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is given in the table in cents per barrel. It is assumed that the crude evaluations reflect the
resulting product distribution from these incremental operations. (In practice, however,
if further debits are encountered in the solution because of lack of product quality or for
transportation of surplus products, suitable corrections can be made in the crude evalua-
tions and the problem reworked until a realistic solution is obtained.)

Maximize the profit per day by allocating the ten crudes among the three
refineries with X being able to operate at two levels, so specify X, and X, as well as

Yand Z.

Crude evaluation, availability and requirement

Crude a b ¢ d e f g h i Jj Required
(Profit or loss of each refinery cpb) (M bpd)
Refinery
X, -6 3 17 10 63 34 15 22 -2 15 30
X, -1 =7 =16 9 49 16 4 100 -8 8 40
Y -7 3 16 13 60 25 12 19 4 13 50
z -1 0 13 3 48 15 7 17 9 3 60
Available
(M bpd) 30 30 20 20 10 20 20 10 30 10 200

Abbreviations: M = 1000; bpd = barrels per day; cpb = cents per barrel.

7.25 Consider a typical linear programming example in which N grades of paper are pro-
duced on a paper machine. Due to raw materials restrictions not more than g, tons of

grade i can be produced in a week.

x; = numbers of tons of grade i produced during the week
b; = number of hours required to produce a ton of grade i
p; = profit made per ton of grade i

Let

Because 160 production hours are available each week, the problem is to find non-

negative values of x;, i = 1, ..., N, and the integer value N that satisfy
XY= a; M
N
S bk = ¢ @
i=1
and that maximize the profit function
N
flxp, hxy) = Epixi 3
i=1

Data:
a; b; P;
1 400 0.2 20
2 300 04 50
3 200 0.2 20
4 100 0.2 10
5 50 0.2 10

¢ =160
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CHAPTER 8: Nonlinear Programming with Constraints 265

CHAPTER 1 PRESENTS some examples of the constraints that occur in optimization
problems. Constraints are classified as being inequality constraints or equality con-
straints, and as linear or nonlinear. Chapter 7 described the simplex method for
solving problems with linear objective functions subject to linear constraints. This
chapter treats more difficult problems involving minimization (or maximization) of
a nonlinear objective function subject to linear or nonlinear constraints:

Minimize:  f(x) X = [x; % x,)7
Subjectto: h(x)=b;, i=12,....m (8.1)
gx)=¢ j=1,....r
The inequality constraints in Problem (8.1) can be transformed into equality con-

straints as explained in Section 8.4, so we focus first on problems involving only
equality constraints.

8.1 DIRECT SUBSTITUTION

One method of handling just one or two linear or nonlinear equality constraints is
to solve explicitly for one variable and eliminate that variable from the problem
formulation. This is done by direct substitution in the objective function and con-
straint equations in the problem. In many problems elimination of a single equal-
ity constraint is often superior to an approach in which the constraint is retained
and some constrained optimization procedure is executed. For example, suppose
you want to minimize the following objective function that is subject to a single
equality constraint

Minimize: f(x) = 4x? + 5x3 (8.2a)
Subjectto: 2x; + 3x, = 6 (8.2b)
Either x, or x, can be eliminated without difficulty. Solving for x;,
6 — 3XQ
=—" 8.3
x) 5 (8.3)

we can substitute for x; in Equation (8.2a). The new equivalent objective function
in terms of a single variable x, is

flx,) = 14x3 — 36x, + 36 (8.4)

The constraint in the original problem has now been eliminated, and f(x,) is an
unconstrained function with 1 degree of freedom (one independent variable). Using
constraints to eliminate variables is the main idea of the generalized reduced gradi-
ent method, as discussed in Section 8.7.

We can now minimize the objective function (8.4), by setting the first deriva-
tive of f equal to zero, and solving for the optimal value of x,:

df(x,) _

ax, 28x, —36=0 xj5=1286
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FIGURE 8.1

Graphical representation of a function of two variables reduced to a
function of one variable by direct substitution. The unconstrained
minimum is at (0,0), the center of the contours.

Once x§ is obtained, then, x§ can be directly obtained via the constraint (8.2b):

o 6313
= 1.071

The geometric interpretation for the preceding problem requires visualizing the
objective function as the surface of a paraboloid in three-dimensional space, as
shown in Figure 8.1. The projection of the intersection of the paraboloid and the
plane representing the constraint onto the f(x,) = x, plane is a parabola. We then
find the minimum of the resulting parabola. The elimination procedure described
earlier is tantamount to projecting the intersection locus onto the x, axis. The inter-
section locus could also be projected onto the x, axis (by elimination of x,). Would
you obtain the same result for x* as before?

In problems in which there are n variables and m equality constraints, we could
attempt to eliminate m variables by direct substitution. If all equality constraints
can be removed, and there are no inequality constraints, the objective function can
then be differentiated with respect to each of the remaining (n — m) variables and
the derivatives set equal to zero. Alternatively, a computer code for unconstrained
optimization can be employed to obtain x*. If the objective function is convex (as
in the preceding example) and the constraints form a convex region, then any sta-
tionary point is a global minimum. Unfortunately, very few problems in practice
assume this simple form or even permit the elimination of all equality constraints.
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Consequently, in this chapter we will discuss five major approaches for solv-
ing nonlinear programming problems with constraints:

1. Analytic solution by solving the first-order necessary conditions for optimality
(Section 8.2)

2. Penalty and barrier methods (Section 8.4)

3. Successive linear programming (Section 8.5)

4. Successive quadratic programming (Section 8.6)

5. Generalized reduced gradient (Section 8.7)

The first of these methods is usually only suitable for small problems with a few
variables, but it can generate much useful information and insight when it is appli-
cable. The others are numerical approaches, which must be implemented on a com-
puter.

8.2 FIRST-ORDER NECESSARY CONDITIONS FOR A LOCAL
EXTREMUM

As an introduction to this subject, consider the following example.

EXAMPLE 8.1 GRAPHIC INTERPRETATION OF A
CONSTRAINED OPTIMIZATION PROBLEM

Minimize: f(x;, x,) = x; + X,
Subjectto: h(x;,x,) =x3 +x3—1=0

Solution. This problem is illustrated graphically in Figure E8.1a. Its feasible region is
a circle of radius one. Contours of the linear objective x; + x, are lines parallel to the
one in the figure. The contour of lowest value that contacts the circle touches it at the
point x* = (—0.707, —0.707), which is the global minimum. You can solve this prob-
lem analytically as an unconstrained problem by substituting for x; or x, by using the
constraint.

