly outline the history
of computer hardware and architectural development, noting that a 1995 desktop PC (costing
say $4,000 in 1995 dollars) had more main and disk memory, and better performance, than a
million-dollar (1965 dollars) 1965 main-frame.

Processors and Memory

During the twenty five years following ENIAC, actual computer “performance” (Henne-
sey and Patterson), a rough measure of ability to process a comprehensive mixed set of test pro-
grams, improved by about 25% per year for main-frames, year in and year out. That rate
improved to between 25% and 30% during the 1970s, primarily because of the introduction of
minicomputers into the hardware mix. Since 1980, following widespread production of micro-
processors, the overall performance growth rate has climbed to roughly 35% per year. The Intel
CISC (complex instruction set computer) microprocessor family, used in perhaps 85 percent of
the approximately 75 million machines that will be sold worldwide in 1996, is primarily re-
sponsible for this acceleration in average performance. 

RISC (reduced instruction set computer) processors were first introduced in 1984. Since
then, overall performance of computers incorporating this class of processors has improved at
about a 50% annual rate. Although used in only 10 to 15 percent of computers in the current
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market, RISC processors play a significant role in engineering computing, since they are used
primarily in high-performance engineering workstations and parallel machines (also in Power
Macintoshes).

Figure 1 (data from URL infopad.eecs.Berkeley.edu/CIC) shows that raw peak processor
capability (rather than observed average performance for assembled computers), estimated
roughly as proportional to the product of processor transistor count and clock speed, has dou-
bled about every eighteen months over a 20 year period for the Intel family of CISC micropro-
cessors. The Power PC and DEC Alpha RISC microprocessor families show even shorter peak
performance doubling times of 12 to 14 months.

Figure 1. Peak performance estimated from the product of tran-
sistor count and clock speed for Intel (o), Power PC (x) and DEC 

Alpha (*) microprocessors.

Three current trends in chip and magnetic disk technologies are (Hennesey and Patterson):

1. Transistor density for integrated circuit logic (microprocessors) is increasing at about
50% per year; growth rates in transistor count per chip are in the range 60% - 80% per year.
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2. Dynamic (main memory) RAM bit density is increasing at about 60% per year, result-
ing both from higher transistor densities and design improvements requiring fewer transistors
per memory cell. The result is RAM of much larger capacity and much lower cost than was
available even two or three years ago. 16 Mb chips are now standard, and 32 Mb and 64 Mb
chips are widely available. [NEC has recently reported development of an experimental 4 Gbit
RAM chip (256 times the capacity of the current standard chip), with production planned for
around 2005.] 

3. Prior to 1990, magnetic disk densities increased at about 25% per year. Since 1990, the
rate has accelerated significantly to about 50% per year.

What about costs? Here, the impact of the technical developments alluded to in the pre-
ceding paragraphs, improved manufacturing performance (yield of good chips), and economies
of scale resulting from volume production and commoditization of microcomputers, have led
to incredible reductions in the cost/performance ratio.

Figure 2 shows a retail price curve for 16 Mb DRAM (dynamic RAM) chips between
1993 and 1996. The cost reduction by a factor of 8 to 10 over the 3 to 4 year life cycle of this
DRAM chip is typical of that for prior standard chip sizes as well. With the compounding of
cost reductions for standard chips, the cost per megabyte of DRAM has dropped incredibly
from over $17,500 in 1977 to about $5 in 1996 (both in 1996 dollars). Thus real RAM costs
have been reduced by a factor of 3500 in about 20 years! 

Figure 2. Cost of 16 Mb RAM chips - 8 required for 16 MB 
(data from Hennesey and Patterson).

What are the prospects for continuation of the performance trends for processor and mem-
ory chips described above? Very good, at least until 2001 and probably for several years be-
yond. Processor chips with a billion transistors and memory chips with many billions of
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transistors are certain to appear before the end of the first decade of the next millennium. 

