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Can the criteria of Section 4.5 be applied to test this outcome?

4.45 (a) Consider the objective function,
f=6x+ x3 + 6xx, + 3x3

Find the stationary points and classify them using the Hessian matrix.
(b) Repeat for

F=73x3+ 6x, + x5 + 6xyx, + x5 + 2x3 + xox5 + xp
(c) Repeat for

f=ap + ax, + ax? + ax} + axx,

4.46 An objective function is
f&®) = (1 =8+ (x, = 5)* + 16

By inspection, you can find x* = [8 5]T yields the minimum of f{x). Show that x*
meets the necessary and sufficient conditions for a minimum.

4.47 Analyze the function

Find all of its stationary points and determine if they are maxima, minima, or inflec-
tion (saddle) points. Sketch the curve in the region of

—2=x=2

4.48 Determine if the following objective function
fx) =2x} + x5 + x3x3 + 4x;x, + 3

has local minima or maxima. Classify each point clearly.

4.49 Is the following function unimodal (only one extremum) or multimodal (more than one

extremum)?
- —oco=x
f(x) =4 —x 0=x=1
& ! I=x=o00

4.50 Determine whether the solution x = [—0.87 —0.8]" for the objective function
flx) = xt + 12x3 — 15x% — 56x, + 60

is indeed a maximum.
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A GOOD TECHNIQUE for the optimization of a function of just one variable is essen-
tial for two reasons:

1. Some unconstrained problems inherently involve only one variable

2. Techniques for unconstrained and constrained optimization problems generally
involve repeated use of a one-dimensional search as described in Chapters 6
and 8.

Prior to the advent of high-speed computers, methods of optimization were
limited primarily to analytical methods, that is, methods of calculating a potential
extremum were based on using the necessary conditions and analytical derivatives
as well as values of the objective function. Modern computers have made possible
iterative, or numerical, methods that search for an extremum by using function and
sometimes derivative values of f{x) at a sequence of trial points x!, X2, . . ..

As an example consider the following function of a single variable x (see Fig-
ure 5.1).

flx) =x*—2x+ 1

Start
4_ —
fx)=x2-2x+1
3
fx) P Iterative method:
second estimate
of x*
Analytical
method:
L9,
via —— =
dx /
x* / Iterative method:
\ f first estimate of x*
0 é = | | |
0 1 2 3 4
X
FIGURE 5.1

Iterative versus analytical methods of finding a minimum.
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An analytical method of finding x* at the minimum of f(x) is to set the gradient of f(x)
equal to zero

I 0=2x—2

and solve the resulting equation to get x* = 1; x* can be tested for the sufficient
conditions to ascertain that it is indeed a minimum:

(1)
de

=2>0

To carry out an iterative method of numerical minimization, start with some ini-
tial value of x, say x° = 0, and calculate successive values of f(x) = x> — 2x + 1 and
possibly df/dx for other values of x, values selected according to whatever strategy
is to be employed. A number of different strategies are discussed in subsequent sec-
tions of this chapter. Stop when f(x**1) — f(x*) < &, or when

af
E{\*<82

where the superscript k designates the iteration number and €, and &, are the pre-
specified tolerances or criteria of precision.

If f(x) has a simple closed-form expression, analytical methods yield an exact
solution, a closed form expression for the optimal x, x*. If f(x) is more complex, for
example, if it requires several steps to compute, then a numerical approach must be
used. Software for nonlinear optimization is now so widely available that the numer-
ical approach is almost always used. For example, the “Solver” in the Microsoft
Excel spreadsheet solves linear and nonlinear optimization problems, and many
FORTRAN and C optimizers are available as well. General optimization software is
discussed in Section 8.9.

Analytical methods are usually difficult to apply for nonlinear objective func-
tions with more than one variable. For example, suppose that the nonlinear function

Jx) = f(x}, %5, . . ., x,) is to be minimized. The necessary conditions to be used are
Ifix
) _
8x1
Ifix
fx) _ o
8x2
Ifix
fx) _

ox,
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Each of the partial derivatives when equated to zero may well yield a nonlinear
equation. Hence, the minimization of f(x) is converted into a problem of solving a
set of nonlinear equations in » variables, a problem that can be just as difficult to
solve as the original problem. Thus, most engineers prefer to attack the minimiza-
tion problem directly by one of the numerical methods described in Chapter 6,
rather than to use an indirect method. Even when minimizing a function of one vari-
able by an indirect method, using the necessary conditions can lead to having to
find the real roots of a nonlinear equation.

5.1 NUMERICAL METHODS FOR OPTIMIZING A FUNCTION
OF ONE VARIABLE

Most algorithms for unconstrained and constrained optimization make use of an
efficient unidimensional optimization technique to locate a local minimum of a
function of one variable. Nash and Soter (1996) and other general optimization
books (e.g., Dennis and Schnabel, 1983) have reviewed one-dimensional search
techniques that calculate the interval in which the minimum of a function lies. To
apply these methods you initially need to know an initial bracket A° that contains
the minimum of the objective function f{x), and that f{x) is unimodal in the interval.
This can be done by coding the function in a spreadsheet or in a programming lan-
guage like Visual Basic, Fortran, or C, choosing an interval, and evaluating f(x) at
a grid of points in that interval. The interval is extended if the minimum is at an end
point. There are various methods of varying the initial interval to reach a final inter-
val A", In the next section we describe a few of the methods that prove to be the
most effective in practice.