Certain relations involving the gradients of f and 4 hold at x* if x* is a local min-
imum. These gradients are

VAx*) = [1,1]

Vh(x*) = [2x1,2%; ]|+ = [—1.414, —1.414]
and are shown in Figure E8.1b. The gradient of the objective function Vf(x*) is
orthogonal to the tangent plane of the constraint at x*. In general Vi(x*) is always
orthogonal to this tangent plane, hence VA(x*) and VA(x*) are collinear, that is, they

lie on the same line but point in opposite directions. This means the two vectors must
be multiples of each other;

VA(x*) = A*Vh(x*) (@
where A* = —1/1.414 is called the Lagrange multiplier for the constraint 2 = 0.
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Circular feasible region with objective function contours
and the constraint.
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FIGURE ES8.1b

Gradients at the optimal point and at a nonoptimal point.

The relationship in Equation (@) must hold at any local optimum of any equality-
constrained NLP involving smooth functions. To see why, consider the nonoptimal
point x! in Figure E8.1b. Vf(x!) is not orthogonal to the tangent plane of the constraint
at x!, so it has a nonzero projection on the plane. The negative of this projected gra-
dient is also nonzero, indicating that moving downward along the circle reduces
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(improves) the objective function. At a local optimum, no small or incremental move-
ment along the constraint (the circle in this problem) away from the optimum can
improve the value of the objective function, so the projected gradient must be zero.
This can only happen when Vf(x*) is orthogonal to the tangent plane.

The relation (@) in Example 8.1 can be rewritten as
VF(x*) + A* VA(x*) = 0 (8.5)
where A* = 0.707. We now introduce a new function L(x, A) called the Lagrangian
function:
L(x,A) = f(x) + Ma(x) (8.6)
Then Equation (8.5) becomes
VoL(X,A) |09 = 0 8.7
so the gradient of the Lagrangian function with respect to x, evaluated at (x*, A*),
is zero. Equation (8.7), plus the feasibility condition
h(x*) =0 (8.8)
constitute the first-order necessary conditions for optimality. The scalar A is called

a Lagrange multiplier.

Using the necessary conditions to find the optimum

The first-order necessary conditions (8.7) and (8.8) can be used to find an opti-
mal solution. Assume x* and A* are unknown. The Lagrangian function for the
problem in Example 8.1 is

LX) =x + %+ A2+ x3—-1)

Setting the first partial derivatives of L with respect to x to zero, we get

oL
—=14+2Xx;,=0 8.9
ax,
aL
—=14+2x&,=0 (8.10)
x,

The feasibility condition (8.8) is
2+x-1=0 (8.11)
The first-order necessary conditions for this problem, Equations (8.9)—(8.11), con-

sist of three equations in three unknowns (x;, x,, A). Solving (8.9)-(8.10) for x; and
x, gives

n=n= - (8.12)
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which shows that x; and x, are equal at the extremum. Substituting Equation (8.12)
into Equation (8.11);

1
—+-—==1
40 4)\*
or
2A% = (8.13)
SO
A = *0.707
and
x; = x, = %0.707 (8.14)

The minus sign corresponds to the minimum of £, and the plus sign to the maximum.

EXAMPLE 8.2 USE OF LAGRANGE MULTIPLIERS

Consider the problem introduced earlier in Equation (8.2):

Minimize: f(x) = 4x? + 5x3 (@
Subjectto: h(x) =0=2x; +3x, — 6 )

Solution. Let
L(x,A) = 4x% + 5x% + A(2x, + 3x, — 6) ©

Apply the necessary conditions (8.11) and (8.12)

aL(x,A)
=8x; +2A=0 )
6x1
dL(x,A)
——=10x, +3A =0 (e)
8x2
aL(x,A)
Yy =2x +3x—-6=0 §d)
By substitution, x;, = —~A/4 and x, = —3A/10, and therefore Equation (f) becomes
—-A —3A
2l — ) +3l——]—6=
( z > ’ < 10 ) 0
AF = —4.286
xf=1.071

x5 = 1.286
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8.2.1 Problems Containing Only Equality Constraints

A general equality constrained NLP with m constraints and » variables can be writ-
ten as

Maximize: f(x) (8.13)
Subjectto: h(x) =b, j=1,...,m

where X = (x;, . . ., x,) is the vector of decision variables, and each bj is a constant.
We assume that the objective fand constraint functions &; have continuous first par-
tial derivatives. Corresponding to each constraint 4; = b;, define a Lagrange multi-
plier A;and let A = (Ay, . . ., A,,) be the vector of these multipliers. The Lagrangian
function for the problem is

L(x,\) = f(x) + ﬁ Ah(x) — b)] (8.16)

and the first-order necessary conditions are

oL  of 1, ok

TN a—=0, i=1,.., 1

o, ox, J; e ! " @.17)
hEx)=b, j=1,...,m (8.18)

Note that there are n + m equations in the #n + m unknowns x and A. In Section 8.6
we describe an important class of NLP algorithms called successive quadratic pro-
gramming (SQP), which solve (8.17)—(8.18) by a variant of Newton’s method.

Problem (8.15) must satisfy certain conditions, called constraint qualifications,
in order for Equations (8.17)—(8.18) to be applicable. One constraint qualification
(see Luenberger, 1984) is that the gradients of the equality constraints, evaluated at
x*, should be linearly independent. Now we can state formally the first order neces-
sary conditions.

First-order necessary conditions for an extremum

Let X* be a local minimum or maximum for the problem (8.15), and assume
that the constraint gradients th(x*), Jj=1,..., m, arelinearly independent. Then
there exists a vector of Lagrange multipliers N* = (Af, . . ., A}) such that (¥, A*)
satisfies the first-order necessary conditions (8.17)—(8.18).

Examples illustrating what can go wrong if the constraint gradients are depen-
dent at x* can be found in Luenberger (1984). It is important to remember that all
local maxima and minima of an NLP satisfy the first-order necessary conditions if
the constraint gradients at each such optimum are independent. Also, because these
conditions are necessary but not, in general, sufficient, a solution of Equations
(8.17)-(8.18) need not be a minimum or a maximum at all. It can be a saddle or
inflection point. This is exactly what happens in the unconstrained case, where
there are no constraint functions hj = (0. Then conditions (8.17)—(8.18) become

VAx) =0
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the familiar condition that the gradient must be zero (see Section 4.5). To tell if a
point satisfying the first-order necessary conditions is a minimum, maximum, or
neither, second-order sufficiency conditions are needed. These are discussed later
in this section.