However, physical limitations of current photolithographic processes will force major
changes in chip production technology before then. As shown in Fig. 3, the minimum feature
size (e.g., width of “wire” traces) of chip-making photolithographic processes on silicon has
fallen from 12 microns in 1970 to 3.5 microns in 1980 to 0.8 microns in 1990 to 0.3 microns
in 1996; at least two new 0.25 micron fabrication facilities will be in full production by mid-
1997. The apparent limit of this technology, 0.365 microns, the wavelength of the ultraviolet
light currently used for photoresist exposure, will in fact be reduced by more than half, to 0.1
microns, with lasers emitting 0.248 micron or 0.193 micron ultraviolet light and clever use of
phase-shifted interference lithography. However, barring some even more clever (and unlike-
ly) improvement within the next very few years, the minimum feature size of photolithographic
technology is probably about 0.1 microns, likely to be in common use during the first half of
the next decade (Stix).

Figure 3. Minimum feature size for silicon chips.

Thus new technologies using photolithography with much shorter wavelengths or, more
likely, completely new technologies not involving the interplay between light and photoreac-
tive polymer resists, will be required. The new technologies may involve very-difficult-to-fo-
cus x-ray or rather slow electron beam processing (used by NEC in development of the
experimental 4 Gbit DRAM chip mentioned earlier). 

IBM researchers have reported creation of microstructures on silicon as small as 30 na-
nometers, and many university and corporate researchers worldwide are working on develop-
ment of the ultimate smallest silicon component, the single-electron transistor, for which the
minimum feature size is about 7 nanometers. Thus, for transistor-based micro-electronic sili-
con chips there will be an ultimate maximum transistor density and minimum feature size,
whatever chip fabrication technology supplants photolithography. If the trend toward smaller
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feature size illustrated in Figure 3 were to continue unabated (improbable), that ultimate limit,
two orders of magnitude smaller than 0.1 micron, would be reached sometime around 2025.

From the numbers cited in the previous paragraphs, it appears likely that the rapid increas-
es in transistor density (hence computer performance) we have seen in past decades will con-
tinue for at least one more decade. Whether the pace continues for the decade after that will
depend as much on the development of cost-effective manufacturing techniques as on theoret-
ical possibilities. The sheer cost of a new “fab” (chip fabrication plant) may, in fact, determine
when Moore's Law (transistor density doubles every eighteen months), first postulated in the
mid-1960’s by a founder of Intel, finally breaks down. The capital investment in a typical fab
has climbed from about $1 million in 1970 to about $1 billion in 1994 to about $2.5 billion for
a new Texas Instrument 0.25 micron fab scheduled to become operational in 1997. 

Given that gross revenues for the largest chip maker, Intel, will be approximately $25 bil-
lion in 1996 (and growing at a compounded rate of about 35% per year) it seems doubtful that
more than a very few companies worldwide will have the resources to create fabs based on en-
tirely new technologies that may well cost $10 billion each by 2005 or so when the current pho-
tolithographic process will have run its course. $10 billion is not small change for any
company; it is about 10% of the current combined market capitalization of the Big Three US
automakers.

Parallel Processing

This is not to say that computational power of typical, affordable computers will at some
point fail to grow at the exponential rate we are accustomed to. What cannot be accomplished
with speedier individual processors will be made possible by processing in parallel on more
than one. 

The supercomputing and parallel processing paradigm is currently going through perilous
times, as several once-prominent companies have either gone bankrupt or been taken over by
larger ones whose major revenues come from more conventional computer and/or workstation
sales. One current trend that seems certain to continue involves use of off-the-shelf mass-pro-
duced (typically RISC) processors, rather than extremely fast but very expensive custom-de-
signed processors, such as have traditionally been used in the fastest supercomputers with
pipelined vector architectures. At least one experimental parallel machine with over 9000 pro-
cessors (from Intel, using Pentium II CISC processors) has already performed useful calcula-
tions at speeds exceeding 1 Teraflop (trillions of floating-point operations per second), almost
three orders of magnitude faster than the fastest current custom-built supercomputer processor
made by Fujitsu. By 2001 a 10-teraflop machine (to be built by IBM for the Energy Depart-
ment) will be in operation at the Los Alamos or Livermore National Laboratories.

Currently, two general architectures predominate, one called SYM (symmetric multipro-
cessing), involving a shared memory accessible (either directly or indirectly) by all processors,
and the other called MIMD (multiple instruction, multiple data) involving networked proces-
sors, each having its own “private” memory, inaccessible to the other processors. 

Each of the architectures has its strengths and weaknesses. Programming of SYM ma-
chines is simpler than for MIMD machines (though explicit synchronization is required to
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avoid data access “races” by contending processors). For machines with a small number of pro-
cessors (for example, just a few for desktop machines), the SYM architecture is likely to dom-
inate. Unfortunately, as the number of processors grows, the bus structures for the shared
memory SYM machines can become extremely complicated, so scaleup to massive parallelism
(beyond say a few hundred processing nodes) is difficult technically and very expensive. 