One method of optimization for a function of a single variable is to set up as
fine a grid as you wish for the values of x and calculate the function value for every
point on the grid. An approximation to the optimum is the best value of f(x).
Although this is not a very efficient method for finding the optimur, it can yield
acceptable results. On the other hand, if we were to utilize this approach in opti-
mizing a multivariable function of more than, say, five variables, the computer time
is quite likely to become prohibitive, and the accuracy is usually not satisfactory.

In selecting a search method to minimize or maximize a function of a single
variable, the most important concerns are software availability, ease of use, and
efficiency. Sometimes the function may take a long time to compute, and then effi-
ciency becomes more important. For example, in some problems a simulation may
be required to generate the function values, such as in determining the optimal
number of trays in a distillation column. In other cases you have no functional
description of the physical-chemical model of the process to be optimized and are
forced to operate the process at various input levels to evaluate the value of the
process output. The generation of a new value of the objective function in such cir-
cumstances may be extremely costly, and no doubt the number of plant tests would
be limited and have to be quite judiciously designed. In such circumstances, effi-
ciency is a key criterion in selecting a minimization strategy.
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5.2 SCANNING AND BRACKETING PROCEDURES

Some unidimensional search procedures require that a bracket of the minimum
be obtained as the first part of the strategy, and then the bracket is narrowed.
Along with the statement of the objective function f(x) there must be some
statement of bounds on x or else the implicit assumption that x is unbounded
(— o0 < x < 00). For example, the problem

Minimize: f(x) = (x — 100)?

has an optimal value of x* = 100. Clearly you would not want to start at —oo (i.e.,
a large negative number) and try to bracket the minimum. Common sense suggests
estimating the minimum x and setting up a sufficiently wide bracket to contain the
true minimum. Clearly, if you make a mistake and set up a bracket of 0 = x = 10,
you will find that the minimum occurs at one of the bounds, hence the bracket must
be revised. In engineering and scientific work physical limits on temperature, pres-
sure, concentration, and other physically meaningful variables place practical
bounds on the region of search that might be used as an initial bracket.

Several strategies exist for scanning the independent variable space and deter-
mining an acceptable range for search for the minimum of f(x). As an example, in
the above function, if we discretize the independent variable by a grid spacing of
0.01, and then initiate the search at zero, proceeding with consecutively higher val-
ues of x, much time and effort would be consumed in order to set up the initial
bracket for x. Therefore, acceleration procedures are used to scan rapidly for a suit-
able range of x. One technique might involve using a functional transformation
(e.g., log x) in order to look at wide ranges of the independent variable. Another
method might be to use a variable grid spacing. Consider a sequence in x given by
the following formula:

it = xF + 5. 2k1 (5.1)

Equation (5.1) allows for successively wider-spaced values, given some base incre-
ment (delta). Table 5.1 lists the values of x and f(x) = (x — 100)* for Equation
(5.1) with & = 1.Note that in nine calculations we have bounded the minimum of
f(x). Another scanning procedure could be initiated between x = 63 and x = 255,
with & reduced, and so on to find the minimum of f(x). However, more efficient
techniques are discussed in subsequent sections of this chapter.

In optimization of a function of a single variable, we recognize (as for general
multivariable problems) that there is no substitute for a good first guess for the
starting point in the search. Insight into the problem as well as previous experience

TABLE 5.1
Acceleration in fixing an initial bracket
x 0 1 3 7 15 31 63 127 255

) 104 9801 9409 8649 7225 4761 1369 729 2325
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are therefore often very important factors influencing the amount of time and effort
required to solve a given optimization problem.

The methods considered in the rest of this chapter are generally termed descent
methods for minimization because a given step is pursued only if it yields an
improved value for the objective function. First we cover methods that use function
values or first or second derivatives in Section 5.3, followed by a review of several
methods that use only function values in Section 5.4.

5.3 NEWTON AND QUASI-NEWTON METHODS
OF UNIDIMENSIONAL SEARCH

Three basic procedures for finding an extremum of a function of one variable have
evolved from applying the necessary optimality conditions to the function:

1. Newton’s method
2. Finite difference approximation of Newton’s method
3. Quasi-Newton methods

In comparing the effectiveness of these techniques, it is useful to examine the rate
of convergence for each method. Rates of convergence can be expressed in various
ways, but a common classification is as follows:?

Linear
| x*71 = x*|
W 0 = ¢ < 1,klarge 5.2)
(rate usually slow in practice)
Order p
X x) = 0,p = 1,kI 5.3
W— ¢z 0,p = 1, klarge (5.3)

(rate fastest in practice if p > 1)

If p = 2, the order of convergence is said to be quadratic.

To understand these definitions, assume that the algorithm generating the
sequence of points x* is converging to x*, that is, as k — oo, if Equation (5.2) holds
for large k, x* — x*.Then

%! — x¥| = cfx* - x¥]  klarge

2The symbols x*, x**!, and so on refer to the kth or (k + 1)st stage of iteration and not to powers of x.
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so the error at iteration k + 1 is bounded by c times the error at iteration k, where
¢ < 1.Ifc =0.1, then the error is reduced by a factor of 10 at each iteration, at
least for the later iterations. The constant ¢ is called the convergence ratio.

If Equation (5.3) holds for large %, then [x**! — x*| < ¢ ||x* — x|?, & large
enough. If p = 2, and |[x* — x°| = 107! for some k, then

[x**1 — x*¥| < ¢-1072
k52 — x| < 2+ 107
”Xk+3 _ X*” < C3' 10—6

and so on.