Sensitivity interpretation of Lagrange multipliers

Sensitivity analysis in NLP indicates how an optimal solution changes as the
problem data change. These data include any parameters that appear in the objec-
tive or constraint functions, or on the right-hand sides of constraints. The Lagrange
multipliers A* provide useful information on right-hand side changes, just as they
do for linear programs (which are a special class of NLPs). To illustrate their appli-
cation in NLP, consider again Example 8.1, with the constraint right-hand side (the
square of the radius of the circle) treated as a parameter b;

Minimize: x; + x,
Subjectto: x? 4+ x3 =b

The optimal solution of this problem is a function of b, denoted by (x,(), x,(b)), as
is the optimal multiplier value, A(d). Using the first-order necessary conditions
(8.9)—(8.11), rewritten here as

1+2)\x1=0
1+2Ax,=0
x2+x3 =0b

The solution of these equations is (check it!);

A¥(b) = (20)7V*
These formulas agree with the previous results for » = 1. The minimal objective
value, sometimes called the optimal value function, is

V(b) = x1(b) + x,(b) = ~(20)!"

The derivative of the optimal value function is

av _

db
so the negative of the optimal Lagrange multiplier value is dV/db. Hence, if we

solve this problem for a specific b (for example b = 1) then the optimal objective
value for b close to 1 has the first-order Taylor series approximation

V(b) = V(1) — M1)(b — 1)
- V2i-—Yp-1

V2

—(20)7"* = -1 (p)
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To see how useful these Lagrange multipliers are, consider the general problem
(8.15), with right-hand sides b;;

Minimize: f(x)
Subjectto: h;(x) =b;, i=1,...,m (8.19)

Letb = (by, ..., b,)be the right-hand side (rhs) vector, anci V(b) the optimal objec-
tive value. If b is a specific right-hand side vector, and (x(b),A(b)) is a local opti-
mum for b = b, then

— 1%
A;(b) o, |5 (8.20)
The constraints with the largest absolute A, values are the ones whose right-
hand sides affect the optimal value function V the most, at least for b close to b. How-
ever, one must account for the units for each b, in interpreting these values. For exam-
ple, if some b; is measured in kilograms and both sides of the constraint z,(x) = b; are
multiplied by 2.2, then the new constraint has units of pounds, and its new

Lagrange multiplier is 1/2.2 times the old one.

8.2.2 Problems Containing Only Inequality Constraints

The first-order necessary conditions for problems with inequality constraints are
called the Kuhn—Tucker conditions (also called Karush—-Kuhn-Tucker conditions).
The idea of a cone aids the understanding of the Kuhn—Tucker conditions (KTC).
A cone is a set of points R such that, if x is in R, ATx is also in R for A = 0. A con-
vex cone is a cone that is a convex set. An example of a convex cone in two dimen-
sions is shown in Figure 8.2. In two and three dimensions, the definition of a con-
vex cone coincides with the usual meaning of the word.

It can be shown from the preceding definitions that the set of all nonnegative
linear combinations of a finite set of vectors is a convex cone, that is, that the set

R:{X|X=)\.1X1+A2X2+ +Amxm,)li20, i=1,...,m}‘

is a convex cone. The vectors X, X,, . . . , X, are called the generators of the cone.
For example, the cone of Figure 8.2 is generated by the vectors [2, 1] and [2, 4].
Thus any vector that can be expressed as a nonnegative linear combination of these
vectors lies in the cone. In Figure 8.2 the vector [4, 5] in the cone is given by
[4,51=1X[2,1]+1X[2,4]

Kuhn-Tucker conditions: Geometrical interpretation

The Kuhn-Tucker conditions are predicated on this fact: At any local con-
strained optimum, no (small) allowable change in the problem variables can
improve the value of the objective function. To illustrate this statement, consider the
nonlinear programming problem:



274 PART II: Optimization Theory and Methods

X2

*1

FIGURE 8.2
The shaded region forms a convex cone.

Minimize: f(xy) = (x —2)*+ (y — 1)?
gi(x
&
&xy) =y =0

The problem is shown geometrically in Figure 8.3. It is evident that the optimum is
at the intersection of the first two constraints at (1, 1). Because these inequality con-
straints hold as equalities at (1, 1), they are called binding, or active, constraints at
this point. The third constraint holds as a strict inequality at (1, 1), and it is an inac-
tive, or nonbinding, constraint at this point. Define a feasible direction of search as
a vector such that a differential move along that vector violates no constraints. At (1,
1), the set of all feasible directions lies between the line x + y — 2 = 0 and the tan-
gent line to y = x? at (1, 1), that is, the line y = 2x — 1. In other words, the set of
feasible directions is the cone generated by these lines that are shaded in the figure.
The vector —Vf points in the direction of the maximum rate of decrease of f; and a
small move along any direction making an angle (defined as positive) of less than
90° with —Vf will decrease f. Thus, at the optimum, no feasible direction can have
an angle of less than 90° between it and —Vf.

Now consider Figure 8.4, in which the gradient vectors Vg, and Vg, are drawn.
Note that —Vfis contained in the cone generated by Vg, and Vg,. What if this were
not so? If —Vf were slightly above Vg,, it would make an angle of less than 90°

with a feasible direction just below the line x + y — 2 = 0. If —Vf were slightly
below Vg, it would make an angle of less than 90° with a feasible direction just

Subject to: y) =—y+x>=0
y) =x+y =2
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FIGURE 8.3

Geometry of a constrained optimization problem. The feasible region lies
within the binding constraints plus the boundaries themselves.

above the line y = 2x — 1. Neither case can occur at an optimal point, and both
cases are excluded if and only if —Vf lies within the cone generated by Vg, and
Vg,. Of course, this is the same as requiring that Vf lie within the cone generated
by —Vg, and —Vg,. This leads to the usual statement of the KTC; that is, if f and
all g; are differentiable, a necessary condition for a point x* to be a constrained min-
imum of the problem

Minimize: f(x)
Subjectto: gi(x) = ¢, j=1,...,r
is that, at x*, Vflies within the cone generated by the negative gradients of the bind-

ing constraints.

Algebraic statement of the Kuhn-Tucker conditions

The preceding results may be stated in algebraic terms. For Vfto lie within the
cone described earlier, it must be a nonnegative linear combination of the negative
gradients of the binding constraints; that is, there must exist Lagrange multipliers
u}such that
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Gradient of objective contained in convex cone.

= > uf[—Vg(x*)] (8.21)
jel
where
wi=0, jel (8.22)

and [ is the set of indices of the binding inequality constraints. The multipliers uf
are analogous to A; defined for equality constraints.

These results may be restated to include all constraints by defining the multi-
plier u} to be zero if gj(x*) < ¢;. In the previous example u§, the multiplier of the
1nact1ve constraint gs, is zero. Then we can say that u} = 0 if g(x*) = ¢;, and u
= Qif g](x ¥) < c;, thus the product u¥[g;(x) — ¢, is zero for all J- This property,
that inactive 1nequa11ty constraints have zero multlphers is called complementary
slackness. Conditions (8.21) and (8.22) then become

V) + 3w Vg (%) = 0 (823
j=1
U

=0, uwig(x*)—¢]=0 (8.24a)
gx*) =¢, j=1,..,r (8.24b)
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Relations (8.23) and (8.24) are the form in which the Kuhn—Tucker conditions are
usually stated.