On the other hand, the networked individual processor MIMD model typically requires
message-passing software such as PVM (Parallel Virtual Machine) or MPI (Message Passing
Interface) to explicitly request transfer of information from one processor’s memory to the
memory of another processor that needs it. This complicates software development. The indi-
vidual processors on these parallel machines behave like individual workstations with each
node, normally running its own copy of the (Unix) operating system, attached to a local area
network (albeit a very, very fast one, called a switch). Because of the architecture, MIMD ma-
chines are inherently scalable to quite large numbers (many thousands) of processors.

Parallel programs for tightly-switched MIMD machines can often be run as easily (though
not as quickly) on networks of workstations. My guess is that this model will be the predomi-
nant one for engineering computing by 2001. Software to ease the programming problem is
coming to market, and there will be a vast resource of unused compute cycles on very high per-
formance networked workstations already in place in most engineering-oriented businesses
(and universities), just waiting to be exploited for solution of computationally complex prob-
lems.

Communications

Without doubt, communications is the “computing” area experiencing the greatest accel-
eration in growth and greatest decrease in price/performance ratio. Daniel Atkins, Dean of the
School of Information and Library Sciences and Professor of Computer Engineering at Mich-
igan, estimates (personal communication) that the price/performance ratio for communication
bandwidth is currently decreasing at a rate ten times that for computing hardware. 

Tables 1 and 2 show the astounding impact of the capacity of storage media and network
bandwidth on the storage and transmission of typical documents (here for uncompressed text
only). Note also that the recently released single-side/single-layer DVD (Digital Versatile
Disk) has about eight times (4.7 GBytes) the capacity of the conventional CD ROM listed in
the table. If two layers per side (read by adjusting the focus of the laser) and both sides are used,
then a single DVD, physically the size of a CD, can store a total of 18.8 GBytes, equivalent in
capacity to 32 current CD ROMs. So all the text (but not the graphics!) in all the documents in
the Library of Congress could be stored in fewer than 1000 such DVDs. (Don’t expect to see
this anytime soon! The Library of Congress is currently creating a digital library by scanning
at high-resolution about 1 million new and recent documents per year; the library will be avail-
able to K12 and university libraries as an on-line resource. Digitizing all 20 million documents
in the Library would be a massive and expensive undertaking, and is unlikely to be funded.)

The fastest local area network data-transmission rates, about 5 Mbps (millions of bits per
second) in 1980, will certainly be greater than 1 Gbps by 2001 (1 Gbps Ethernet equipment will
be available from manufacturers sometime in 1997). Milti-gigabit rates for high-performance
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switched networks, such as those used in massively parallel MIMD machines, will also be
common by 2001.

Table 2: Transmission Times for Typical Documents (Lucky)

In late 1996, fast backbone Internet lines operate at about 45 Mbps. By the end of 1997,
the facilities of a yet faster Internet, called vBNS (very high speed backbone network service)
or Internet II, will connect about 100 research Universities and the national supercomputing
sites with optical backbone connections operating at 155 Mbps. No doubt Internet II will, in
turn, be replaced by Internet III, having a substantially greater bandwidth. Gigabit Internet

Table 1: Sizes of Typical Stored Documents (Lucky)

Document Bytes
Floppy 
Disks

CD ROMs

Page 2,400 0 1

Report 72,000 0 1

Book 720,000 1 1

Dictionary 60,000,000 43 1

Encyclopedia 130,000,000 93 1

Local Library 70,000,000,000 50,000 108

College Library 700,000,000,000 500,000 700

Library of Congress 18,000,000,000,000 12,900,000 26,000

Document
Modem
28,000 bps

T1
(1.5Mbps)

Fiber Optic
(1.7 Gbps)

Page 0.68 sec 0.013 sec 0.0000113 sec

Report 20.5 sec 0.38 sec 0.000339 sec

Book 3.42 min 3.84 sec 0.0034 sec

Dictionary 4.76 hr 5.3 min 0.28 sec

Encyclopedia 10.32 hr 11.6 hr 0.61 sec

Local Library 232 days 4.32 days 5.49 min

College Library 6.34 yr 43.2 days 0.92 hr

Library of Congress 163 yr 3.04 years 23.5 hr
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backbone service will almost certainly be available for at least some users by 2001.

