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550 PART III: Applications of Optimization

THE COORDINATED USE of computers throughout the entire spectrum of manufac-
turing and business operations has been growing during the 1990s and is expected
to continue during the 21st century. With the continued increases in computing
power and advances in telecommunications, the use of optimization has expanded
as well, including planning and scheduling, plantwide management, unit manage-
ment, and data acquisition and monitoring. Coordination of manufacturing with
computers has been known since the 1970s as computer-integrated manufacturing
(CIM). CIM is defined as a unified network of computer hardware, software, and
manufacturing systems that combine business and process functions including
administration, economic analysis, scheduling, design, control, operations, interac-
tions among suppliers, multiple plant sites, distribution sites, transportation net-
works, and customers. Also called process operations, the goal of CIM is the man-
agement and use of human, capital, material, energy, and information resources to
produce desired products safely, flexibly, reliably, and cost-effectively, as rapidly as
possible and in an environmentally responsible manner (often characterized as
“good, fast, cheap, and clean™).

In the CIM paradigm, operations are guided by extensive interchange of infor-
mation that integrates sales, marketing, manufacturing, supply, and R&D data. Data
and information flow in a seamless fashion among the various sectors. In addition,
plant material and energy balance data are analyzed continuously, reconciled using
nonlinear programming, and unmeasured variables reconstructed using parameter
estimation techniques (soft sensors). General access to a common database and
enterprise information are provided to managers, engineers, and operations so that
optimum decisions can be made and executed in a timely and efficient manner.

In the remainder of this chapter, we address each part of the manufacturing
business hierarchy, and explain how optimization and modeling are key tools that
help link the components together.

16.1 PLANT OPTIMIZATION HIERARCHY

Figure 16.1 shows the relevant levels for the process industries in the optimization
hierarchy for business manufacturing. At all levels the use of optimization tech-
niques can be pervasive although specific techniques are not explicitly listed in the
specific activities shown in the figure. In Figure 16.1 the key information sources for
the plant decision hierarchy for operations are the enterprise data, consisting of
commercial and financial information, and plant data, usually containing the values
of a large number of process variables. The critical linkage between models and
optimization in all of the five levels is illustrated in Figure 16.1. The first level
(planning) sets production goals that meet supply and logistics constraints, and
scheduling (layer 2) addresses time-varying capacity and staffing utilization deci-
sions. The term supply chain refers to the links in a web of relationships involving
materials acquisition, retailing (sales), distribution, transportation, and manufactur-
ing with suppliers. Planning and scheduling usually take place over relatively long
time frames and tend to be loosely coupled to the information flow and analysis that



CHAPTER 16: Integrated Planning, Scheduling, and Control in the Process Industries 551

Enterprise
data
Demand forecasting
. Supply chain logistics
1. Planning N Market, materials, and product
J, T planning
2. Scheduli Plant maintenance
- Seneduling Inventory control
l T Staffing, capacity scheduling
Consistent 3. Plantwide Plan?wi_de real-time
robust management and < optimization
models optimization Set point changes
4. Unit Sequence control
management | Process control
and control Abnormal situation management
l T Intelligent control
5. Process monitor- Soft sensors
ing, analysis, — Fault detection
and control Data reconciliation
Statistical analysis
Parameter estimation
FIGURE 16.1

The five levels of integrated model-based planning, scheduling, optimization, control, and
monitoring.

occur at lower levels in the hierarchy. The time scale for decision making at the
highest level (planning) may be on the order of months, whereas at the lowest level
(e.g., process monitoring) the interaction with the process may be in fractions of a
second.

Plantwide management and optimization at level 3 coordinates the network of
process units and provides cost-effective setpoints via real-time optimization. The
unit management and control level includes process control [e.g., optimal tuning
of proportional-integral-derivative (PID) controllers], emergency response, and
diagnosis, whereas level 5 (process monitoring and analysis) provides data acqui-
sition and online analysis and reconciliation functions as well as fault detection.
Ideally, bidirectional communication occurs between levels, with higher levels set-
ting goals for lower levels and the lower levels communicating constraints and per-
formance information to the higher levels. Data are collected directly at all levels
in the enterprise. In practice the decision flow tends to be top down, invariably
resulting in mismatches between goals and their realization and the consequent
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TABLE 16.1
Types of objective functions and models used in manufacturing system optimization
Optimization level Objective function Typical models
1. Planning Economic Steady state, single or

multiperiod, discrete-event,
material flows

2. Scheduling Economic Steady state, single or
multiperiod, discrete-event,
material flows

3. Plantwide management Economic Steady state, linear algebraic
and optimization correlations or nonlinear
simulator

4. Unit management

and control

a. Continuous process Quadratic-noneconomic Linear or nonlinear, dynamic,
or economic empirical or physically based

b. Batch process Economic or minimum time Linear or nonlinear, dynamic

or run-to-run, physically
based or empirical

5. Process monitoring and

analysis
a. Virtual sensors Least squares Nonlinear, physically based,
steady state, or empirical
b. Data reconciliation, Least squares Linear or nonlinear, steady
parameter estimation state or dynamic, physical

accumulation of inventory. Other more deleterious effects include reduction of
processing capacity, off-specification products, and failure to meet scheduled
deliveries.

Opver the past 30 years, business automation systems and plant automation sys-
tems have developed along different paths, particularly in the way data are
acquired, managed, and stored. Process management and control systems normally
use the same databases obtained from various online measurements of the state of
the plant. Each level in Figure 16.1 may have its own manually entered database,
however, some of which are very large, but web-based data interchange will facil-
itate standard practices in the future.

Table 16.1 lists the kinds of models and objective functions used in the CIM
hierarchy. These models are used to make decisions that reduce product costs,
improve product quality, or reduce time to market (or cycle time). Note that mod-
els employed can be classified as steady state or dynamic, discrete or continuous,
physical or empirical, linear or nonlinear, and with single or multiple periods. The
models used at different levels are not normally derived from a single model source,
and as a result inconsistencies in the model can arise. The chemical processing
industry is, however, moving in the direction of unifying the modeling approaches
so that the models employed are consistent and robust, as implied in Figure 16.1.
Objective functions can be economically based or noneconomic, such as least
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squares. In subsequent sections of this chapter we will demonstrate typical opti-
mization problem formulations for each of the five levels, including decision vari-
ables, objective function, and constraints.

16.2 PLANNING AND SCHEDULING

Bryant (1993) states that planning is concerned with broad classes of products and
the provision of adequate manufacturing capacity. In contrast, scheduling focuses
on details of material flow, manufacturing, and production, but still may be con-
cerned with offline planning. Reactive scheduling refers to real-time scheduling
and the handling of unplanned changes in demands or resources. The term enter-
prise resource planning (ERP) is used today, replacing the term manufacturing
resources planning (MRP); ERP may or may not explicitly include planning and
scheduling, depending on the industry. Planning and scheduling are viewed as dis-
tinct levels in the manufacturing hierarchy as shown in Figure 16.1, but often a fair
amount of overlap exists in the two problem statements, as discussed later on. The
time scale can often be the determining factor in whether a given problem is a plan-
ning or scheduling one: planning is typified by a time horizon of months or weeks,
whereas scheduling tends to be of shorter duration, that is, weeks, days, or hours,
depending on the cycle time from raw materials to final product. Bryant distin-
guishes among system operations planning, plant operations planning, and plant
scheduling, using the tasks listed in Table 16.2. At the systems operations planning
level traditional multiperiod, multilocation linear programming problems must be
solved, whereas at the plant operations level, nonlinear multiperiod models may be
used, with variable time lengths that can be optimized as well (Lasdon and Baker,
1986).