Lagrange multipliers

The KTC are closely related to the classical Lagrange multiplier results for
equality constrained problems. Form the Lagrangian

Lixu) = f(x) + _2 Tg(x) — ¢

where the u; are viewed as Lagrange multipliers for the inequality constraints g; (X)
= ¢;. Then Equations (8.23) and (8.24) state that L(x, u) must be stationary in x at
(x*, u*) with the multipliers u* satisfying Equation (8.24). The stationarity of L is
the same condition as in the equality-constrained case. The additional conditions in
Equation (8.24) arise because the constraints here are inequalities.

8.2.3 Problems Containing both Equality and Inequality Constraints

When both equality and inequality constraints are present, the KTC are stated as
follows: Let the problem be

Minimize: f(x) (8.25)
Subjectto: hi(x) =b;, i=1,...,m (8.26a)

and
g(X) =c¢, j=1,...,7 (8.26b)

Define Lagrange multipliers A; associated with the equalities and u; for the inequal-
ities, and form the Lagrangian function

r

L(x,A\u) = f(x) + EA - b+ Dulgx) — ¢l (82D

j=1

Then, if x* is a local minimum of the problems (8.25)—(8.26), there exist vectors of
Lagrange multipliers A* and u*, such that x* is a stationary point of the function
L(x, \*, u*), that is,

V L(x* N, u*) = VAx*) + > A¥Vh(x*) + D utVg(x*) = 0(8.28)
i=1 j=1

and complementary slackness hold for the inequalities:

utf= 0 wfg,(x*) — ¢l =0, j=1,..,r (8.29)
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EXAMPLE 8.3 APPLICATION OF THE LAGRANGE

MULTIPLIER METHOD WITH NONLINEAR INEQUALITY

CONSTRAINTS
Solve the problem

Minimize: f(x) = x;x,

Subjectto: g(x) = x7 + x3 = 25

by the Lagrange multiplier method.

Solution. The Lagrange function is

L(x,u) = x;x, + u(x? + x3 — 25)

The necessary conditions for a stationary point are

oL

— =X+ 2ux; =0
(‘)xl

oL

=X -+ 2ux2=0
GX2

oL
—=x2+x2=25
ou

u(25 —x3-x3)=0

(@

®

(c)

The five simultaneous solutions of Equations (c) are listed in Table E8.3. How would
you calculate these values?

Columns two and three of Table E8.3 list the components of x* that are the sta-
tionary solutions of the problem. Note that the solutions with # > 0 are minima, those
for u < 0 are maxima, and # = 0 is a saddle point. This is because maximizing f is
equivalent to minimizing —f, and the KTC for the problem in Equation (a) with f
replaced by —f are the equations shown in (c) with  allowed to be negative. In Fig-

TABLE ES8.3
Solutions of Example 8.3 by the Lagrange multiplier method

U X X, Point (o fx) Remarks

0 0 0 A 25 0 saddle
0.5 +3.54 —3.54 B 0 -12.5 minimum
—3.54 +3.54 C 0 —-12.5 minimum
~0.5 {+3.54 {+3.54 D 0  +125  maximum
—-3.54 —3.54 E 0 +12.5 maximum
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FIGURE E8.3

ure E8.3 the contours of the objective function (hyperbolas) are represented by bro-
ken lines, and the feasible region is bounded by the shaded area enclosed by the cir-
cle g(x) = 25. Points B and C correspond to the two minima, D and E to the two max-
ima, and A to the saddle point of f{x).

Lagrange multipliers and sensitivity analysis

At each iteration, NLP algorithms form new estimates not only of the decision
variables x but also of the Lagrange multipliers N and u. If, at these estimates, all
constraints are satisfied and the KTC are satisfied to within specified tolerances, the
algorithm stops. At a local optimum, the optimal multiplier values provide useful
sensitivity information. In the NLP (8.25)—(8.26), let V¥(b, ¢) be the optimal value
of the objective f at a local minimum, viewed as a function of the right-hand sides
of the constraints b and ¢. Then, under additional conditions (see Luenberger, 1984,
Chapter 10)

— 3V

o, i=1,..,m (8.302)

s =
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—gy*

ac;

® =
uj

, J=1 (8.30b)

That is, the Lagrange multipliers provide the rate of change of the optimal objec-
tive value with respect to changes in the constraint right-hand sides. This informa-
tion is often of significant value. For example, if the right-hand side of an inequal-
ity constraint c; represents the capacity of a process and this capacity constraint is
active at the optimum, then the optimal multiplier value u* equals the rate of
decrease of the minimal cost if the capacity is increased. This change is the mar-
ginal value of the capacity. In a situation with several active capacity limits, the
ones with the largest absolute multipliers should be considered first for possible
increases. Examples of the use of Lagrange multipliers for sensitivity analysis in
linear programming are given in Chapter 7.

Lagrange multipliers are quite helpful in analyzing parameter sensitivities in
problems with multiple constraints. In a typical refinery, a number of different
products are manufactured which must usually meet (or exceed) certain specifica-
tions in terms of purity as required by the customers. Suppose we carry out a con-
strained optimization for an objective function that includes several variables that
occur in the refinery model, that is, those in the fluid catalytic cracker, in the dis-
tillation column, and so on, and arrive at some economic optimum subject to the
constraints on product purity. Given the optimum values of the variables plus the
Lagrange multipliers corresponding to the product purity, we can then pose the
question: How will the profits change if the product specification is either relaxed
or made more stringent? To answer this question simply requires examining the
Lagrange multiplier for each constraint. As an example, consider the case in which
there are three major products (4, B, and C) and the Lagrange multipliers corre-
sponding to each of the three demand inequality constraints are calculated to be:

Uy = —0.001
Up = —1.0
Ue = —0.007

The values for u; show (ignoring scaling) that satisfying an additional unit of
demand of product B is much more costly than for the other two products.