Most current modems attached to commercial cable television networks support Internet
transmissions at T1 rates (1.5 Mbps), some 50 times typical telephone modem rates (28.8
kbps). Potentially, however, broadband cable modems with optical cable lines are capable of
very much higher data rates, in the 10 to 40 Mbps range, at least when downloading (transfers
from the Net to local PC); uploading (PC to Net) is normally slower, but still several times fast-
er than for current telephone modem communication. Unfortunately, only about 10% of current
commercial cable systems support two-way communication at all (so that PC to Net transmis-
sions require a separate telephone modem), a situation that will probably be remedied by 2001
as companies upgrade their equipment and replace copper lines with optical ones.

Wireless services are now pervasive, and relatively inexpensive. Wireless local area net-
works are proliferating, and represent a cost-effective alternative to copper or optical cabling
as a way of “wiring” a building (though the data rates cannot compete with those for high-band-
width optical fiber). Several different sets of globe-girdling LEO (low-earth-orbit) satellite sys-
tems are about to be put into place by consortiums of computing and communication
companies. They will provide high speed wireless services from virtually any place on the
earth’s surface. For example, 28 Mbps wireless Internet connections are planned for the $9 bil-
lion Microsoft/McCaw/Boeing Teldesic system of 288 satellites, scheduled to be fully opera-
tional in 2001.

The Web Changes Everything

Local (LAN) and wide area (WAN) networks have been with us for about twenty five
years, starting with the Ethernet LAN, developed at XEROX PARC in the early 1970s, and the
wide-area ARPANet, for which the first machine to machine transmission (from the University
of Southern California to the University of California at Berkeley) took place in September
1969. Prior to the development of these technologies, most remote computing was performed
at dumb terminals connected by telephone modem to mainframes operating in time-sharing
mode. 

Local area networks (LANs) made possible the high-speed sharing of resources such as
mass storage units and printers. With the development of Unix in the late 1960s and early
1970s, remote computational resources on the network could also be tapped by multiple users
directly from their own networked machines. 

ARPANet allowed for remote messaging (EMail) and file transfer, and the sharing of
ideas, data, research results and computational resources among users of machines that were
widely separated geographically. A key breakthrough came with the adoption of the Internet
transmission protocol (TCP/IP) and Internet domain addressing scheme in 1974. TCP/IP cre-
ated a universally recognized standard for transmission of information “packets” over the net-
work, and the addressing standard supported creation of world-wide directories, allowing
unique identification of every networked machine and the speedy delivery of information pack-
ets to their intended target machines.

With support from the US Defense Department, ARPANet grew at a steady but unspec-
tacular pace during the 1970s from 24 sites in 1971 to about 200 in 1981. In 1986 ARPANet
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was replaced by a less “military,” more academic, network called NSFNet. One of the principal
functions of NSFNet was to provide high bandwidth access between University campuses and
five National Supercomputing sites (reduced to two in 1996). NSFNet was in turn replaced by
the loosely (some believe chaotically) managed, rather amorphous Internet (a network of net-
works) in the late 1980s. As of late 1996, the world-wide Internet ties together more than
100,000 individual networks with more than 50 million attached (either directly or through In-
ternet service providers) individual machines.

The incredible recent growth in Internet infrastructure and use can be attributed in large
part to the development of the World Wide Web (www or simply the Web), which allows for
easy access to hyperlinked documents stored on any accessible machine located anywhere on
the Internet. Hypertext, which permits the nonlinear linking (essentially without restriction) of
one piece of information with another (presumably related) one, was first suggested by Vanne-
var Bush (see earlier) in 1945, and was promoted by researchers at XEROX PARC in the early
1980’s as a way of referencing and retrieving related information.

Tim Berners-Lee, an English physicist working at CERN in Zurich, is credited with de-
veloping three key Web concepts in the late 1980s and early 1990s:

A standard language for encoding hypertext documents.

A standard Internet protocol for linking and transmitting hypertext documents.

An addressing system for locating documents.