TABLE 16.2
Planning and scheduling hierarchy

Corporate operations planning

* Allocate production requirements to plants.
* Balance facility’s capacity.
* Optimize materials and product movements (supply chain).

Plant operations planning

* Determine production plans.
 Plan inventory strategy.
* Determine raw materials requirements.

Plant scheduling

* Determine run lengths.
* Determine sequence of operations.
* Provide inventory for production runs.

Source: Bryant (1993).
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Baker (1993) outlined the planning and scheduling activities in a refinery as
follows:

1. The corporate operations planning model sets target levels and prices for inter-
refinery transfers, crude and product allocations to each refinery, production tar-
gets, and inventory targets for the end of each refinery model’s time horizon.

2. In plant operations planning each refinery model produces target operating con-
ditions, stream allocations, and blends across the whole refinery, which deter-
mines (a) optimal operating conditions, flows, blend recipes, and inventories;
and (b) costs, cost limits, and marginal values to the scheduling and real-time
optimization (RTO) models.

3. The scheduling models for each refinery convert the preceding information into
detailed unit-level directives that provide day-by-day operating conditions or set
points.

Supply chain management poses difficult decision-making problems because
of its wide ranging temporal and geographical scales, and it calls for greater respon-
siveness because of changing market factors, customer requirements, and plant
avajlability. Successful supply chain management must anticipate customer
requirements, commit to customer orders, procure new materials, allocate produc-
tion capacity, schedule production, and schedule delivery. According to Bryant
(1993), the costs associated with supply chain issues represent about 10 percent of
the sales value of domestically delivered products, and as much as 40 percent inter-
nationally. Managing the supply chain effectively involves not only the manufac-
turers, but also their trading partners: customers, suppliers, warehousers, terminal
operators, and transportation carriers (air, rail, water, land).

In most supply chains each warehouse is typically controlled according to
some local law such as a safety stock level or replenishment rule. This local con-
trol can cause buildup of inventory at a specific point in the system and thus prop-
agate disturbances over the time frame of days to months (which is analogous to
disturbances in the range of minutes or hours that occur at the production control
level). Short-term changes that can upset the system include those that are “self-
inflicted” (price changes, promotions, etc.) or effects of weather or other cyclical
consumer patterns. Accurate demand forecasting is critical to keeping the supply
chain network functioning close to its optimum when the produce-to-inventory
approach is used.

16.2.1 Planning

Figure 16.2 shows a simplified and idealized version of the components involved in
the planning step, that is, the components of the supply chain. § possible suppliers
provide raw materials to each of the M manufacturing plants. These plants manu-
facture a given product that may be stored or warehoused in W facilities (or may
not be stored at all), and these in turn are delivered to C different customers. The
nature of the problem depends on whether the products are made to order or made
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Supply chain in a manufacturing system.

to inventory; made to order fulfills a specific customer order, whereas made to
inventory is oriented to the requirements of the general market demand. Figure 16.2
is similar to a linear allocation process of Chapter 7, with material balance condi-
tions satisfied between suppliers, factories, warehouses, and customers (equality
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constraints). Inequality constraints would include individual line capacities in each
manufacturing plant, total factory capacity, warehouse storage limits, supplier lim-
its, and customer demand. Cost factors include variable manufacturing costs, cost
of warehousing, supplier prices, transportation costs (between each sector), and
variable customer pricing, which may be volume and quality-dependent. A practi-
cal problem may involve as many as 100,000 variables and can be solved using
mixed-integer linear programming (MILP); see Chapter 9.

EXAMPLE 16.1 REFINERY PLANNING AND SCHEDULING

Consider a very simple version of a refinery blending and production problem, which
is often formulated and solved in an algebraic modeling language such as GAMS (see
Chapters 7 and 9). Figure E16.1 is a schematic of feedstocks and products for the
refinery. Table E16.1 lists the information pertaining to the expected yields of the four
types of crudes when processed by the refinery. Note that the product distribution
from the refinery is quite different for the four crudes. The entire multiunit refinery is
aggregated into two processes: a fuel chain and a lube chain. Table E16.1 also lists the
forecasted upper limits on the established markets for the various products in terms of
the allowed maximum weekly production. The processing costs and other data were
taken from Karimi (1992).

The problem is to allocate optimally the crudes between the two processes, sub-
ject to the supply and demand constraints, so that profits per week are maximized. The
objective function and all constraints are linear, yielding a linear programming prob-
lem (LP). To set up the LP you must (1) formulate the objective function and (2) for-
mulate the constraints for the refinery operation. You can see from Figure E16.1 that
nine variables are involved, namely, the flow rates of each of the crude oils and the
four products.

Solution. We want to decide how much of crudes 1, 2, and 3 should be used in the
fuel process, and how much of crude 4 should be allocated to the fuel and the lube
processes so as to maximize the weekly profit. One decision variable exists for the
amount (kbbl/wk) of each crude 1, 2, and 3 used in the fuel process. Two variables
exist for the amount (kbbl/wk) of crude 4: one for the amount of crude 4 allocated to
the fuel process and the other for the amount allocated to the lube process. Denote the
variables by x, (¢ = 1 to 5), where x; through x, represent the amounts of crudes 1
through 3, x, represents the crude 4 sent to the fuel process, and x; represents the
crude 4 sent to the lube process. Because the crude supplies are limited, the x, will be
constrained by

X =8
n=>_,,
X =S,
X4+ x5 =S, (a)

where S, is the maximum supply (kbbl/wk) of crude c listed in Table E16.1
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Processing operation schematic.

TABLE El6.1

Refinery data

Product yields

(bbl/bbl crude)

e Prot
Fuel chain chain [selling Maximum
Crudes 1 2 3 4 4 price demand
(x) () (x3) (x4 (xs)  ($/bbD] (103 bbl/wk)

Products
Gasoline P 0.6 0.5 0.3 04 0.4 45.00 170
Heating oil  (P,) 0.2 0.2 0.3 0.3 0.1 30.00 85
Jet fuel (P3) 0.1 0.2 0.3 0.2 0.2 15.00 85
Lube oil (0] 0.0 0.0 0.0 0.0 0.2 60.00 20
Operating losses 0.1 0.1 0.1 0.1 0.1 — —
Crude cost ($/bbl) 15.00 15.00 1500 25.00 25.00
Operating cost ($/bbl) 5.00 8.50 7.50 3.00 2.50
Available crude supply 100 100 100 200
(10° bbl/wk)

Next, we want to find the amounts of different products produced for the given
usage x, of the crudes. Let O, (p = 1 to 4) refer to the gasoline, heating oil, jet fuel,
and lube oil, respectively. Define Q, as the amount (kbbl) of product p produced, and
let a,; denote the yield of product p from crude x (in bbl/bbl of crude); (a,; = 0.3,
ass = 0.2, etc.) Thus, using the a,, from Table E16.1,

Qp = GpX;) + Xy + GpXs T QX T Apsxs, P=1,...,4 )
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Let D, be the maximum demand for product p(D; = 170, etc.). The maximum
demands D), provide the upper bounds on Q,,.