Convex programming problems

The KTC comprise both the necessary and sufficient conditions for optimality
for smooth convex problems. In the problem (8.25)—(8.26), if the objective f(x) and
inequality constraint functions g; are convex, and the equality constraint functions
h; are linear, then the feasible region of the problem is convex, and any local mini-
mum is a global minimum. Further, if x* is a feasible solution, if all the problem
functions have continuous first derivatives at x*, and if the gradients of the active
constraints at x* are independent, then x* is optimal if and only if the KTC are sat-
isfied at x*.
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Practical considerations

Many real problems do not satisfy these convexity assumptions. In chemical
engineering applications, equality constraints often consist of input—output rela-
tions of process units that are often nonlinear. Convexity of the feasible region can
only be guaranteed if these constraints are all linear. Also, it is often difficult to tell
if an inequality constraint or objective function is convex or not. Hence it is often
uncertain if a point satisfying the KTC is a local or global optimum, or even a sad-
dle point. For problems with a few variables we can sometimes find all KTC solu-
tions analytically and pick the one with the best objective function value. Other-
wise, most numerical algorithms terminate when the KTC are satisfied to within
some tolerance. The user usually specifies two separate tolerances: a feasibility tol-
erance & and an optimality tolerance &,. A point X is feasible to within &;if

|hl(§) - btl = Sf, fOI‘ l = 1, e, m
and
g(X) — =g, for j=1,....r1 (8.31a)

Furthermore, x is optimal to within (e,,&;) if it is feasible to within &; and the
KTC are satisfied to within &, . This means that, in Equations (8.23)—(8.24)

and
u,=—¢g, j=1,...,r (8.31b)

Equation (8.31b) corresponds to relaxing the constraint.

Second-order necessary and sufficiency conditions for optimality

The Kuhn-Tucker necessary conditions are satisfied at any local minimum or
maximum and at saddle points. If (x*, A*, u*) is a Kuhn-Tucker point for the prob-
lem (8.25)—(8.26), and the second-order sufficiency conditions are satisfied at that
point, optimality is guaranteed. The second order optimality conditions involve the
matrix of second partial derivatives with respect to x (the Hessian matrix of the
Lagrangian function), and may be written as follows:

Y V2L(x* A*,u*)y > 0 (8.32a)
for all nonzero vectors y such that
Jx*)y =10 (8.32b)

where J(x*) is the matrix whose rows are the gradients of the constraints that are
active at x*. Equation (8.32b) defines a set of vectors y that are orthogonal to the
gradients of the active constraints. These vectors constitute the tangent plane to the
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active constraints, which was illustrated in Example 8.1. Hence (8.32a) requires
that the Lagrangian Hessian matrix be positive-definite for all vectors y on this tan-
gent plane. If the “>" sign in (8.32a) is replaced by “=", then (8.32a)—(8.32b) plus
the KTC are the second-order necessary conditions for a local minimum. See Luen-
berger (1984) or Nash and Sofer (1996) for a more thorough discussion of these
second-order conditions.

If no active constraints occur (so x* is an unconstrained stationary point), then
(8.322) must hold for all vectors y, and the multipliers A* and u* are zero, so V2L
= V2f. Hence (8.32a) and (8.32b) reduce to the condition discussed in Section 4.5
that if the Hessian matrix of the objective function, evaluated at x*, is positive-
definite and x* is a stationary point, then x* is a local unconstrained minimum of f,

EXAMPLE 84 USING THE SECOND-ORDER CONDITIONS
As an example, consider the problem:
Minimize: f(x) = (x; — 1)? + x3
Subjectto: x; —x3=0
Solution. Although the objective function of this problem is convex, the inequality
constraint does not define a convex feasible region; as shown in Figure E8.4. The geo-

metric interpretation is to find the points in the feasible region closest to (1, 0). The
Lagrangian function for this problem is

L(x,u) = (x; — 1)> + x3 + u(x; — x3)
and the KTC for a local minimum are
oL/ox; = 2(x; — 1) +u=0
oL/dxy = 2x, — 2uxy; = 0
X —x3<0, u=0
1

There are three solutions to these conditions: two global minima, at x% =3,

x5 = +V3,u* = 1 with an objective value of 0.75, and a local maximum at x? = 0,
x§ =0, u® = 2 with an objective value of 1.0. These solutions are evident by exam-
ining Figure E8.4.

The second order sufficiency conditions show that the first two of these three
Kuhn-Tucker points are local minima, and the third is not. The Hessian matrix of the

Lagrangian function is

ViL(x,u) = [3 2(10— u)]

The Hessian evaluated at (x} = 0,x3 = 0,u® = 2) is

2 0
2 =
V:L(0,0,2) [O _2]
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FIGURE E8.4

The second-order necessary conditions require this matrix to be positive-semidefinite
on the tangent plane to the active constraints at (0, 0), as defined in expression (8.32b).
Here, this tangent plane is the set

T = {y|Vvg(0,0)"y = 0}
The gradient of the constraint function is
V(1. x3) = [1 —2x,] $0 Vg(0,0) = [1 0]
Thus the tangent plane at (0, 0) is
T={yly =0} ={yly = O.»)}

and the quadratic form in (8.32a), evaluated on the tangent plane, is

2 0]|0
yTsz(X*’ u*)y = [0 }’2] {0 _z:l |:y2:| = _2}’%

Because —2y% is negative for all nonzero vectors in the set T, the second-order nec-
essary condition is not satisfied, so (0, 0) is not a local minimum.
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If we check the minimum at xf = §,x¥ = \/%, u* = 1, the Lagrangian Hessian
evaluated at this point is

20
ViLG.VE1) = [0 0}

The constraint gradient at this point is [1 - \/E], so the tangent plane is
T={yln ~ V2y, = 0} = {yly = (- V2,1)}
On this tangent plane, the quadratic form is

YIVAL(x*, ut)y = y3[—V2 1]lo 0} {ﬁ\/i] = 4y}

1

This is positive for all nonzero vectors in the set 7, so the second-order sufficiency
conditions are satisfied, and the point is a local minimum.

8.3 QUADRATIC PROGRAMMING

A quadratic programming (QP) problem is an optimization problem in which a
quadratic objective function of # variables is minimized subject to 7 linear inequal-
ity or equality constraints. A convex QP is the simplest form of a nonlinear pro-
gramming problem with inequality constraints. A number of practical optimization
problems, such as constrained least squares and optimal control of linear systems
with quadratic cost functions and linear constraints, are naturally posed as QP prob-
lems. In this text we discuss QP as a subproblem to solve general nonlinear pro-
gramming problems. The algorithms used to solve QPs bear many similarities to
algorithms used in solving the linear programming problems discussed in Chapter 7.
In matrix notation, the quadratic programming problem is

Minimize: f(x) = e¢’x + 3 x’Qx
Subjectto: Ax =b (8.33)

x=0

where ¢ is a vector of constant coefficients, A is an (m X n) matrix, and Q is a sym-
metric matrix.

The vector x can contain slack variables, so the equality constraints (8.33) may
contain some constraints that were originally inequalities but have been converted
to equalities by inserting slacks. Codes for quadratic programming allow arbitrary
upper and lower bounds on x; we assume x = 0 only for simplicity.