Hence, if ¢ is around 1.0, the error decreases very rapidly, the number of cor-
rect digits in x* doubling with each iteration. Because all real numbers in double
precision arithmetic have about 16 significant decimal digits, only a few iterations
are needed before the limits of accuracy of Equation (5.3) are reached.

Superlinear

" Xk+1 _ x:l: "

|

lim

i — —0 (or < ¢,andc,—0ask—00) (5.4)

(rate usually fast in practice)

For a function of a single variable |x| = |x| itself.

5.3.1 Newton’s Method

Recall that the first-order necessary condition for a local minimum is f'(x) = O.
Consequently, you can solve the equation f'(x) = 0 by Newton’s method to get

o P
xk 1 xk f"(xk)

making sure on each stage k that f(x**1) < f(x*) for a minimum. Examine Figure 5.2.
To see what Newton’s method implies about f(x), suppose f(x) is approximated
by a quadratic function at x*

fx) = FGF) + £GP = xF) + 27 () — 2% (5.6)

Find df(x)/dx = 0, a stationary point of the quadratic model of the function. The
result obtained by differentiating Equation (5.6) with respect to x is

)+ G ) x—xF) =0 5.7

(3.5)
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Tangent of f* (x)
at xk

f(x)

F'ex)

FiIGURE 5.2
Newton’s method applied to the solution of f'(x) = 0.

which can be rearranged to yield Equation (5.5). Consequently, Newton’s method
is equivalent to using a quadratic model for a function in minimization (or maxi-
mization) and applying the necessary conditions.

The advantages of Newton’s method are

1. The procedure is locally quadratically convergent [p = 2 in Equation (5.3)] to the
extremum as long as f”(x) # 0.
2. For a quadratic function, the minimum is obtained in one iteration.

The disadvantages of the method are

1. You have to calculate both f'(x) and f"(x).

2. If f"(x) — 0, the method converges slowly.

3. If the initial point is not close enough to the minimum, the method as described
earlier will not converge. Modified versions that guarantee convergence from
poor starting points are described in Bazarra et al. (1993) and Nash and Sofer
(1996).

5.3.2 Finite Difference Approximations to Derivatives

If f(x) is not given by a formula, or the formula is so complicated that analytical
derivatives cannot be formulated, you can replace Equation (5.5) with a finite dif-
ference approximation

et - g &R~ flx = B))/2h (5.8)

[f(x + 1) = 2f(x) + fx — B)]/R®

X
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fi(x) Slope = m

l

i

|

[

I

X |

|

[

x? |

%* x4 x
f '(x)j
FIGURE 5.3

Quasi-Newton method for solution of f'(x) = 0.

Central differences were used in Equation (5.8), but forward differences or any
other difference scheme would suffice as long as the step size # is selected to match
the difference formula and the computer (machine) precision with which the cal-
culations are to be executed. The main disadvantage is the error introduced by the
finite differencing.

5.3.3 Quasi-Newton Method

In the quasi-Newton method (secant method) the approximate model analogous to
Equation (5.7) to be solved is

FES +mx—x%=0 5.9
where m is the slope of the line connecting the point x” and a second point x¥,
given by

_ &) — &)
- x4 — xP
The quasi-Newton approximates f’(x) as a straight line (examine Figure 5.3); as

x?— xP, m approaches the second derivative of f(x). Thus Equation (5.9) imitates
Newton’s method

f'(x7)
[ =7 &) ]/ (7 = %)

X =x7 —

(5.10)

where X is the approximation to x* achieved on one iteration k. Note that f'(x) can
itself be approximated by finite differencing.
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Quasi-Newton methods start out by using two points ¥’ and x? spanning the
interval of x, points at which the first derivatives of f(x) are of opposite sign. The zero
of Equation (5.9) is predicted by Equation (5.10), and the derivative of the function
is then evaluated at the new point. The two points retained for the next step are X
and either x4 or x°. This choice is made so that the pair of derivatives f'(x), and
either /(") or f'(x9), have opposite signs to maintain the bracket on x*. This varia-
tion is called “regula falsi” or the method of false position. In Figure 5.3, for the (k
+ 1)st search, ¥ and x? would be selected as the end points of the secant line.

Quasi-Newton methods may seem crude, but they work well in practice. The
order of convergence is (1 + \/g) /2 = 1.6 for a single variable. Their conver-
gence is slightly slower than a properly chosen finite difference Newton method,
but they are usually more efficient in terms of total function evaluations to achieve
a specified accuracy (see Dennis and Schnabel, 1983, Chapter 2).

For any of the three procedures outlined in this section, in minimization you
assume the function is unimodal, bracket the minimum, pick a starting point, apply
the iteration formula to get x**! (or x ) from x* (or »” and x9), and make sure that
FOF) < f(x*) on each iteration so that progress is made toward the minimum. As
long as f"(x*) or its approximation is positive, f(x) decreases.

Of course, you must start in the correct direction to reduce f(x) (for a mini-
mum) by testing an initial perturbation in x. For maximization, minimize —f(x).

EXAMPLE 5.1 COMPARISON OF NEWTON, FINITE
DIFFERENCE NEWTON, AND QUASI-NEWTON METHODS
APPLIED TO A QUADRATIC FUNCTION

In this example, we minimize a simple quadratic function f(x) = x? — x that is
illustrated in Figure ES.1a using one iteration of each of the methods presented in
Section 5.3.

Solution. By inspection we can pick a bracket on the minimum, say x = —3 tox =
3. Assume x° = 3 is the starting point for the minimization.