The language HTML (hypertext markup language), protocol HTTP (hypertext transfer
protocol), and addressing system URL (universal resource locator) form the underpinnings of
the current Web. One of the key decisions made by Berners-Lee was that a central directory
(which would allow for deleting and updating links as hyperlinked documents were removed
or modified) was infeasible for a “World-Wide” information web, i.e., that “dangling” hyper-
links to a removed document would simply have to be tolerated for the greater good of allowing
independent actions by individual Web document owners. 

In 1990, Berners-Lee developed a browser/editor at CERN for creating, accessing and dis-
playing hypertext documents (principally research papers and data at CERN) using his HTML,
HTTP, and URL concepts. However, it was not until 1993 when the Mosaic browser was cre-
ated at NSCA (University of Illinois), that the potential of the Web became apparent (at least
to some). With the formation of Netscape, Inc. and the release of the Netscape browser in 1994,
the Web “took off”.

The principal resources that can be hyperlinked on the web go far beyond mere text, in-
deed can be almost anything (text, graphics, sound, animation, video, virtual reality images,
signals from an instrument on a remote experiment, software, ...); essentially any information
that can be digitized can, or soon will be, Web-linkable. 

It is, I think, fair to say that the Web changes everything. If, as McLuhan suggested in
1967, the medium is the message, then here the message is the Web. Some (myself included)
think the Web may be as revolutionary an invention affecting the way we communicate and
access and disseminate information as was the printing press. 

The Web is the first truly new medium since television; it is, in fact, a multi-medium be-
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cause the range of resources it can access potentially includes essentially all of the other mass
media (newspapers, movies, radio, television). But in addition to providing a vehicle for “push”
technology or “webcasting,” in which the Net delivers information to the user (much as broad-
casters do), the Web (1) allows an individual user to interact with resources and other users on
the Web, and (2) allows an individual user to create resources, in essence to become a “pub-
lisher,” without formal approval by an oversight authority. The Web can be an extraordinarily
liberating medium for individual creativity (much that is worthless gets created in the process
as well). The Web (or whatever supplants it) is clearly a multi-medium destined to have enor-
mous impact on information dissemination, education, and commerce.

The Web’s growth during the past three years is simply phenomenal. Virtually every cor-
poration, academic institution, government agency, and uncounted individuals now have a
presence on the Web, at least in the form of a hyperlinked home page.

Commercial Web activity is growing apace. It is hard to believe that the first commercial
advertisement on the Web (for a lawyer’s services) (1) raised a furor among Web users as a
violation of Web etiquette, and (2) happened as recently as April 19, 1994. Contrast this with
an estimate by Forrester Research that commercial Web transactions will exceed $10 billion in
1999, with computer hardware and software sales comprising a large piece of the commercial
pie. 

The recent flurry of multi-billion dollar buyouts and takeovers involving television, tele-
phone, wireless, cable, computing and on-line Net-access companies attests to the fluidity of
the situation and to the uncertainty about which technologies or combinations of them will
eventually win in the “interactive” educational, entertainment, and commercial marketplace.
My guess is that by 2001 commercial and educational interactivity will be centered on the Web
and computer (with commercial cable systems providing Net connectivity for a substantial
fraction of home users), rather than on interactive cable and the television set. News and enter-
tainment currently delivered by mass media will stay in the domains of newspapers, radio,
movies, and television, but the Web will play a role in these areas too (on-line magazines, we-
bcast stock market reports and breaking news, etc.). 

Perhaps the Web’s greatest impact has been on the nature of “computing” itself. The cen-
ter of gravity for computing activity is shifting perceptibly from individual computers and
workstations to the network. Major corporations such as IBM and Microsoft have reoriented
their missions to focus on delivery of “Net-centric” services and “Net-aware” application soft-
ware. The distinction between what’s done locally and what’s done remotely will blur substan-
tially in the coming years. Many corporations have already taken advantage of the net-centric
Web model by creating internal internets called intranets, mini-Internets that use standard Web
software such as browsers for accessing and updating corporate data and information; firewalls
(software to isolate the internal intranet from the Internet) protect corporate information from
the outside world.

Because the Web is so new and has grown so rapidly, it has many rough edges and prob-
lems. Service can be slow; breakdowns do occur (and will surely continue to occur). However,
the Net’s distributed nature and redundancy of communication paths virtually insures that only
parts of it will be affected by a particular failure; a catastrophic Net breakdown comparable to
a nation-wide power outage seems unlikely. On balance, the commercial carriers have done a
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remarkable job in installing new lines and equipment in response to rising demand, and will
undoubtedly continue to do so, as a wholly new optical fiber and wireless communication in-
frastructure takes shape over the next decade.