If the equality constraints in (8.33) are independent then, as discussed in Sec-
tion 8.2, the KTC are the necessary conditions for an optimal solution of the QP. In
addition, if Q is positive-semidefinite in (8.33), the QP objective function is con-
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vex. Because the feasible region of a QP is defined by linear constraints, it is always
convex, so the QP is then a convex programming problem, and any local solution
is a global solution. Also, the KTC are the sufficient conditions for a minimum, and
a solution meeting these conditions yields the global optimum. If Q is not positive-
semidefinite, the problem may have an unbounded solution or local minima.

To write the KTC, start with the Lagrangian function

L = x"¢c +3ix"Qx + A(Ax —b) —u'x

and equate the gradient of L (with respect to x7) to zero (note that A7(Ax — b) =
(Ax — b)"A = (x’A7 — b") A and u’x = x7u)

VL =¢c+Qx+ATA—u=0

Then the KTC reduce to the following set of equations:

ct+tQx+AN—u=0 (8.34)
Ax—b=0 (8.35)
x=0 u=0 (8.36)
w’x=0 (8.37)

where the u; and A, are the Lagrange multipliers. If Q is positive semidefinite, any set
of variables (x*, u*, A*) that satisfies (8.34) to (8.37) is an optimal solution to (8.33).
Some QP solvers use these KTC directly by finding a solution satisfying the
equations. They are linear except for (8.37), which is called a complementary slack-
ness condition. These conditions were discussed for general inequality constraints in
Section 8.2. Applied to the nonnegativity conditions in (8.33), complementary slack-
ness implies that at least one of each pair of variables (u;, x;) must be zero. Hence a
feasible solution to the KTC can be found by starting with an infeasible comple-
mentary solution to the linear constraints (8.34)—(8.36) and using LP pivot operations
to minimize the sum of infeasibilities while maintaining complementarity. Because
(8.34) and (8.35) have n and m constraints, respectively, the effect is roughly equiv-
alent to solving an LP with (n + m) rows. Because LP “machinery” is used, most
commercial LP systems, including those discussed in Chapter 7, contain QP solvers.
In addition, a QP can also be solved by any efficient general purpose NLP solver.

8.4 PENALTY, BARRIER, AND AUGMENTED LAGRANGIAN
METHODS

The essential idea of a penalty method of nonlinear programming is to transform a
constrained problem into a sequence of unconstrained problems.

Minimize: f(x)
g(x) = 0 = Minimize: P(f, g, h,7) (8.38)

Subject to:
wbIe h(x) = 0
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where P(f, g, h, r) is a penalty function, and r is a positive penalty parameter. After
the penalty function is formulated, it is minimized for a series of values of increas-
ing r-values, which force the sequence of minima to approach the optimum of the
constrained problem.

As an example, consider the problem

Minimize: f(x) = (x; — 1)* + (x, — 2)?
Subjectto: A(x) =x, +x, —4 =0
We formulate a new unconstrained objective function
P(x,r) = (x, — 1)* + (%, — 2)% + r(x; + x, — 4)?

where r is a positive scalar called the penalty parameter, and r(x; + x, — 4)? is
called the penalty term. Consider a series of minimization problems where we min-
imize P(x,r) for an increasing sequence of r values tending to infinity. As r
increases, the penalty term becomes large for any values of x that violate the equal-
ity constraints in (8.38). As the penalty term grows, the values of x; change to those
that cause the equality constraint to be satisfied. In the limit the product of r and h?
approaches zero so that the value of f approaches the value of P. This is shown in
Figure 8.5. The constrained optimum is x* = (1.5, 2.5) and the unconstrained min-
imum of the objective is at (1, 2). The point (1, 2) is also the minimum of P(x, 0).
The minimizing points for » = 1, 10, 100, 1000 are at the center of the elliptical
contours in the figure. Table 8.1 shows 7, x,(7), and x(r). It is clear that x(r) — x*
as r —> %, which can be shown to be true in general (see Luenberger, 1984).

Note how the contours of P(x, r) bunch up around the constraint line x; -+
x, = 4 as r becomes large. This happens because, for large r, P(x, r) increases rap-
idly as violations of x; + x, = 4 increase, that is, as you move away from this line.
This bunching and elongation of the contours of P(x, r) shows itself in the condi-
tion number of V2P(x, r), the Hessian matrix of P. As shown in Appendix A, the
condition number of a positive-definite matrix is the ratio of the largest to smallest
eigenvalue. Because for large values of r, the eigenvalue ratio is large, V2P is said
to be ill-conditioned. In fact, the condition number of V2P approaches o as r — o
(see Luenberger, 1984), so P becomes harder and harder to minimize accurately.

TABLE 8.1
Effect of penalty weighting
coefficient » on minimum of f

r X X f
0 1.0000 2.0000 0.0000
0.1 1.0833 2.0833 0.0833
1 1.3333 2.3333 0.3333
10 1.4762 24762 0.4762
100 1.4975 2.4975 0.4975

1000 1.4998 2.4998 0.4998
x* 1.5000 2.5000 0.5000
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FIGURE 8.5

Transformation of a constrained problem to an unconstrained equivalent problem. The
contours of the unconstrained penalty function are shown for different values of r.

The condition number of the Hessian matrix of the objective function is an impor-
tant measure of difficulty in unconstrained optimization. By definition, the small-
est a condition number can be is 1.0. A condition number of 10° is moderately large,
10° is large, and 10 is extremely large. Recall that, if Newton’s method is used to
minimize a function f, the Newton search direction s is found by solving the linear
equations

(Vif)s = =Vf
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These equations become harder and harder to solve numerically as V?f becomes
more ill-conditioned. When its condition number exceeds 10'4, there will be few if
any correct digits in the computed solution using double precision arithmetic (see
Luenberger, 1984).

Because of the occurrence of ill-conditioning, “pure” penalty methods have
been replaced by more efficient algorithms. In SLP and SQP, a “merit function” is
used within the line search phase of these algorithms.

The general form of the quadratic penalty function for a problem of the form
(8.25)-(8.26) with both equality and inequality constraints is

Py(x,7) = f(x) + r( > B (x) + ) [max {O,gj(x)}]2> (8.39)
i=1 i=1
The maximum-squared term ensures that a positive penalty is incurred only when
the g; = 0 constraint is violated.

An exact penalty function

Consider the exact L; penalty function; The term “L,” means that the L,
(absolute value) norm is used to measure infeasibilities.

mn r

Pi(x,wl,w2) = f(x) + [Zwlj|hj(x)| + ZWijax {O,gj(x)}:l (8.40)

where the wl; and w2, are positive weights. The second term in #; produces the
same effect as the squared terms in Equation (8.39). When a constraint is violated,
there is a positive contribution to the penalty term equal to the amount of the vio-
lation rather than the squared amount. In fact, this “sum of violations™ or sum of
infeasibilities is the objective used in phase one of the simplex method to find a fea-
sible solution to a linear program (see Chapter 7).