Q,=D, p=1,..,4 ()

Finally, we will formulate the objective function. Using the production amounts O,
and the crude selection x,, we can calculate the profit as total income from product
sales minus the total production cost. If v,(p = 1 to 4) is the value of product p, then
total income (k$) from product sales is v, 0, + v,Q, + v305 + v,Q,. The production
cost consists of the costs of crudes and the operating costs. Let C.(c = 1 to 5) denote
the sum of crude and operating costs ($/bbl) for crude usage x. (e.g., C; = $20/bbl).
Then the total production cost is .- C.x,. Therefore, the complete problem state-
ment is

4 5
Maximize: >, v,0, — >, Cox,
p=1 c=1
Subject to: x =5
X =S,

X3 =8,

X4+XSSS4

Q,=D,(p=1,...,4) (@)

O, = apX) + apXy T apxy Fapry +asxs, p=1,...,4 ®
0,20 (p=1,...,4)

x=0 (c=1,...,5) ©

The problem involves nine optimization variables (x,, ¢ = 1t0 5; Q,,p = 1 to 4) in
the preceding formulation. All are continuous variables. The objective function is a
linear function of these variables, and so are Equations (a) and (b), hence the problem
is a linear programming problem and has a globally optimal solution.

Results. The optimal solution can be obtained using GAMS (Karimi, 1992);
the optimum flows are 100, 100, 66.667, and 100 kbbl/wk, respectively, of crudes 1,
2, 3, and 4 and 170, 70, 70, and 20 kbbl/wk, respectively, of gasoline, heating oil, jet
fuel, and lube oil are produced. All of crude 4 is used in the Iube chain. The maximum
profit obtained is 3400 k$/wk.

As discussed by Karimi (1992), the results for this problem can be interpreted by
considering the profit per kilobarrel for each crude. For 1 kbbl/wk of crude 1, we can
produce 0.6 kbbl/wk of gasoline, 0.2 kbbl/wk of heating oil and 0.1 kbbl/wk of jet fuel,
with production cost of 20 k$/kbbl/wk and value of the products of 45 * 0.6 + 30 *
0.2 + 15 * 0.1 = 34.5 k$. Thus, for 1 kbbl/wk of crude 1, a profit of 14.5 k$ results.
A similar analysis for other crudes yields 8.0 k$, 4.5 k$, 2 k$, and 8.5 k$, respectively,
for crude variables 2, 3, 4, and 5; the priority for the crude options should be 1, 5, 2, 3,
and 4. Note that all of crude 1 is used in the optimal solution. Using 100 kbbl/wk of
crude 1 produces 60 kbbl/wk of gasoline, 20 kbbl/wk of heating oil, and 10 kbbl/wk of
jet fuel. Because this does not exceed the demands of any of the products, the next most
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profitable crude (crude 4) can be used in the lube process. Because demand for lube oil
cannot be exceeded, only 100 kbbl/wk of crude 4 can be used in the lube process. Next
we can use crude 2, because it does not produce lube oil and is the next most profitable
crude. If all of crude 2 (100 kbbl/wk) is processed, the production amounts become
150, 50, 50, and 20 kbbl/wk, respectively, but more products can still be manufactured.
The maximum amount of crude 3 that can be used without exceeding any of the prod-
uct demands is 66.667 kbbl/wk, when the demand of gasoline is equaled. Finally, crude
4 cannot be consumed in the fuel process, because it also produces gasoline and it is
not economical to produce any more gasoline.

Most international oil companies that operate multiple refineries analyze the
refinery optimization problem over several time periods (e.g., 3 months). This is
because many crudes must be purchased at least 3 months in advance due to trans-
portation requirements (e.g., the need to use tankers to transport oil from the Mid-
dle East). These crudes also have different grades and properties, which must be
factored into the product slate for the refinery. So the multitime period considera-
tion is driven more by supply and demand than by inventory limits (which are typ-
ically less than 5 days). The LP models may be run on a weekly basis to handle
such items as equipment changes and maintenance, short-term supply issues (and
delays in shipments due to weather problems or unloading difficulties), and
changes in demand (4 weeks within a 1-month period). Product properties such as
the Reid vapor pressure must be changed between summer and winter months to
meet environmental restrictions on gasoline properties. See Pike (1986) for a
detailed LP refinery example that treats quality specifications and physical proper-
ties by using product blending, a dimension not included in Example 16.1 but one
that is relevant for companies with varied crude supplies and product requirements.

16.2.2 Scheduling

Information processing in production scheduling is essentially the same as in plan-
ning. Both plants and individual process equipment take orders and make products.
For a plant, the customer is usually external, but for a process (or “work cell” in
discrete manufacturing parlance), the order comes from inside the plant or factory.
In a plant, the final product can be sold to an external customer; for a process, the
product delivered is an intermediate or partially finished product that goes on to the
next stage of processing (internal customer).

Two philosophies are used to solve production scheduling problems (Puigjaner
and Espura, 1998):

1. The top-down approach, which defines appropriate hierarchical coordination
mechanisms between the different decision levels and decision structures at each
level. These structures force constraints on lower operating levels and require
heuristic decision rules for each task. Although this approach reduces the size
and complexity of scheduling problems, it potentially introduces coordination
problems.



560 PART IIT: Applications of Optimization

TABLE 16.3
Characteristics of batch scheduling
and planning problems

DETERMINE GIVEN
What Product requirements
Product amounts: lot sizes, Horizon, demands, starting
batch sizes and ending inventories
When Operational steps
Timing of specific operations, Precedence order
run lengths Resource utilization
Where Production facilities
Sites, units, equipment items Types, capacities
How Resource limitations
Resource types and amounts Types, amounts, rates

Source: Pekny and Reklaritis (1998).

. The bottom-up approach, which develops detailed plant simulation and opti-

mization models, optimizes them, and translates the results from the simulations
and optimization into practical operating heuristics. This approach often leads to
large models with many variables and equations that are difficult to solve
quickly using rigorous optimization algorithms.

Table 16.3 categorizes the typical problem statement for the manufacturing sched-
uling and planning problem. In a batch campaign or run, comprising smaller runs
called lots, several batches of product may be produced using the same recipe. To
optimize the production process, you need to determine

1.
2.

NN bW

The recipe that satisfies product quality requirements.
The production rates needed to fulfill the timing requirements, including any
precedence constraints.

. Operating variables for plant equipment that are subject to constraints.
. Availability of raw material inventories.

. Availability of product storage.

. The run schedule.

. Penalties on completing a production step too soon or too late.

EXAMPLE 16.2 MULTIPRODUCT BATCH PLANT
SCHEDULING

Batch operations such as drying, mixing, distillation, and reaction are widely used in
producing food, pharmaceuticals, and specialty products (e.g., polymers). Scheduling
of operations as described in Table 16.3 is crucial in such plants. A principal feature
of batch plants (Ku and Karimi, 1987) is the production of multiple products using the
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same set of equipment. Good industrial case studies of plant scheduling include those
by Bunch et al. (1998), McDonald (1998), and Schulz et al. (1998). For example,
Schulz et al. described a polymer plant that involved four process steps (preparation,
reaction, mixing, and finishing) using different equipment in each step. When prod-
ucts are similar in nature, they require the same processing steps and hence pass
through the same series of processing units; often the batches are produced sequen-
tially. Such plants are called multiproduct plants. Because of different processing time
requirements, the total time required to produce a set of batches (also called the
makespan or cycle time) depends on the sequence in which they are produced. To
maximize plant productivity, the batches should be produced in a sequence that min-
imizes the makespan. The plant schedule corresponding to such a sequence can then
be represented graphically in the form of a Gantt chart (see the following discussion
and Figure E16.2b). The Gantt chart provides a timetable of plant operations showing
which products are produced by which units and at what times. Chapter 10 discusses
a single-unit sequencing problem.