Newton’s method. For Newton’s method sequentially apply Equation (5.5).
Examine Figure 5.1b for f(x) = x> — x and f'(x) = 2x — 1; f"(x) = 2. Note f"(x) is
always positive-definite. For this example Equation (5.5) is

)
£

(@)
and
Because the function is quadratic and hence f'(x) is linear, the minimum is

obtained in one step. If the function were not quadratic, then additional iterations
using Equation (5.5) would take place.
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f(x)
6

FiIGURE ES5.1a

XxP

FIGURE ES5.1b

Finite difference Newton method. Application of Equation (5.8) to f(x) = x? — x
is illustrated here. However, we use a forward difference formula for f/(x) and a three-
point central difference formula for f”(x)

R v ) (o) (b)
[+ ) = 2f) + s = )2
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with A = 107

[£(3.001) — £(3.0)]/107
[£(3.001) — 2f(3.0) + £(2.999)]/(107)?

(6.005001 — 6.000000)

xl=3-

=3-(107
( )(6.005001 — 12.000000 -+ 5.995001)
0.005001
= —_ i) Rttt —_
3 - (107%) 55 = 3 = 2:500500

= 0.499500

One more iteration could be taken to improve the estimate of x*, perhaps with a
smaller value of & (if desired).

Quasi-Newton method. The application of Equation (5.10) to f(x) = x? — x starts
with the two points x = —3 and x = 3 corresponding to the x” and x4, respectively, in
Figure 5.3:

F3)=-1 f@)=5
5

x1=3——[5_(_7)]/[3_(_3)]=3—2.5=0.5

As before, the optimum is reached in one step because f'(x) is linear, and the linear
extrapolation is valid.

EXAMPLE 5.2 MINIMIZING A MORE DIFFICULT FUNCTION

In this example we minimize a nonquadratic function f(x) = x* — x + 1 that is illus-
trated in Figure E5.2a, using the same three methods as in Example 5.1. For a starting
point of x = 3, minimize f(x) until the change in x is less than 10~7. Use & = 0.1 for
the finite-difference method. For the quasi-Newton method, use x¢ = 3 and x* = —3.

Solution

Newton’s method. For Newton’s method, f/ = 4x> — 1 and f” = 12x?, and the
sequence of steps is

4xf — 1
X = X9 — 12_)5% (a)
107
=3 — — = 2.00925
3 108 9259
A4
x, = 2.00926 — 314465 _ | 36015

48.4454
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fxX)=x*—x+1

-3

-2

FIGURE E5.2a
Newton iterates for fourth order function.

Additional iterations yield the following values for x:

xk+1 — x¥ xk+l — x*
k x* Jo— m
0 3.00000
1 2.009259 0.582 0.246
2 1.3601480 0.529 0.384
3 0.9518103 0.441 0.604
4 0.7265254 0.300 0.932
5 0.6422266 0.127 1.315
6 0.6301933 0.019 1.547
7 0.6299606 0.000 1.587
8 0.6299605
9 0.6299605

As you can see from the third and fourth columns in the table the rate of convergence
of Newton’s method is superlinear (and in fact quadratic) for this function.
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Finite Difference Newton. Equation (5.8) for this example is

ot _ b L+ ) = flx = )] »
2 LA + ) — 2x) + fx — B)]

X

For the same problem as used in Newton’s method, the first iteration using (b) for
h=10"%is

=3 [10—4} [£(3.0001) — £(2.9999)]
2 J[£(3.0001) — 2f(3.000) + £(2.999)]

Other values of & give

x*

k h=0.10 h=10"* h=1077
0 3.00000 2.00926 3.00000
1 2.00833 1.36015 2.21568
2 1.35816 0.951811 1.46785
3 0.948531 0.726526 0.955459
4 0.721882 0.642227 0.736528
5 0.636823 0.630193 0.642986
6 0.624849 0.629960 0.631846
7 0.624668 0.6299605191 0.630035
8 0.624669  .......... 0.629964
9 0.624669313  .......... 0.629961
10 oooiiins 0.629961
0 0.629960525

For h = 1078, the procedure diverged after the second iteration.

Quasi-Newton. The application of Equation (5.10) yields the following results
(examine Figure E5.2b). Note how the shape of f'(x) implies that a large number of
iterations are needed to reach x*. Some of the values of f'(x) and x during the search
are shown in the following table; notice that x? remains unchanged in order to main-
tain the bracket with f'(x) > 0.

k x X ')

0 30 -30 —109.0000

1 30 0.0277 —0.9991

2 30 0.0552 —0.9992

3 30 0.0825 —0.9977

4 30 0.1094 —0.9899

5 30 0.1361 —0.9899

20 3.0 0.4593 —0.6124

50 3.0 0.6223 —0.0360
100 3.0 0.6299 —1.399 x 10~

132 3.0 0.6299 —3.952 X 1076
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F'&)
x4

100 |-

1st secant trial
801}
60 |-
40 |-

F@=4x3-1
| |
M 2 3
x1=0.0277

FIGURE E5.2b
Quazi-Newton method applied to f(x).

5.4 POLYNOMIAL APPROXIMATION METHODS

Another class of methods of unidimensional minimization locates a point x near x*,
the value of the independent variable corresponding to the minimum of f(x), by
extrapolation and interpolation using polynomial approximations as models of f(x).
Both quadratic and cubic approximation have been proposed using function values
only and using both function and derivative values. In functions where f'(x) is con-
tinuous, these methods are much more efficient than other methods and are now
widely used to do line searches within multivariable optimizers.