Two issues that need to be addressed before the Web can reach its full potential in the
commercial arena are: (1) security of Web-based financial transactions, and (2) copyright pro-
tection for Web-accessible intellectual property. The problems in these areas are challenging
both technically and legally, and too involved to discuss here (and I don’t know much about
them!). 

Substantial work has been done on financial security issues, mostly involving some form
of encryption, and the Web is already being used fairly heavily for on-line sales and financial
transactions, with apparently little fraud or error (but the occasional horror story shows that
problems exist). US copyright laws are under active discussion in the Congress, and an Inter-
national Copyright Convention of 160 nations, meeting during 1996 and 1997, will attempt to
reach global agreement on the handling of intellectual property, particularly computer-based
intellectual property. Real copyright protection is more likely to come from the bottom up (in
the form of technical safeguards on the Web) than from the top down (international treaties or
US copyright law). Because these issues are so important to the future of the Web and to the
use of Web-based information for commerce and education, I believe that some reasonable and
effective solutions for current security and copyright problems are likely to be in place by 2001.

Software

The most important software for engineering students, faculty, and professionals can be
broadly classified by general function: (1) system software, (2) network services, (3) program-
ming language translators/compilers, (4) general productivity tools, (5) problem, task, or dis-
cipline-oriented applications, and (6) multi-media instructional aids.

System software includes the base operating system for the computer and a myriad of pro-
grams for providing communication and access to system resources. The first operating sys-
tem, for controlling the processing of batches of programs on punched cards on the IBM 704,
was released in 1957. Subsequent systems, for time-shared access to mainframes, appeared in
the mid-1960s. With each new class of hardware (minicomputers, personal computers, work-
stations, etc.), new and usually more sophisticated operating systems appeared and then slowly
evolved over the years.

Currently, the most important operating systems are Unix, used on engineering worksta-
tions with RISC processors, Windows95/DOS and Windows NT for personal computers with
Intel and compatible processors, and the Macintosh OS for Macintosh and clones with Power
PC processors. All now have graphical user interfaces that are descendants of windowed inter-
faces developed at XEROX PARC in the early 1970s and popularized with release of the Mac-
intosh in 1984; the interfaces appear remarkably alike to the user, making switching from one
machine to another much less onerous than in earlier times (but still not without pain!).

New features such as support for multiple users (Unix), preemptive multi-tasking (time-
sharing of the local processor among several running programs), threads (parallel minitasks
within a single application), and network services (e.g., remote file transfer, electronic mail,
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Internet and Web access) have over the years been incorporated into or made available to op-
erating systems.

Future versions of the predominant operating systems will almost certainly be much more
“network-aware” than current ones, i.e., it is likely that the user interface (probably with a
three-dimensional appearance) will eventually make little distinction between what is local to
the user’s workstation and what is on the network or Web.

The desktop metaphor with its emphasis on files and folders has been dominant since the
introduction of the Macintosh in 1984, but is giving way to new metaphors, in particular that
of the compound document as a container for objects - textual, graphical, sound, video, com-
putational. Group interfaces for conferencing and for working collaboratively over the network
are under development, and likely to be very important in both the academic and industrial
workplace by 2001. Virtual reality will almost certainly play a role as a 3-dimensional imaging
tool for navigating in the net-centered operating systems of the future. New multi-sensory tools
involving gesture, eye and body motion, voice, smell (maybe not!) will eventually supplement
the keyboard and mouse for interacting with those future operating systems.

Stephanopolous and Han (see p. 239) have described programming language develop-
ments in lucid detail, so I won’t elaboratye on their observations here, except to note that there
are strong trends toward development of modular, structured, and more easily maintained and
reusable object-oriented programs (the latter allow for hierarchical decomposition, and encap-
sulate both data structure and algorithm). My guess is that by 2001 most chemical engineering
students will be trained to use high-level and visually-oriented computational and “program-
ming” tools rather than traditional procedure-oriented languages such as FORTRAN and C.

In general, software improvements come much more slowly than those for hardware de-
scribed earlier. This results from the fact that much code is still “handcrafted,” that many pop-
ular applications were originally written years ago with unstructured code, that subsequent
“improvements” have been made in ad hoc fashion, and that programs are often quite large
(many are enormous), hence difficult to validate.