In this example we consider four products (p1, p2, p3, p4) that are to be produced
as a series of batches in a multiproduct plant consisting of three batch reactors in
series (Ku and Karimi, 1992); see Figure E16.2a. The processing times for each batch
reactor and each product are given in Table E16.2. Assume that no intermediate stor-
age is available between the processing units. If a product finishes its processing on
unit k and unit k¥ + 1 is not free because it is still processing a previous product, then
the completed product must be kept in unit &, until unit k¥ + 1 becomes free. As an
example, product p1 must be held in unit 1 until unit 2 finishes processing p3. When
a product finishes processing on the last unit, it is sent immediately to product stor-
age. Assume that the times required to transfer products from one unit to another are
negligible compared with the processing times.

The problem for this example is to determine the time sequence for producing the
four products so as to minimize the makespan. Assume that all the units are initially

Unit Unit Unit
1 2 3
FIGURE E16.2a
Multiproduct plant.
TABLE E16.2

Processing times (h) of products

Products

Units pl p2 p3 pé

35 40 35 12.0
43 55 75 3.5
87 35 6.0 8.0

W N =
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empty (initialized) at time zero and the manufacture of any product can be delayed an
arbitrary amount of time by holding it in the previous unit.

Solution. Let N be the number of products and M be the number of units in the plant.
Let C;, (called completion time) be the “clock” time at which the jth product in the
sequence leaves unit k after completion of its processing, and let 7;, be the time
required to process the jth product in the sequence on unit k (See Table E16.2). The
first product goes into unit 1 at time zero, so C;, = 0. The index j in 7;, and C;,
denotes the position of a product in the sequence. Hence Cy,, is the time at which the
last product leaves the last unit and is the makespan to be minimized. Next, we derive
the set of constraints (Ku and Karimi, 1988; 1990) that interrelate the CJ ¢ First, the
Jth product in the sequence cannot leave unit & until it is processed, and in order to be
processed on unit &, it must have left unit k£ — 1. Therefore the clock time at which it
leaves unit & (i.e., Cj'k ) must be equal to or after the time at which it leaves unit &k — 1
plus the processing time in k. Thus the first set of constraints in the formulation is

Cxz2Cp—y*+7p j=1,...,N k=2,....M (a)

Similarly, the jth product cannot leave unit & until product (j — 1) has been processed
and transferred:

Cu=Crpu+my j=1,...,N k=1,...,.M ®)

Set Cp; = 0. Finally the jth product in the sequence cannot leave unit & until the
downstream unit £ + 1 is free [i.e., product (j — 1) has left]. Therefore

Ck=Ciirpsr j=1,..., N k=1,...,M— 1 (©)

Although Equations (a)—(c) represent the complete set of constraints, some of them are
redundant. From Equation (@) C;; = C;;-; + 7;; for k = 2. But from Equation (c),
Cix-1= Cj_qy, hence Cyp = C;_yy + 1, for k = 2, M. In essence, Equations (a)
and (c) imply Equations () for k = 2, M, so Equations () for k = 2, M are redundant.

Having derived the constraints for completion times, we next determine the
sequence of operations. In contrast to the C;,, the decision variables here are discrete
(binary). Define X; ; as follows. X;; = 1 if product i (product with label pi) is in slot j
of the sequence, otherwise it is zero. So X3, = 1 means that product p3 is second in
the production sequence, and X;, = O means that it is not in the second position. The
overall integer constraint is

Xl,j+X2,j+X3.j+X4,j+ ce “I’XN'J:l j=1,..., (d)
Similarly every product should occupy only one slot in the sequence:
Xi,l+Xi,2+X[,3+Xi,4+ e +Xi,N=1 i=1,...,N (e)

The X; ; that satisfy Equations (d) and (e) always give a meaningful sequence. Now we
must determine the clock times #; , for any given set of X; ;. If product pi is in slot j, then
tymustbe 7, and X;; = 1 apd X1=Xp=""=X,,=X =" =Xy=0,
therefore we can use X; ; to pick the right processing time representing ¢;, by imposing
the constraint.

Tj,k=Xl,jti,k+X2,jt2,k+X3,jt3,k+ +XN.th,k ]= 1,...,N k= 1,...,M
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To reduce the number of constraints, we substitute 7;, from Equation (f) into Equa-
tions (a) and (b) to obtain the following formulation (Ku and Karimi, 1988).

Minimize: Cyy

Subject to:  Equations (c¢), (d), (¢) and

Cox=Cipq + 2 e i=1L...,N k=2,...,M ©

CtI—Ct 11+E _]ljl i=1 ’N (h)

C;x = 0 and X; ; binary

Because the preceding formulation involves binary (X;;) as well as continuous vari-
ables (C, ) and has no nonlinear functions, it is a Imxed-lnteger linear programming
(MILP) problem and can be solved using the GAMS MIP solver.
Solving for the optimal sequence using Table E16.2, we obtain X, = X, , =
- X3, = X,3 = 1. This means that pl is in the first position in the optimal production
: sequence, p2 in the fourth, p3 in the second, and p4 in the third. In other words, the
optimal sequence is in the order p1-p3-p4-p2. In contrast to the X;; we must be care-
ful in interpreting the C;; from the GAMS output, because C;, really means the time
at which the jth product in the sequence (and not product pi) leaves unit k. Therefore
C, 5 = 23.3 means that the second product (i.e., p3) leaves unit 3 at 23.3 h. Interpret-
ing the others in this way, the schedule corresponding to this production sequence is
conveniently displayed in form of a Gantt chart in Figure E16.2b, which shows the sta-
tus of the units at different times. For instance, unit 1 is processing p1 during [0, 3.5]
h. When p1 leaves unit 1 at # = 3.5 h, it starts processing p3. It processes p3 during
[3.5, 71 h. But as seen from the chart, it is unable to discharge p3 to unit 2, because unit
2 is still processing p1. So unit 1 holds p3 during [7, 7.8] h. When unit 2 discharges p3

[[1 Processing

Unilt o1 | 73 I 72 H Holding
Unizt 1 73 | | Iz 7 |
Unit pl p3 p4 p2
3
[ [ I [ [ I
0 5 10 15 20 25 30 35
Time (h) ——>
FIGURE E16.2b

| Gantt chart for the optimal multiproduct plant schedule.
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to unit 3 at 16.5 h, unit 1 is still processing p4, therefore unit 2 remains idle during [16.5,
19.8] h. It is common in batch plants to have units blocked due to busy downstream units
or units waiting for upstream units to finish. This happens because the processing times
vary from unit to unit and from product to product, reducing the time utilization of units
in a batch plant. The finished batches of p1, p3, p4, and p2 are completed at times 16.5
h, 23.3 hh, 31.3 h, and 34.8 h. The minimum makespan in 34.8 h.