Let x* be a local minimum of the problem (8.25)—(8.26), and let (A*, u*) be a
vector of optimal multipliers corresponding to x*, that is, (x*, N*, u*) satisfy the
KTC (8.27)-(8.29). If

whi= N, j=1,..,m (8.41)
w2 = lul], j=1,..,r (8.42)

then x* is a local minimum of P,(x, w1, w2). For a proof, see Luenberger (1984).
If each penalty weight is larger than the absolute value of the corresponding opti-
mal multiplier, the constrained problem can be solved by a single unconstrained
minimization of P;. The penalty weights do not have to approach +e, and no infi-
nite ill-conditioning occurs. This is why P, is called “exact.” There are other exact
penalty functions; for example, the “augmented Lagrangian” will be discussed sub-
sequently.

Intuitively, P, is exact and the squared penalty function P, is not because squar-
ing a small infeasibility makes it much smaller, that is, (10~4)? = 1078, Hence the
penalty parameter r in P, must increase faster as the infeasibilities get small, and it
can never be large enough to make all infeasibilities vanish.
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FIGURE 8.6
Discontinuous derivatives in the P, penalty

function.

Despite the “exactness” feature of P;, no general-purpose, widely available
NLP solver is based solely on the L; exact penalty function P,. This is because P,
also has a negative characteristic; it is nonsmooth. The term |/;(x)| has a discon-
tinuous derivative at any point x where &, (x) = 0, that is, at any point satisfying the
Jjth equality constraint; in addition, max {0, g; (x)} has a discontinuous derivative at
any x where g; (x) = O, that is, whenever the jth inequality constraint is active, as
illustrated in Figure 8.6. These discontinuities occur at any feasible or partially fea-
sible point, so none of the efficient unconstrained minimizers for smooth problems
considered in Chapter 6 can be applied, because they eventually encounter points
where P, is nonsmooth.

An equivalent smooth constrained problem

The problem of minimizing P, subject to no constraints is equivalent to the fol-
lowing smooth constrained problem.

Minimize: f(x) + >, wl(pl; + nl;) + > w2;(p2)) (8.43)
j=1 j=1

Subjectto: h;i(x) =pl;—nl;, j=1,....m (8.44)

gJ(X) = p21 - I’l2]’ J = 1, vy I (8.45)

allpl;, p2;,nl;, n2; = 0 (8.46)

The p’s are “positive deviation” variables and the n’s “negative deviation” vari-
ables. p1; and p2; equal A, and g;, respectively, when &; and g; are positive, and nl;
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and n2; equal k; and g;, respectively, when &; and g; are negative, providing that at
most one variable in each pair (pl » n1)) and (p2;, u2)) is positive, that is,

plinl; =0, p2;n2; =0 (8.47)

But Equation (8.47) must hold at any optimal solution of (8.43)—(8.46), as long as
all weights wl; and w2; are positive. To see why, consider the example 2, = —3,
pl; = 2,nl; = 5. The objective (8.43) contains a term wl, (pl, + nl,) = Twl,.
The new solution p1, = 0, n1, = 3 has an objective contribution of 5w1,, so the old
solution cannot be optimal.

When (8.44)—(8.47) hold,
pl; + nl; = |y(x)]
and
p2; = max (0, g;(x))

so the objective (8.43) equals the L; exact penalty function (8.40).

The problem (8.43)-(8.46) is called an “elastic” formulation of the original
“inelastic” problem (8.11), because the deviation variables allow the constraints to
“stretch” (i.e., be violated) at costs per unit of violation wl ; and w2,. This idea of
allowing constraints to be violated, but at a price, is an important modeling concept
that is widely used. Constraints expressing physical laws or “hard” limits cannot be
treated this way—this is equivalent to using infinite weights. However many other
constraints are really “soft,” for example some customer demands and capacity lim-
its. For further discussions of elastic programming, see Brown (1997). Curve-fitting
problems using absolute value (L,) or minimax (L,,) norms can also be formulated
as smooth constrained problems using deviation variables, as can problems involv-
ing multiple objectives, using “goal programming” (Rustem, 1998).

Augmented Lagrangians

The “augmented Lagrangian” is a smooth exact penalty function. For simplicity,
we describe it for problems having only equality constraints, but it is easily extended
to problems that include inequalities. The augmented Lagrangian function is

AL(x,A, 1) = f(x) + i)\jhj(x) +r Em:hjz(x) (8.48)
j=1 j=1

where r is a positive penalty parameter, and the A; are Lagrange multipliers. AL is
simply the Lagrangian L plus a squared penalty term. Let x* be a local minimum
of the equality constrained problem

Minimize: f(x)

Subjectto: h;(x) =0, j=1,...,m
and let (x*, N*) satisfy the KTC for this problem. The gradient of AL is

VAL ) = VAx) + S, V() + 20 Sk (x) Viy(x)  (849)
=1 =1

J
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Since x* is feasible, 4; (x*) = 0, so if A is set to A* in the augmented Lagrangian,

VLAL(X* N r) = VxS + 3 AR Vh(x) = 0 (8.50)

j=1

Hence x* is a stationary point of AL (x, A*, r) for any r. Not all stationary points
are minima, but if V2 AL (x*, N*, r) is positive-definite, then x* satisfies the second-
order sufficiency conditions, and so it is a local minimum. Luenberger (1984)
shows that this is true if 7 is large enough, that is, there is a threshold » > 0 such
that, if r > 7, then V2 AL(x*, N*, r) is positive-definite. Hence for r > 7,
AL(x,\*,r) is an exact penalty function.

Again, there is a “catch.” In general, » and N* are unknown. Algorithms have
been developed that perform a sequence of minimizations of AL, generating suc-
cessively better estimates of A* and increasing r if necessary [see Luenberger
(1984)]. However, NLP solvers based on these algorithms have now been replaced
with better ones based on the SLP, SQP, or GRG algorithms described in this chap-
ter. The function AL does, however, serve as a line search objective in some SQP
implementations; see Nocedal and Wright (1999).

Barrier methods

Like penalty methods, barrier methods convert a constrained optimization
problem into a series of unconstrained ones. The optimal solutions to these uncon-
strained subproblems are in the interior of the feasible region, and they converge to
the constrained solution as a positive barrier parameter approaches zero. This
approach contrasts with the behavior of penalty methods, whose unconstrained
subproblem solutions converge from outside the feasible region.