5.4.1 Quadratic Interpolation
We start with three points x;, x,, and x; in increasing order that might be equally

spaced, but the extreme points must bracket the minimum. From the analysis in
Chapter 2, we know that a quadratic function f(x) = @ + bx + c¢x? can be passed
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exactly through the three points, and that the function can be differentiated and the
derivative set equal to 0 to yield the minimum of the approximating function

~ b
= —— 5.11
x e (.11
Suppose that f(x) is evaluated at x;, x,, and x; to yield f(x;) = fi, f(x,) = f>, and
f(x3) = f5. The coefficients b and c can be evaluated from the solution of the three
linear equations

fx;) = a + bx; + cx?
flxs) = a + bx, + cx3
flxs) = a + bxy + cx3

via determinants or matrix algebra. Introduction of » and ¢ expressed in terms of
Xy, X, X3, f1, f5. and f; into Equation (5.11) gives

F* = 1 (63 —x3)f + (63 — x)fp + (1 — 23 (5.12)
2L (xp — x3)f1 + (x5 — x1)fa + (61 — x2)f3 .

To illustrate the first stage in the search procedure, examine the four points in
Figure 5.4 for stage 1. We want to reduce the initial interval [x;, x;]. By examining
the values of f(x) [with the assumptions that f(x) is unimodal and has a minimum],
we can discard the interval from x, to x, and use the region (x,, x;) as the new inter-
val. The new interval contains three points, (x,, X, x;) that can be introduced into
Equation (5.12) to estimate a x*, and so on. In general, you evaluate f(x*) and discard
from the set {x,, x,, x;} the point that corresponds to the greatest value of f{x), unless

fx)
fi
1 ——>\_’
3 /_)
£/
f.
Stage 1 X, x, % X3 x
| |
[ |
| |
| 1
Stage 2 x; X X3 x
FIGURE 54

Two stages of quadratic interpolation.
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I LIf X lies between x, and x;:
&) a () b T
(@) < fy Pick x,, X, x5
? : I A
! T I : e | } (b) f*>f,  Pickxy x, X
. o
R I T T R A
| | | | | | ! |
Xy x; X X3 x, X, X X3
X X
ILIf X lies between x, and x,:
1K 1 2
£(0) ¢ £ 1 . -
(a) f* < fy Pick x;, X, x,
<y
. ! ¢ . . 1 o
} T I | [ ) f*>h Pick X, x,, x5
| | o | 5
R I R A B A
| | | | I | | |
Xy X X, X3 x, X Xy X
X X
FIGURE 5.5

How to maintain a bracket on the minimum in quadratic interpolation.

a bracket on the minimum of f{x) is lost by so doing, in which case you discard the x
so as to maintain the bracket. The specific tests and choices of x; to maintain the
bracket are illustrated in Figure 5.5. In Figure 5.5, f* = f(X). If x* and whichever
of {x;, x;, x3} corresponding to the smallest f(x) differ by less than the prescribed
accuracy in x, or the prescribed accuracy in the corresponding values of f(x) is
achieved, terminate the search. Note that only function evaluations are used in the
search and that only one new function evaluation (for X ) has to be carried out at each
new iteration.

EXAMPLE 5.3 APPLICATION OF QUADRATIC
INTERPOLATION

The function to be minimized is f(x) = x* — x and is illustrated in Figure E5.1a. Three
points bracketing the minimum (—1.7, —0.1, 1.5) are used to start the search for the
minimum of f(x); we use equally spaced points here but that is not a requirement of
the method.

Solution

X = —-1.7 Xy = —-0.1 X3 = 1.5
f(xl) =4.59 f(.xZ) =0.11 f(x:;) = 0.75
Ax=1.6
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Two different formulas for quadratic interpolation can be compared: Equation (5.8),
the finite difference method, and Equation (5.12).

Ax[f(xs) — fx1)]
2[f(xs) = 2f(x2) + flx1)]

(5.8)

= x, —

o L6075 ~ 459)  _
T 2075 — 2(011) + 459) @

~, _ 103 = a8]fCn) + [x3 — x1]f(n) + [x] — x3]f(xs)
T 2 (xp — x3)f(x1) + (x5 — x)f(x) + (6 — x3) f(x3) B8
[(—=0.1)% — (1.5)%](4.59) + [(1.5)* — (—1.7)%)(0.11)
_1 + [(=1.7)*> = (—0.1)*](0.75) )
T2 [(-0.1) — (1.5))(4.59) + [(1.5) — (—1.7)](0.11) ®

+ [(~1.7) — (~0.1)](0.75)
= 050

Note that a solution on the first iteration seems to be remarkable, but keep in mind
that the function is quadratic so that quadratic interpolation should be good even if
approximate formulas are used for derivatives.

5.4.2 Cubic Interpolation

Cubic interpolation to find the minimum of f(x) is based on approximating the
objective function by a third-degree polynomial within the interval of interest and
then determining the associated stationary point of the polynomial

flx) = ax® + ax* + ax + a,

Four points must be computed (that bracket the minimum) to estimate the minimum,
either four values of f{x), or the values of f{x) and the derivative of f{x), each at two
points.