This problem can also be solved by a search method (see Chapter 10). Because
the order of products cannot be changed once they start through the sequence of units,
we need only determine the order in which the products are processed. This is the
same problem as considered in Section 10.5.2, to illustrate the workings of tabu
search. Using the notation of that section, let

P = (p(1),p(2), ..., p(N))

be a permutation or sequence in which to process the jobs, where p(j) is the index of
the product in position j of the sequence. To evaluate the makespan of a sequence, we
proceed as in Equations (a)—(c) of the mixed-integer programming version of the
problem. Let C;, be the completion time of product p(j) on unit &. If product p(j) does
not have to wait for product p(j — 1) to finish its processing on unit k, then

Gk = Ciie—1 + ok )
If it does have to wait, then
Ciie = Ci—1k + L)k )
Hence C;, is the larger of these two values:
Cix = max(Co i + t(0Cri-1 T Tp(p0) (k)

This equation is solved first for C;  fork = 1,..., M, thenfor G, fork = 1,2, ..., M,
and so on. The objective function is simply the completion time of the last job:

fP) = Cyy )

In a four-product problem, there are only 4! = 24 possible sequences, so you can eas-
ily write a simple FORTRAN or C program to evaluate the makespan for an arbitrary
sequence, and then call it 24 times and choose the sequence with the smallest
makespan. For larger values of N, one can apply the tabu search algorithm described
in Section 10.5.2. Other search procedures (e.g., evolutionary algorithms or simulated
annealing), can also be developed for this problem. Of course, these algorithms do not
guarantee that an optimal solution will be found. On the other hand, the time required
to solve the mixed-integer programming formulation grows rapidly with N, so that
approach eventually becomes impractical. This illustrates that you may be able to
develop a simple but effective search method yourself, and eliminate the need for
MILP optimization software.

The classical solution to a scheduling problem assumes that the required infor-

mation is known at the time the schedule is generated and that this a priori sched-
uling remains fixed for a planning period and is implemented on the plant equip-
ment. Although this methodology does not compensate for the many external
disturbances and internal disruptions that occur in a real plant, it is still the strategy
most commonly found in industrial practice. Demand fluctuations, process devia-
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tions, and equipment failure all result in schedule infeasibilities that become appar-
ent during the implementation of the schedule. To remedy this situation, frequent
rescheduling becomes necessary.

In the rolling horizon rescheduling approach (Baker, 1993), a multiperiod solu-
tion is obtained, but only the first period is implemented. After one period has
elapsed, we observe the existing inventories, create new demand forecasts, and
solve a new multiperiod problem. This procedure tries to compensate for the fixed
nature of the planning model. However, as has been pointed out by Pekny and
Reklaitis (1998), schedules generated in this fashion generally result in frequent
resequencing and reassignment of equipment and resources, which may induce fur-
ther changes in successive schedules rather than smoothing out the production out-
put. An alternative approach uses a master schedule for planning followed by a
reactive scheduling strategy to accommodate changes by readjusting the master
schedule in a least cost or least change way.

The terms able to promise or available to promise (ATP) indicate whether a
given customer, product, volume, date, or time request can be met for a potential
order. ATP requests might be filled from inventory, unallocated planned production,
or spare capacity (assuming additional production). When the production scheduler
is content with the current plan, made up of firm orders and forecast orders, the
forecast orders are removed but the planned production is left intact. This produces
inventory profiles in the mode] that represent ATP from inventory and from unallo-
cated planned production (Baker, 1993; Smith, 1998).

An important simulation tool used in solving production planning and sched-
uling problems is the discrete event dynamic system (DEDS), which gives a detailed
picture of the material flows through the production process. Software for simulat-
ing such systems are called discrete event simulators. In many cases, rules or expert
systems are used to incorporate the experience of scheduling and planning person-
nel in lieu of a purely optimization-based approach to scheduling (Bryant, 1993).
Expert systems are valuable to assess the effects of changes in suppliers, to locate
bottlenecks in the system, and to ascertain when and where to introduce new orders.
These expert systems are used in reactive scheduling when fast decisions need to
be made, and there is no time to generate another optimized production schedule.

16.3 PLANTWIDE MANAGEMENT AND OPTIMIZATION

At the plantwide management and optimization level (see Figure 16.1), engineers
strive for enhancements in the operation of the equipment once it is installed in
order to realize the most production, the greatest profit, the minimum cost, the least
energy usage, and so on. In plant operations, benefits arise from improved plant
performance, such as improved yields of valuable products (or reduced yields of
contaminants), better product quality, reduced energy consumption, higher pro-
cessing rates, and longer times between shut downs. Optimization can also lead to
reduced maintenance costs, less equipment wear, and better staff utilization. Opti-
mization can take place plantwide or in combinations of units.
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The application of real-time optimization (RTO) in chemical plants has been
carried out since the 1960s. Originally a large mainframe computer was used to
optimize process setpoints, which were then sent to analog controllers for imple-
mentation. In the 1970s this approach, called supervisory control, was incorporated
into computer control systems with a distributed microprocessor architecture called
a distributed control system, or DCS (Seborg et al., 1989). In the DCS both super-
visory control and regulatory (feedback) control were implemented using digital
computers. Because computer power has increased by a factor of 10° over the past
30 years, it is now feasible to solve meaningful optimization problems using
advanced tools such as linear or nonlinear programming in real time, meaning
faster than the time between setpoint changes.

In RTO (level 3), the setpoints for the process operating conditions are opti-
mized daily, hourly, or even every minute, depending on the time scale of the
process and the economic incentives to make changes. Optimization of plant oper-
ations determines the setpoints for each unit at the temperatures, pressures, and
flow rates that are the best in some sense. For example, the selection of the per-
centage of excess air in a process heater is quite critical and involves a balance on
the fuel—air ratio to ensure complete combustion and at the same time maximize use
of the heating potential of the fuel. Examples of periodic optimization in a plant are
minimizing steam consumption or cooling water consumption, optimizing the
reflux ratio in a distillation column, blending of refinery products to achieve desir-
able physical properties, or economically allocating raw materials. Many plant
maintenance systems have links to plant databases to enable them to track the oper-
ating status of the production equipment and to schedule calibration and mainte-
nance. Real-time data from the plant also may be collected by management infor-
mation systems for various business functions.

The objective function in an economic model in RTO involves the costs of raw
materials, values of products, and costs of production as functions of operating con-
ditions, projected sales or interdepartmental transfer prices, and so on.

Both the operating and economic models typically include constraints on

(a) Operating Conditions: Temperatures and pressures must be within certain
limits.

(b) Feed and Production Rates: A feed pump has a fixed capacity; sales are
limited by market projections.

(c) Storage and Warehousing Capacities: Storage tanks cannot be overfilled
during periods of low demand.

(d) Product Impurities: A product may contain no more than the maximum
amount of some contaminant or impurity.

In addition, safety or environmental constraints might be added, such as a tem-
perature limit or an upper limit on a toxic species. Several steps are necessary for
implementation of RTO, including determining the plant steady-state operating
conditions, gathering and validating data, updating of model parameters (if neces-
sary) to match current operations, calculating the new (optimized) setpoints, and
implementing these setpoints. An RTO system completes all data transfer, opti-
mization calculations, and setpoint implementations before unit conditions change
and require a new optimum to be calculated.
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A number of RTO problems characteristic of level 3 in Figure 16.1 have been
presented in earlier chapters of this book:

1. Reflux ratio in distillation (Example 12.2).
2. Olefin manufacture (Example 14.1).
3. Ammonia synthesis (Example 14.2).
4. Hydrocarbon refrigeration (Example 15.2).

The last example is particularly noteworthy because it represents the current state
of the art in utilizing fundamental process models in RTO.

Another activity in RTO is determining the values of certain empirical param-
eters in process models from the process data after ensuring that the process is at
steady state. Measured variables including flow rates, temperatures, compositions,
and pressures can be used to estimate model parameters such as heat transfer coef-
ficients, reaction rate coefficients, catalyst activity, and heat exchanger fouling fac-
tors. Usually only a few such parameters are estimated online, and then optimiza-
tion is carried out using the updated parameters in the model. Marlin and Hrymak
(1997) and Forbes et al. (1994) recommend that the updated parameters be observ-
able, represent actual changes in the plant, and significantly influence the location
of the optimum,; also the optimum of the model should be coincident with that of
the true process. One factor in modeling that requires close attention is the accurate
representation of the process constraints, because the optimum operating condi-
tions usually lie at the intersection of several constraints. When RTO is combined
with model predictive regulatory control (see Section 16.4), then correct (optimal)
moves of the manipulated variables can be determined using models with accurate
constraints.