Nevertheless, there is hope from a new computing discipline, software engineering, from
object-oriented programming technology, from the trend toward open systems, cross-platform
(different kinds of computers) compatibility, emerging international standards for communica-
tions and hardware interfacing, and, in some cases, cooperation among software developers
and hardware manufacturers.

One of the most exciting recent software developments is the emergence of Sun Micro-
systems’ Java, an object-oriented language for creating programs that reside on network serv-
ers. When a networked user requests a service or a calculation or a display provided by a Java
program (small ones are called applets), the Java code is downloaded to the user’s workstation
from the server, and either immediately interpreted locally by a Java virtual machine  (JVM)
translator or compiled into machine code for the workstation and executed. JVMs are available
for essentially all personal computers and workstations and are being incorporated into Web
browsers such as Netscape and Microsoft Explorer and other application programs. 

This means that a Java program automatically has cross-platform compatibility (Nirvana
for a programmer), since it can be run without modification on any computer, such as a Unix
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workstation, Macintosh, or “Wintel” (Windows operating system and Intel processor) machine
with a JVM or Java-compliant browser. The user need not store the program locally, and the
Java programmer can change the program without concern for the machine it will eventually
be run on. Java, or some successor to it, is central to the notion of Net-centric computing.

Sun and a few other hardware/software vendors view Java as the tool for creating net-
work-centered operating systems to replace conventional workstation operating systems such
as Windows and the Macintosh OS, treating individual machines as network computers. My
guess is that this will not happen, and that conventional operating systems will instead become
much more Java-compliant by incorporating JVMs and Java compilers as core components.

Many other new software developments are also Web oriented, especially for creating and
improving search engines for locating and cataloging URLs of interest on the Web, and for cre-
ating intelligent Web agents (small programs that move about the Web searching data bases
and filtering information to carry out specific tasks of interest to the user). Current Web search
engines are quite primitive, and identify URLs of interest based on text matching only. Engines
available in 2001 will likely allow for searching of text in context and searching of non-textual
information, in particular, images (e.g., find pictures containing sunsets) and sounds (e.g., find
soundbites with references to global warming).

Implications for Chemical Engineering Education

How do (and will) all these intense (and accelerating) computing activities affect aca-
demia in general and engineering education in particular? In many respects, the impact of com-
puting on education and academic life has paralleled that in the world outside the academy.
Substantial basic research that feeds the computer revolution is performed by academics and
their students. The University of the present looks quite different from the University of even
a decade ago. Virtually every desk supports a networked desktop computer, the University li-
brary is “on-line,” and every dorm room is (or soon will be) connected to the rest of the elec-
tronic world. The computer has brought with it systemic changes in the ways the University
conducts its business and research and interacts with its students, graduates, faculty, and staff.

The impact of the computer in the classroom has, to date, been much less dramatic than
in other areas of the academy. An 1896 still photo of an engineering classroom, professor lec-
turing with chalk in hand, would look remarkably similar to most engineering classrooms in
1996. Will that paradigm last for yet another century? Not likely.

Despite its apparent lack of impact to date in most classrooms, the computer has certainly
affected what we teach and how students learn, as is evident from the many earlier papers in
this monograph. Most chemical process design [Biegler, Seader and Seider (p. 153), Gross-
mann (p. 171), Grossmann and Morari (p. 185)] and many control (Arkun and Garcia, p. 193),
and separations processes (Taylor, p. 139) courses have already been transformed into compu-
tationally centered ones. Most undergraduate laboratories have also undergone major upgrad-
ing, and the computer is now an integral part of experimental systems, both for data acquisition
and data processing, as described by Mellichamp and Joseph (p. 203).

Interactive multi-media instructional tools, such as those described by Fogler and Mont-
gomery (p. 57) and Fogler (p. 103), allow faculty to create remedial and supplemental tools for
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self-paced learning of course material that are particularly effective for students whose learning
styles differ from the linear, analytical learning and teaching styles of most faculty. Numerical
mathematical tools, described by Shacham, Cutlip, and Brauner (p. 73), allow students to solve
nonlinear model equations and to carry out simulations that could not easily have been included
in core engineering science coursework in thermodynamics (p. 85), transport processes (Fin-
layson and Hrymak, p. 125), and reaction engineering (Fogler, 103), as recently as a few years
ago.