In the former case four linear equations are obtained with the four unknowns
being the desired coefficients. Let the matrix X be

X3 X1 X

|
x5 x5 X, 1
x3 x5 x3 1

1

X3 X3 Xg

F7 = [fx;) fx) flxs) flx)]
AT = [a1 a, as 04]
F = XA (5.13)
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Then the extremum of f(x) is obtained by setting the derivative of f(x) equal to zero
and solving for x

af(x)
ar = 3ax?* + 2a,x + a; = 0
so that
T o= —2a, + V4ai — 12a,a, (5.14)

6611

The sign to use before the square root is governed by the sign of the second deriv-
ative of f(x), that is, whether a minimum or maximum is sought. The vector A can
be computed from XA = F or

A = XIF (5.15)

After the optimum point X is predicted, it is used as a new point in the next
iteration and the point with the highest [lowest value of f(x) for maximization]
value of f(x) is discarded.

If the first derivatives of f(x) are available, only two points are needed, and the
cubic function can be fitted to the two pairs of the slope and function values. These
four pieces of information can be uniquely related to the four coefficients in the cubic
equation, which can be optimized for predicting the new, nearly optimal data point.
If (x,, i, f'1) and (x,, f, f',) are available, then the optimum X is

c_ . | Satw—z B
X = Xy [f'z T ZW](xz x1) (5.18)
where =Ll o
[x2 — x1]

w= [ = fifa)"

In a minimization problem, you require x; < x,,f] < 0,andf5 > 0 (x, and x,
bracket the minimum). For the new point (x), calculate f'(X) to determine which
of the previous two points to replace. The application of this method in nonlinear pro-
gramming algorithms that use gradient information is straightforward and effective.

If the function being minimized is not unimodal locally, as has been assumed
to be true in the preceding discussion, extra logic must be added to the unidimen-
sional search code to ensure that the step size is adjusted to the neighborhood of the
local optimum actually sought. For example, Figure 5.6 illustrates how a large ini-
tial step can lead to an unbounded solution to a problem when, in fact, a local min-
imum is sought.
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minimum

Global
minimum \

FIGURE 5.6
A unidimensional search for a local minimum of a multimodal
objective function leads to an unbounded solution.

EXAMPLE 54 OPTIMIZATION OF A MICROELECTRONICS
PRODUCTION LINE FOR LITHOGRAPHY

You are to optimize the thickness of resist used in a production lithographic process.
There are a number of competing effects in lithography.

1. As the thickness ¢ (measured in micrometers) grows smaller, the defect density
grows larger. The number of defects per square centimeter of resist is given by

DO = 1.5t -3
2. The chip yield in fraction of good chips for each layer is given by

1
7’—1+czD0a

where a is the active area of the chip. Assume that 50 percent of the defects are
“fatal” defects (« = 0.5) detected after manufacturing the chip.

Assume four layers are required for the device. The overall yield is based on a
series formula:

1

= (1 + aDya)*
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3. Throughput decreases as resist thickness increases. A typical relationship is
V(wafers/h) = 125 — 50t + 5¢2

Each wafer has 100 chip sites with 0.25 cm? active area. The daily production level is
to be 2500 finished wafers. Find the resist thickness to be used to maximize the num-
ber of good chips per hour. Assume 0.5 =< ¢t = 2.5 as the expected range. First use
cubic interpolation to find the optimal value of ¢, #*. How many parallel production
lines are required for #*, assuming 20 h/day operation each? How many iterations are
needed to reach the optimum if you use quadratic interpolation?

Solution. The objective function to be maximized is the number of good chips per
hour, which is found by multiplying the yield, the throughput, and the number of
chips per wafer (= 100):

100
[1 + 0.5(1.5:7%)(0.25)]*

f= Vg = (125 — 50t + 5¢2)

Using initial guesses of + = 1.0 and 2.0, cubic interpolation yielded the following val-
ues of f:

t f f
1.0 4023.05 5611.10
2.0 4101.73 -2170.89
1414 4973.22 —148.70
1.395 4974.60 3.68 (optimum)

Because f'is multiplied by 100, f after two iterations is small enough. Figure E5.4
is a plot of the objective function f(z).

5000

4000

3000

2000

1000
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FIGURE E5.4
Plot of objective function (number of good chips per hour) versus resist
thickness, #(um).
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The throughput for * = 1.395 is
V = 65.02 wafers/h

If a production line is operated 20 h/day, two lines are needed to achieve 2500 wafers/day.
If quadratic interpolation is used with starting points of ¢ = 1, 2, and 3, the fol-
lowing iterative sequence results:

t f f
1.0 4023.05 5611.10
2.0 4101.73 —2170.89
3.0 1945.40 —1891.73
1.535 4904.08 —942.28
1.511 4924.73 —810.91
1.434 4968.58 —304.19
1.420 4972.17 —196.10
1.406 4974.20 —81.98
1.401 4974.48 —44.78
1.398 4974.58 —20.24
1.397 4974.60 —10.76
1.396 4974.61 —5.01

5.5 HOW ONE-DIMENSIONAL SEARCH IS APPLIED IN A
MULTIDIMENSIONAL PROBLEM

In minimizing a function f(x) of several variables, the general procedure is to (a)
calculate a search direction and (b) reduce the value of f(x) by taking one or more
steps in that search direction. Chapter 6 describes in detail how to select search
directions. Here we explain how to take steps in the search direction as a function
of a single variable, the step length «. The process of choosing « is called a unidi-
mensional search or line search.