Marlin and Hrymak (1997) reviewed a number of industrial applications of
RTO, mostly in the petrochemical area. They reported that in practice a maximum
change in plant operating variables is allowable with each RTO step. If the com-
puted optimum falls outside these limits, you must implement any changes over
several steps, each one using an RTO cycle. Typically, more manipulated variables
than controlled variables exist, so some degrees of freedom exist to carry out both
economic optimization as well as establish priorities in adjusting manipulated vari-
ables while simultaneously carrying out feedback control.

16.4 UNIT MANAGEMENT AND CONTROL

Because of greater integration of plant equipment, tighter quality specifications,
and more emphasis on maximum profitability while maintaining safe operating
conditions, implementation of advanced multivariable process control is increasing.
The distributed control system (DCS) architecture for computer control mentioned
in the previous section normally uses feedback control based on a proportional inte-
gral derivative (PID) controller at the implementation level for regulatory control
(Seborg et al., 1989). Although in principle you can select the three design param-
eters for PID control in an individual control loop using an optimization technique
discussed in Chapter 6 (based on minimizing the sum of squares of the error from
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setpoint), this design method is not the normal approach currently taken for level 4
in Figure 16.1 (unit management and control). In industrial practice today,
advanced multivariable control strategies are being applied using a mathematical
programming approach, which is the main topic of this section.

Model predictive control (MPC) refers to a class of control techniques in which
a process model is used to predict the future values of the process outputs, and these
predictions are used in computing the best control strategy. The most powerful
MPC techniques are based on optimization of a quadratic objective function involv-
ing the error between the setpoints and predicted outputs. MPC is especially well
suited for difficult multiple-input/multiple-output (MIMO) control problems, in
which significant interactions exist between the manipulated inputs and the con-
trolled outputs. In addition, MPC can easily accommodate inequality constraints on
the input and output variables, such as upper and lower limits, or rate-of-change
limits. The operating goal is to keep the process variables within their limits while
moving the process to an economic optimum. The success of model predictive con-
trol in solving large multivariable industrial control problems is impressive, per-
haps even reaching the status of a “killer” application. Control of units with as
many as 60 inputs and 40 outputs is already established in industrial practice. Since
the 1970s more than a thousand applications of MPC techniques have been used in
oil refineries and petrochemical plants around the world. Thus, MPC has had a sub-
stantial influence and is currently the method of choice for difficult multivariable
control problems in these industries (Camacho and Bordons, 1999).

A key feature of MPC is that future process behavior is predicted using a
dynamic model and the available measurements. The controller outputs are calcu-
lated so as to minimize the difference between the predicted process response and
the desired response. At each sampling instant the control calculations are repeated
and the predictions updated based on current measurements, which is a moving
horizon approach. Garcia et al. (1989), Richalet (1993), and Qin and Badgwell
(1997) have provided surveys of the MPC approach.

Because empirical dynamic models are generally used, they are only valid over
the range of conditions considered during the original plant tests, but MPC can be
adapted to optimize plant performance. In this case the control strategy is updated
periodically to compensate for changes in process conditions, constraints, or per-
formance criteria. Here the MPC calculations need to be done more frequently
(e.g., solving an LP or QP problem at each sampling instant) and thus may require
an increased amount of computer resources.

16.4.1 Formulating the MPC Optimization Problem

In MPC a dynamic model is used to predict the future output over the prediction
horizon based on a set of control changes. The desired output is generated as a set-
point that may vary as a function of time; the prediction error is the difference
between the setpoint trajectory and the model prediction. A model predictive con-
troller is based on minimizing a quadratic objective function over a specific time
horizon based on the sum of the square of the prediction errors plus a penalty
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related to the square of the changes in the control variable(s). Inequality constraints
on the input and output variables can be included in the optimization calculation.
At each sampling instant, values of the manipulated variables and controlled vari-
ables for the next m time steps are calculated; m is the number of control “moves,”
and its selection is discussed later. At each sampling instant, only the first control
move (of the m moves that were calculated) is actually implemented. Then, the pre-
diction and control calculations are repeated at the next sampling instant, based on
the currently measured state of the process.

In principle, any type of process model can be used to predict future values of
the controlled outputs. For example, one can use a physical model based on first
principles (e.g., mass and energy balances), a linear model (e.g., transfer function,
step response model, or state space-model), or a nonlinear model (e.g., neural nets).
Because most industrial applications of MPC have relied on linear dynamic mod-
els, later on we derive the MPC equations for a single-input/single-output (SISO)
model. The SISO model, however, can be easily generalized to the MIMO models
that are used in industrial applications (Lee et al., 1994). One model that can be
used in MPC is called the step response model, which relates a single controlled
variable y with a single manipulated variable u (based on previous changes in u) as
follows:

(k) = éS,-Au(k — i) + y(0) (16.1)

where $(k) is the predicted value of y(k) at the k-sampling instant (k = 1, 2, . . ),
Au(k — i) is the change in the manipulated input at time k — i[Au(k — i) = u(k — i)
— u(k — i — 1)], N is the number of terms in the step response model (usually less
than 50), and the N model parameters S,, are referred to as the step response coef-
ficients. The initial value y(0) is assumed to be known. Other model forms in MPC
can involve fewer parameters and can be expressed using state space form (Lee et
al., 1994), which is now more frequently used in commercial software packages.

Figure 16.3 shows a hypothetical step response for an industrial process gen-
erated by a step change in the manipulated variable u. The model is developed by
performing a step change in u(k) and recording the response y(k) until it essentially
reaches steady state. In theory, the S; can be determined from a single-step response
but in practice a number of step tests are required to compensate for unanticipated
disturbances, process nonlinearities, and noisy measurements. The step response
coefficients S, can be estimated by applying linear regression to the values of the
output variable at each sampling instant. Usually the final or steady-state value
y(ss) is the last sampled value of y, and the number of data points is selected to be
larger than N, the number of terms in the model.

We now develop a mathematical statement for model predictive control with a
quadratic objective function for each sampling instant k and linear process model
in Equation 16.1:

p m
minf= > we(k+ i)+ A > APk +i—1) (16.2)
i=1 i=1
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Typical step response for an industrial process. A time delay may
occur between the time that the manipulated variable is changed and
the time that the process response occurs.

where e(k + i) denotes the predicted error at time (k + i),i=1,...,p,
e(k+i)=r(k+i)— 9k +i) (16.3)

r(k + i) is the reference value or setpoint at time k + i, and Au(k) denotes the vec-
tor of current and future control moves over the next m sampling instants:

Au(k) = [Au(k),Aulk + 1), ..., Au(k + m — 1)]7 (16.4)

To minimize f, you balance the error between the setpoint and the predicted
response against the size of the control moves. Equation 16.2 contains design
parameters that can be used to tune the controller, that is, you vary the parameters
until the desired shape of the response that tracks the setpoint trajectory is achieved
(Seborg et al., 1989). The “move suppression” factor A penalizes large control
moves, but the weighting factors w; allow the predicted errors to be weighted dif-
ferently at each time step, if desired. Typically you select a value of m (number of
control moves) that is smaller than the prediction horizon p, so the control variables
are held constant over the remainder of the prediction horizon.