Nevertheless, the overall impact of the computer in our undergraduate curricula, particu-
larly in our core chemical engineering science courses, has been less than might have been ex-
pected, given the computing resources now available on most engineering campuses. As
pointed out by Kantor and Edgar (p. 9), most of our standard textbooks do not yet have a sig-
nificant computer-orientation. I foresee the standard textbooks of the next century as much dif-
ferent from those of the past. The future text will not be structured as the linear sequence of
static information found in our current texts, but will contain hyperlinked navigational aids, an-
imation and sound, tools for manipulating data, and programs for carrying out simulations with
user-supplied inputs. By definition, they will require the computer for their use, and may even
be completely Web based, with small charges assessed for each access. (No doubt students will
still want to print many screen images as they appear, so even these “electronic” texts are likely
be accompanied by hard copy materials).

Most classrooms are not yet equipped with ready-to-use networked computing and pro-
jection facilities needed for doing good in-class demonstrations. Such equipment represents a
significant investment by the university, but it will be essential for engineering classroom in-
struction in the next decade. Classroom visualization (Hrymak and Monger, p. 253) of the un-
folding dynamic solution of a fluid mechanics problem is worth much more than a thousand
faculty words. 

Creation of good computer-oriented instructional materials and stimulating in-class dem-
onstrations (even with the best computing and display equipment in place) is challenging, time-
consuming, and expensive. Unfortunately, such efforts by faculty often receive little recogni-
tion by department chairs and deans, particularly at research universities, so we may continue
to see fairly slow progress in fully integrating computing work into our core engineering sci-
ence courses.

On the other hand, the Web could revolutionize the way we manage course-related activ-
ities. By 2001, virtually every course will have a home page on a Web site, with links to class
schedules, problem assignments and solutions, interactive messaging, and student records.
Driven by faculty interest and commitment, some courses will be strongly Web-centered, with
facilities for student collaboration and group interaction, in-class note taking (using laptops
with wireless communication?), interactive multi-media tools that integrate materials from lo-
cal machines, CD ROM and the network, on-line examinations, and access to a wide array of
data base resources and numerical and discipline-specific software; classical lecture presenta-
tions in these courses will diminish in importance. Some departments may have full-time Web-
masters whose principal duties involve assisting faculty in bringing the curriculum to the Web.
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The Virtual University?

Viewed more broadly, the new computing technologies, and particularly the Web, prom-
ise to transform the way Universities keep in touch with their alumni and deliver continuing
education to professionals. As the bandwidth of Internet trunk lines rises dramatically in the
next decade, videoconferencing, on-line interaction and collaboration, and Web access to dig-
ital data bases and libraries will make cost-effective delivery of distance learning a reality. 

Some Internet-based experimental distance learning experiments are already underway.
One, a joint venture of the University of Michigan, the State of Michigan and the auto industry
called the “Virtual Automotive College,” is being directed by James Duderstadt, a former Dean
of Engineering and now President Emeritus of the University. The virtual college will deliver
its first all-electronic courses to engineers in the automobile industry over the Internet during
the Winter term of 1997.

In theory, a “virtual university” could be created using the new computing and communi-
cation tools and instructional technology with the Internet as its infrastructure. The driving
force behind such a university would be delivery of instruction to large numbers of students
and professionals in their homes or workplaces at much lower cost than with traditional cam-
pus-based courses. However, unless students have access to substantial interaction, group col-
laboration, and the opportunity to form learning communities, I’m skeptical of the near-term
success of such a university, at least for young (18 to 24 year old) students. A college education
involves much more than passive learning in near isolation. As suggested by Brown and Dug-
uid, social experience, groups joined, scholars worked with, friendships made, prestige and
marketability of degrees earned, and a sense of place play powerful roles in the College expe-
rience. It seems unlikely that a virtual university will ever be viewed with nostalgia as alma
mater.

Summary

I have attempted to give an overview of past developments and current trends in digital
computing and communications (in particular of networks, the Internet, and the Web), and to
make some predictions about what the computing world will look like half a decade hence, in
2001. Many of the facts and figures are unattributed; for the most part, they come from exten-
sive notes taken and articles (from newspapers, trade magazines, technical journals) clipped
over many, many years. 

The conjectures about the future are mostly my own; fortunately I can’t be proved wrong
until 2001, at which point the whole exercise can be done again!
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