Examine Figure 5.7 in which contours of a function of two variables are
displayed:

fx)=xt—203 + B+xF — 2%, +5

Suppose that the negative gradient of f(x), — Vf(x), is selected as the search direc-
tion starting at the point x” = [1 2]. The negative gradient is the direction that max-
imizes the rate of change of f(x) in moving toward the minimum. To move in this
direction we want to calculate a new X

Xiew = Xoud + as

where s is the search direction, a vector, and « is a scalar denoting the distance moved
along the search direction. Note as = Ax, the vector for the step to be taken
(encompassing both direction and distance).
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"
\_/
\/

\

s = —Vf(1,2)

e

FIGURE 5.7
Unidimensional search to bracket the minimum.

Execution of a unidimensional search involves calculating a value of « and
then taking steps in each of the coordinate directions as follows:

In the x; direction: X; ey, = X1 o4 + 08
In the x, direction: X, ey = Xp o4 + 08

where s, and s, are the two components of s in the x; and x, directions, respectively.
Repetition of this procedure accomplishes the unidimensional search.
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EXAMPLE 5.5 EXECUTION OF A UNIDIMENSIONAL SEARCH

We illustrate two stages in bracketing the minimum in minimizing the function from
Fox (1971)

fix) = xt — 2xx} + X3 + x2 — 25 + 5
in the negative gradient direction

4x3 — dxox; + 2%, — 2
_Vf(x):_[—lzx%ﬁzlxz I }

starting at x” = [1 2] where f(x) = 5. Here

s=—VA1,2) = —[_ﬂ

We start to bracket the minimum by taking o = 0.05
xi = x} + (0.05)(4) = 1.2 (@)
x} = x3 + (0.05)(=2) = 19 (b)

Steps (a) and () consist of one overall step in the direction s = [4 —2]7, and yield
AxT = [0.2 —~0.1]. At x!, f(1.2, 1.9) = 4.25, an improvement.

550
531
51+
49
f®)or 41
f) 45
43
4.1

391

35 ] | | |
0 0.02 0.04 0.06 0.08 0.10 0.12

Step size a

FIGURE ES.5
Values of f(x) along the gradient vector [4 —2]7 starting at [1 2]7.
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For the next step, we let a! = 2a® = 0.1, and take another step in the same
direction:

xl + 014) = 16

*
Il

xb + 01(=2) = 17

=
©
Il

Ax! = [04 —02]

At x2, (1.6, 1.7) = 5.10, so that the minimum of f(x) in direction s has been brack-
eted. Examine Figure 5.7. The optimal value of « along the search direction can be
found to be &* = 0.0797 by one of the methods described in this chapter. Figure
E5.5 shows a plot of f versus « along the search direction.

5.6 EVALUATION OF UNIDIMENSIONAL SEARCH METHODS

In this chapter we described and illustrated only a few unidimensional search meth-
ods. Refer to Luenberger (1984), Bazarra et al. (1993), or Nash and Sofer (1996) for
many others. Naturally, you can ask which unidimensional search method is best to
use, most robust, most efficient, and so on. Unfortunately, the various algorithms are
problem-dependent even if used alone, and if used as subroutines in optimization
codes, also depend on how well they mesh with the particular code. Most codes sim-
ply take one or a few steps in the search direction, or in more than one direction, with
no requirement for accuracy—only that f{x) be reduced by a sufficient amount.
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PROBLEMS

5.1 Can you bracket the minimum of the following function
flx) =€ — 1.5x*

starting at x = 07 Select different step sizes (small and large), and explain your results.
If you have trouble in the analysis, you might plot the function.

5.2 Bracket the minimum of the following functions:
(@) f(x) =e*+ 1.5x%
®) flx) =05x%+ 1)(x+ 1)
(© flx)=x>- 3%
@ flx)=2x%(x—2)(x +2)
(&) f(x) =0.1x% — 0.29x° + 2.31x* — 8.33x* + 12.89x — 6.8x + 1

5.3 Minimize f = (x — 1)* via (a) Newton’s method and (b) the quasi-Newton (secant)
method, starting at (1) x = —1, (2) x = —0.5, and (3) x = 0.0.

5.4 Apply a sequential one-dimensional search technique to reduce the interval of
uncertainty for the maximum of the function f = 6.64 + 1.2x — 2 from [0,1] to less
than 2 percent of its original size. Show all the iterations.

5.5 List three reasons why a quasi-Newton (secant) search for the minimum of a function
of one variable will fail to find a local minimum.

5.6 Minimize the function f = (x — 1)* Use quadratic interpolation but no more than a
maximum of ten function evaluations. The initial three points selected are x; = 0, x,
= 0.5, and x; = 2.0.

5.7 Repeat Problem 5.6 but use cubic interpolation via function and derivative evaluations.
Use x; = 0.5 and x, = 2.0 for a first guess.
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5.8 Repeat Problem 5.6 for cubic interpolation with four function values: x; = 1.5, x, = 3.0,
x3 = 4.0, and x, = 4.5.

5.9 Carry out the initial and one additional stage of the numerical search for the minimum of
fX)=23-5x*-8 x=1

by (a) Newton’s method (start at x = 1), (b) the quasi-Newton (secant) method (pick a
starting point), and (c) polynomial approximation (pick starting points including x = 1).

5.10 Find the maximum of the following function
flx)y=1—8x+2x2 — Qx3 + 2x* + 425 — 1«6
Hint:  f'(x) = (1 + x)%2 — x)*

(a) Analytically. (b) By Newton’s method (two iterations will suffice). Start at x = —2.
List each step of the procedure. (c) By quadratic interpolation (two iterations will suf-
fice). Start at x = —2. List each step of the procedure.