Inequality constraints on future inputs or their rates of change are widely used
in the MPC calculations. For example, if both upper and lower limits on « and Au
are required, the constraints could be expressed as

B = u(k + i) = B, fori=1,2,...,m (16.5)
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C'=Auk+i)=C* fori=1,2..,m (16.6)

where the B!, C', and B¥, C* are lower and upper bounds, respectively. Note that
u(k + i) is determined by whatever values Au(k + i) assume. Constraints on the
predicted outputs are sometimes included as well:

D'=$k+i)=D* fori=1,2,....p (16.7)

The minimization of the quadratic performance index in Equation (16.2), sub-
ject to the constraints in Equations (16.5-16.7) and the step response model such
as Equation (16.1), forms a standard quadratic programming (QP) problem,
described in Chapter 8. If the quadratic terms in Equation (16.2) are replaced by lin-
ear terms, a linear programming program (LP) problem results that can also be
solved using standard methods. The MPC formulation for SISO control problems
described earlier can easily be extended to MIMO problems and to other types of
models and objective functions (Lee et al., 1994). Tuning the controller is carried
out by adjusting the following parameters:

¢ The weighting factor w.

* The move suppression factor A.

» Bounds for the inputs and input moves.

*» The input horizon (m) and output horizon (p).

See the review by Qin and Badgwell (1997) for details on commercial MPC
packages.

EXAMPLE 16.3 MODEL PREDICTIVE CONTROL OF A
CHEMICAL REACTOR

To carry out changes in the desired operating conditions a chemical reactor is to be
controlled using MPC. The reactor is treated as a SISO system; the heat addition rate
is the input, and reactor outlet concentration is the output. To design the controller, the
system is subjected to a step change in the input, and the output is measured using a
constant sampling interval of 1.0 min. Table E16.3 lists the values of the measured
output (the response data have been normalized to have a final steady-state value of
1.0). The step response data follow the pattern shown in Figure 16.3. We will use
Equation 16.1 to match the step response, with N equal to 70. Once the model coeffi-
cients of the response are determined, we can use a QP solver to find the response for
a specific setpoint change given the horizons m = 2, p = 4 for the following three
cases:

1. Unconstrained u(k), A = 0, w = 1

240 =uk) =40, =0, w=1

3. Unconstrained u(k); A is varied using a one-dimensional search (external to the
MPC program) to find a good response that satisfies the input constraints in step 2.

Solution. For a given setpoint change you want a smooth, reasonably rapid rise to the
new operating point with a small amount of overshoot before settling to the desired
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TABLE E16.3
Step response for At = 1

Time  Step response Time Step response

1 0.000 36 0.940

2 0.009 37 0.946

3 0.033 38 0.951

4 0.067 39 0.956

5 0.108 40 0.960

6 0.155 41 0.964

7 0.203 42 0.967

8 0.253 43 0.970

9 0.303 44 0.973
10 0.352 45 0.976
11 0.399 46 0.978
12 . 0.445 47 0.980
13 0.488 48 0.981
14 0.529 49 0.984
15 0.568 50 0.985
16 0.603 51 0.987
17 0.637 52 0.988
18 0.668 53 0.989
19 0.697 54 0.990
20 0.723 55 0.991
21 0.748 56 0.992
22 0.770 57 0.992
23 0.791 58 0.993
24 0.809 59 0.994
25 0.827 60 0.994
26 0.842 61 0.995
27 0.857 62 0.995
28 0.870 63 0.996
29 0.882 64 0.996
30 0.892 65 0.997
31 0.903 66 0.997
32 0.912 67 0.997
33 0.920 68 0.997
34 0.928 69 0.998
35 0.934 70 0.998

operating point. In addition, the changes in the input variable (e.g., valve position for
heat transfer medium) should not be too extreme during the transition. Although we
do not place a hard limit on the changes in the input, this could easily be done. The
step response model for N = 70 is simply the values of y for £ = 1 to 70.

For this example, the controller design was carried out using the MATLAB
Model Predictive Control toolbox, which includes a QP solver. Three cases were con-
sidered in the preceding problem statement.

1. The MPC controller that minimizes the variance of the output (minimum variance
controller) during a setpoint change corresponds to the controller setting w = 1,
A =0, and no bounds on the input. The response for this controller design for
m = 2 and p = 4 is given in Figure E16.3 by the solid line.
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FIGURE E16.3
Comparison of the system behavior using three different model predictive controllers (a)
minimum variance, (b) input constraint, (c) input penalty.

2.

bl

The input for most chemical processes is normally constrained, (e.g., a valve
ranges between 0 and 100 percent open). An unconstrained minimum variance
controller might not be able to achieve the desired input trajectory for the response.
The controller design should take the process input constraints into account. The
results of a simulated setpoint change for such a controller with bounds of —40 and
40 for the input and controller parameters w = 1 and A = 0 is given by the dashed
line in Figure E16.3.

An alternative method to limit the control action for a controller is to increase the
value of the move suppression factor A, penalizing the change in the input. The
system response for small vatues of A is close to the unconstrained minimum vari-
ance controller as expected, but it violates the constraints. With increasing values
of the move suppression factor, however, the second term in Equation (16.2)
becomes more important in the objective function, and control changes can corre-
spondingly be limited to the range —40 < u(k) = 40. The dotted line in Figure
E16.3 corresponds to a system with the controller setting w = 1, A = 0.01, and no
bounds on the input. Note that the response is much slower than in the direct con-
straint approach used in case 2.

The control actions in Figure E16.3 are influenced by the choice of the input and

output horizon. For this example, all of the controllers had an input horizon of 2 and
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an output horizon of 4. In addition to w and A, the two parameters m and p can be
adjusted to improve the response. A selection of shorter horizons will result in more
aggressive controllers.

Implementation issues

A critical factor in the successful application of any optimization technique is
the availability of a suitable dynamic model. As mentioned previously, in typical
MPC applications an empirical model is identified from data acquired during exten-
sive plant tests. The experiments generally consist of a series of step tests, in which
the manipulated variables are adjusted one at a time, and the tests require a period
of 1-3 weeks. Details concerning the procedures used in the plant tests and subse-
quent model identification are usually considered to be proprietary information.
The scaling and conditioning of plant data for use in model identification and con-
trol calculations can be key factors in the success of the application.

Integration of MPC and real-time optimization

Significant potential benefits can be realized by using a combination of MPC
and RTO of setpoints that was discussed in Section 16.3. At the present time, most
commercial MPC packages integrate the two methodologies in a configuration such
as the one shown in Figure 16.4. The MPC calculations are imbedded in the pre-
diction and controller blocks and are carried out quite often (e.g., every 1-10 min).
The prediction block predicts the future trajectory of all controlled variables, and
the controller achieves the desired response while keeping the process within limits.

Optimizer

Targets, constraints,
manipulated variable changes

Prediction Controller Actual
process Process
variables
Previous values of inputs Process ; +
model Jd )

Prediction model error

FIGURE 16.4
Diagram showing the combination of real-time optimization and model predictive
control in a computer control system.
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The targets for the MPC calculations are generated by solving a steady-state opti-
mization problem (LP or QP) based on a linear process model, which also finds the
best path to achieve the new targets (Backx et al., 2000). These calculations may be
performed as often as the MPC calculations. The targets and constraints for the LP
or QP optimization can be generated from a nonlinear process model using a non-
linear optimization technique. If the optimum occurs at a vertex of constraints and
the objective function is convex, successive updates of a linearized model will find
the same optimum as the nonlinear model. These calculations tend to be performed
less frequently (e.g., every 1-24 h) due to the complexity of the calculations and
the process models.

16.5 PROCESS MONITORING AND ANALYSIS

Measured process data inherently contain inaccurate information because the meas-
urements are obtained with imperfect instruments. When flawed information is
used for estimation of process variables and process control, the state of the system
can be misrepresented and the resulting control performance is poor, leading to sub-
optimal and even unsafe process operation. Data reconciliation means the adjust-
ment of process data measurements in order to force the data to agree in some sense
with a model so that the estimates are better than the data. Better is usually defined
as the optimal solution to a constrained least squares or maximum likelihood objec-
tive function. It is important to understand what is wrong with the values obtained
by measurement and why they must be adjusted (Romagnoli and Sanchez, 1999).
Data reconciliation can make the process data more useful for decision making and
control by smoothing, eliminating outliers, and adjusting for bias and drift, thereby
leading to better quality control, detection of faulty instrumentation, detection of
process leaks, and increased profits. Computer-integrated manufacturing systems
provide plant engineers direct access to extensive plant data as they are recorded.
Automation of the data reconciliation computations is necessary to make use of the
large amount of information available.

Suppose that the relationship between a measurement of a variable and its true
value can be represented by

Y=y Te (16.8)
where y, = measured value
y = true value
e = error

Measurements can contain any of several types of errors: (1) small random
errors, (2) systematic biases and drift, or (3) gross errors. Small random errors are
zero-mean and are often assumed to be normally distributed (Gaussian). Systematic
biases occur when measurement devices provide consistently erroneous values,
either high or low. In this case, the expected value of e is not zero. Bias may arise
from sources such as incorrect calibration of the measurement device, sensor
degradation, damage to the electronics, and so on. The third type of measurement
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FIGURE 16.5
Steps for data improvement.

error is gross error and is usually caused by large, short-term, nonrandom events.
Gross errors can be subdivided into measurement-related errors, such as malfunc-
tioning sensors, and process-related errors, such as process leaks.

Typically, process data are improved using spatial, or functional, redundancies
in the process model. Measurements are spatially redundant if more than enough
data exist to completely define the process model at any instant, that is, the system
is overdetermined and requires a solution by least squares fitting. Similarly, data
improvement can be performed using temporal redundancies. Measurements are
temporally redundant if past measurement values are available and can be used for
estimation purposes. Dynamic models composed of algebraic and differential equa-
tions provide both spatial and temporal redundancy.

A simplified view of measurement data improvement techniques can be divided
into three basic steps as shown in Figure 16.5. The first step, variable classification,
involves determining which variables are observable or unobservable and which are
redundant or underdetermined. Several authors have published algorithms for vari-
able classification (Crowe, 1986; Stanley and Mah, 1981; Mah, 1990). Those that
are undeterminable are not available for improvement. Next, all gross errors are
identified and removed. Several methods proposed for gross error detection have
been evaluated by Mah (1990), Rollins et al. (1996) and Tong and Crowe (1997).
Data reconciliation concentrates on removing the remaining small, random mea-
surement errors from the data. A key assumption frequently made during the recon-
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ciliation step is that the errors are normally distributed, but gross errors severely vio-
late that assumption. If a measurement containing a gross error were allowed into
the reconciliation scheme, the resulting estimates of the values of the variable would
contain a portion of the gross error distributed among some or perhaps all the esti-
mates (referred to as “smearing”). In practice, gross error detection and elimination
are usually performed iteratively along with the final step—data reconciliation.

Historically, treatment of measurement noise has been addressed through two
distinct avenues. For steady-state data and processes, Kuehn and Davidson (1961)
presented the seminal paper describing the data reconciliation problem based on
least squares optimization. For dynamic data and processes, Kalman filtering
(Gelb, 1974) has been successfully used to recursively smooth measurement data
and estimate parameters. Both techniques were developed for linear systems and
weighted least squares objective functions.

The steady-state linear model data reconciliation problem can be stated as

minf = 3G = »)V'G —y) (16.9)
subject to the model constraints

45 —b=0 (16.10)

where V = variance—covariance matrix (usually diagonal)
y; = measurement of variable i
$; = reconciled estimate of variable i
A = matrix of linear constraints
b = vector of right-hand side terms in linear constraints

The optimal solution to this problem is
y* = [I — VAT(AVAT)"'Aly + VAT(AVAT)"'p (16.11)

If the model includes nonlinear constraints, the problem can be solved using non-
linear programming (Chapter 8).

Several researchers [e.g., Tjoa and Biegler (1992) and Robertson et al. (1996)]
have demonstrated advantages of using nonlinear programming (NLP) techniques
over such traditional data reconciliation methods as successive linearization for
steady-state or dynamic processes. Through the inclusion of variable bounds and a
more robust treatment of the nonlinear algebraic constraints, improved reconcilia-
tion performance can be realized.

Extended Kalman filtering has been a popular method used in the literature to
solve the dynamic data reconciliation problem (Muske and Edgar, 1998). As an
alternative, the nonlinear dynamic data reconciliation problem with a weighted least
squares objective function can be expressed as a moving horizon problem (Liebman
et al., 1992), similar to that used for model predictive control discussed earlier.

The nonlinear objective function (usually quadratic) is

min f()(2), 3(2)) (16.12)
@)
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which is subject to the dynamic model
dy(z) )
h ,9(0) ) =
( pelV)

g@() =0

and inequality constraints

(16.13)

(16.14)

This problem can be solved using a combined optimization and constraint model
solution strategy (Muske and Edgar, 1998) by converting the differential equations
to algebraic constraints using orthogonal collocation or some other model dis-

cretization approach.

EXAMPLE 16.4 STEADY-STATE MATERIAL BALANCE

RECONCILIATION

Consider the process flowsheet shown in Figure E16.4, which was used by Rollins
and Davis (1993) in investigations of gross error detection. The seven stream numbers
are identified in Figure E16.4. The overall material balance can be expressed using the

constraint matrix Ay = 0, where A is given by

-1 0 1 0 1
1 -1 0 0 0
0 1 -1 -1 0
0 0 0 1 -1

O O O =

As a simple case, reconcile a single data set for the stream flows as follows:

[49.5']
81.5
85.3

y =|10.1

72.9

25.7

50.7 |

Use the variange—covariance matrix below as a measure of the variability (and relia-

bility) of the stream measurements:

71.5625 0 0 0 0

0 45156 0 0 0

0 0 4515 0 0

v=| o0 0 0  0.0625 0
0 0 0 0  3.5156

0 0 0 0 0

L 0 0 0 0 0

O O O O

0
0.3906
0

O O O O O

0
0.3906 |
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FIGURE E16.4
Recycle process network.
TABLE E16.4

Data reconciliation results

Stream number True value Measured value Reconciled value

(kg/min) (kg/min) (kg/min)
1 50.0 49.5 50.0
2 85.0 81.5 85.2
3 85.0 85.3 85.2
4 10.0 10.1 10.0
5 75.0 729 75.2
6 25.0 25.7 252
7 50.0 50.7 50.0

Solution. The reconciled results in Table E16.4 are obtained by solving the optimiza-
tion problem with the process model as the only set of constraints. Because all con-
straints are linear, an analytical solution exists to the problem, as given in Equation
16.11. This results in an 89.6% reduction in the sum of the absolute error. Note that
all reconciled values are positive and hence feasible. It is not unusual for some rec-
onciled flow rates to go negative, in which case it is necessary to solve the problem
using a constrained minimization code such as QP.
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