5.11 Determine the relative rates of convergence for (1) Newton’s method, (2) a finite dif-
ference Newton method, (3) quasi-Newton method, (4) quadratic interpolation, and
(5) cubic interpolation, in minimizing the following functions:
(@) x>—6x+3 (b) sin (x) with 0 < x < 27 ©) x* — 206® + 0.1x

5.12 The total annual cost of operating a pump and motor C in a particular piece of equip-
ment is a function of x, the size (horsepower) of the motor, namely

C = $500 + $0.9x + $0%(ISO,OOO)

Find the motor size that minimizes the total annual cost.

5.13 A boiler house contains five coal-fired boilers, each with a nominal rating of 300 boiler horse-
power (BHP). If economically justified, each boiler can be operated at a rating of 350 percent
of nominal. Due to the growth of manufacturing departments, it has become necessary to install
additional boilers. Refer to the following data. Determine the percent of nominal rating at which
the present boilers should be operated. Hint: Minimize total costs per year BHP output.

Data: The cost of fuel, coal, including the cost of handling coal and removing cin-
ders, is $7 per ton, and the coal has a heating value of 14,000 Btu/Ib. The overall effi-
ciency of the boilers, from coal to steam, has been determined from tests of the pres-
ent boilers operated at various ratings as:

Percent of Percent
nominal overall thermal
rating, R efficiency, E

100 75
150 76
200 74
225 72
250 69
275 65

300 61
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The annual fixed charges Cp in dollars per year on each boiler are given by the
equation:

Cr = 14,000 + 0.04R*

Assume 8550 hours of operation per year.
Hint: You will find it helpful to first obtain a relation between R and E by least
squares (refer to Chapter 2) to eliminate the variable E.

5.14 A laboratory filtration study is to be carried out at constant rate. The basic equation
(Cook, 1984) comes from the relation

(Pressure drop ) (Filter area)
(Fluid viscosity )(Cake thickness)

Flow-rate o<

Cook expressed filtration time as

) BAPCAZ ( b
= pb————x X —
¢ M X eXp {—ax,

where #; = time to build up filter cake, min
AP, = pressure drop across cake, psig (20)

A = filtration area, ft*> (250)

= filtrate viscosity, centipoise (20)

M = mass flow of filtrate, Ib_/min (75)

¢ = solids concentration in feed to filter, 1b, /b, filtrate (0.01)
x, = mass fraction solids in dry cake
a = constant relating cake resistance to solids fraction (3.643)
h = constant relating cake resistance to solids fraction (2.680)
B = 3.2 X 1078 (Ib_/ft)?

Numerical values for each parameter are given in parentheses. Obtain the maximum
time for filtration as a function of x, by a numerical unidimensional search.

5.15 An industrial dryer for granular material can be modeled (Becker et al., 1984) with the
total specific cost of drying C($/m?) being

(FaCpa + UA)ATC,
=1 W ]
C [ 767 ll'l(Wo/ D)/BVtJ AHC + ch + C}‘

where A = heat transfer area of dryer normal to the air flow, m? (153.84)
B = constant, function of air plenum temperature and initial moisture level
C’'; = unit cost of electricity, $/kWh (0.0253)
C’, = unit cost of labor, $/h (15)
C’, = unit cost of propane, $/kg (0.18)
= specific heat of air, J/kg K (1046.75)
F, = flow-rate of air, kg/h (3.38 X 10°)
= heat combustion of propane, J/kg (4.64 X 107)
P = electrical power, kW (188)
AT = temperature difference (T — T), K; the plenum air temperature T minus
the inlet air temperature T, (T} = 390 K)
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U = overall heat transfer coefficient from dryer to atmosphere,
W/(m?)(K)(45)
V, = total volume of the dryer, m? (56)
W), = final grain moisture content (dry basis), kg/kg (0.1765)
W, = initial moisture content (dry basis), kg/kg (0.500)

Numerical values for each parameter are given in parentheses. Values for the coefficient
are given by

B = (—0.263 1125 + 0.00289587) W{ 02208125 +0.000966T)

Find the minimum cost as a function of the plenum temperature T (in kelvin).

5.16 The following is an example from D. J. Wilde (1979).

The first example was formulated by Stoecker® to illustrate the steepest
descent (gradient) direct search method. It is proposed to attach a vapor
recondensation refrigeration system to lower the temperature, and conse-
quently vapor pressure, of liquid ammonia stored in a steel pressure vessel,
for this would permit thinner vessel walls. The tank cost saving must be
traded off against the refrigeration and thermal insulation cost to find the
temperature and insulation thickness minimizing the total annual cost.
Stoecker showed the total cost to be the sum of insulation cost i = 400x%°
(x is the insulation thickness, in.), the vessel cost v = 1000 + 22(p — 14.7)!2
(p is the absolute pressure, psia), and the recondensation cost » = 144(80
— 1)/x (t is the temperature, °F). The pressure is related to the temperature by

Inp = —3950(¢ — 460)~" + 11.86

By direct gradient search, iterated 16 times from a starting temperature of 50°F, the

total annual cost is found to have a local minimum at x = 5.94 in. and ¢ = 6.29°F,

where the cost is $53,400/yr. The reader can verify, however, that an ambient sys-

tem (80°F) without any recondensation only costs $52,000/yr, a saving of 3%.
Is the comment in the example true?

*Stoecker, W. F. In “Design of Thermal Systems.” McGraw-Hill, New York (1971), pp. 152-155.