To illustrate, consider the example used at the start of Section 8.4 to illustrate
penalty methods, but with the equality constraint changed to an inequality:

Minimize: f(x) = (x; — 1)* + (x, — 2)?
Subjectto: g(x) =x; +x, —4 =0

The equality constrained problem was graphed in Figure 8.5. The feasible region is
now the set of points on and above the line x; + x, — 4 = 0, and the constrained
solution is still at the point (1.5, 2.5) where f = 0.5.

The logarithmic barrier function for this problem is

B(x,r) = f(x) — rin(g(x))
= (x, — 1)* + (x, — 2)* — rln(x; + x, — 4)

where r is a positive scalar called the barrier parameter. This function is defined
only in the interior of the feasible region, where g(X) is positive. Consider mini-
mizing B starting from an interior point. As x approaches the constraint boundary,
g(x) approaches zero, and the barrier term —rln(g(x)) approaches infinity, so it cre-
ates an infinitely high barrier along this boundary. The penalty forces B to have an
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TABLE 8.2
Convergence of barrier function B(x,7)
Barrier Value of the

parameter, r x(r) x5(7) Objective constraint Barrier term B (x,r)
10 2.851 3.851 6.851 2.702 9.938 —3.088

5 2.396 3.396 3.896 1.791 2915 0.981

1 1.809 2.809 1.309 0.618 -0.481 1.790

0.1 1.546 2.546 0.596 0.092 -0.239 0.835

0.01 1.505 2.505 0.510 0.010 —0.046 0.556

X 1.500 2.500 0.500 0.000 0.000 0.500

unconstrained minimum in the interior of the feasible region, and its location
depends on the barrier parameter 7. If x(r) is an unconstrained interior minimum of
B(x,), then as r approaches zero, the barrier term has a decreasing weight, so x(r)
can approach the boundary of the feasible region if the constrained solution is on
the boundary. As r approaches zero, X(¥) approaches an optimal solution of the orig-
inal problem, as shown in Nash and Sofer (1996) and Nocedal and Wright (1999).

To illustrate this behavior, Table 8.2 shows the optimal unconstrained solutions
and their associated objective, constraint, and barrier function values for the pre-
ceding problem, for a sequence of decreasing r values.

For larger r values, x(#) is forced further from the constraint boundary. In con-
trast, as r approaches zero, x,(r) and x,(r) converge to their optimal values of 1.5
and 2.5, respectively, and the constraint value approaches zero. The term —In(g(x))
approaches infinity, but the weighted barrier term —rln (g(x)) approaches zero, and
the value of B approaches the optimal objective value.

For a general problem with only inequality constraints:

Minimize: f(x)
Subjectto: g(x) =0, i=1,...,m

the logarithmic barrier function formulation is

Minimize: B(x,r) = f(x) — r 2 In(g,(x))

As with penalty functions, the condition number of the Hessian matrix V2B(x(r), r)
approaches infinity as » approaches zero, so B is very difficult to minimize accu-
rately for small ». From a geometric viewpoint, this is because the barrier term
approaches infinity rapidly as you move toward the boundary of the feasible region,
so the contours of B “bunch up” near this boundary. Hence the barrier approach is
not widely used today as a direct method of solving nonlinear programs. When a
logarithmic barrier term is used to incorporate only the bounds on the variables,
however, this leads to a barrier or interior-point method. This approach is very suc-
cessful in solving large linear programs and is very promising for NLP problems as
well. See Nash and Sofer (1996) or Nocedal and Wright (1999) for further details.
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Barrier methods are not directly applicable to problems with equality con-
straints, but equality constraints can be incorporated using a penalty term and
inequalities can use a barrier term, leading to a “mixed” penalty—barrier method.

8.5 SUCCESSIVE LINEAR PROGRAMMING

Successive linear programming (SLP) methods solve a sequence of linear pro-
gramming approximations to a nonlinear programming problem. Recall that if g,(x)
is a nonlinear function and x° is the initial value for x, then the first two terms in
the Taylor series expansion of g,(x) around x° are

g(x) = g(x* + Ax)=g(x") + Vg,(x")"(Ax)

The error in this linear approximation approaches zero proportionally to (Ax)? as
Ax approaches zero. Given initial values for the variables, all nonlinear functions in
the problem are linearized and replaced by their linear Taylor series approximations
at this initial point. The variables in the resulting LP are the Ax,’s, representing
changes from the base values. In addition, upper and lower bounds (called step
bounds) are imposed on these change variables because the linear approximation is
reasonably accurate only in some neighborhood of the initial point.

The resulting LP is solved; if the new point is an improvement, it becomes the
current point and the process is repeated. If the new point does not represent an
improvement in the objective, we may be close enough to the optimum to stop or
the step bounds may need to be reduced. Successive points generated by this pro-
cedure need not be feasible even if the initial point is. The extent of infeasibility
generally is reduced as the iterations proceed, however.

We illustrate the basic concepts with a simple example. Consider the following
problem:

Maximize: 2x +y

Subject to:  x% + y* =< 25

1A
N

x2_y2

and

v

0
0

v

X
y
with an initial starting point of (x, y.) = (2, 2). Figure 8.7 shows the two nonlinear
constraints and one objective function contour with an objective value of 10.
Because the value of the objective function increases with increasing x and y, the
figure shows that the optimal solution is at the point where the two nonlinear
inequalities x? + y2 < 25 and x> — y? =< 7 are active, that is, at the solution of x> +
y? = 25 and x? — y2 = 7, which is x* = (4, 3).
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f=2x+y=10

LP optimum

Starting point

il \

FIGURE 8.7

SLP example with linear objective, nonlinear constraints. Line A is
the linearization of x? + y2 = 25 and line B is the linearization of
x2—-y2=7.

Next consider any optimization problem with n variables. Let X be any feasi-
ble point, and let n,, (X) be the number of active constraints at x. Recall that a
constraint is active at X if it holds as an equality constraint there-Hence allequal=
ity constraints are active at any feasible point, but an inequality constraint may be
active or inactive. Remember to include simple upper or lower bounds on the vari-
ables when counting active constraints. We define the number of degrees of free-
dom at X as

dOf(i) =n- nact(i)

Definition: A feasible point X is called a vertex if dof(X) =< 0, and the Jacobian
of the active constraints at X has rank »n where 7 is the number of variables. It is a
nondegenerate vertex if dof(X) = 0, and a degenerate vertex if dof(X) < 0, in
which case |dof(X)| is called the degree of degeneracy atX.

The requirement that there be at least n independent linearized constraints at X
is included to rule out situations where, for example, some of the active constraints
are just multiples of one another. In the example dof(x) = 0.

Returning to the example, the optimal point x* = (4, 3) is a nondegenerate ver-
tex because

n=2, X)) =2
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and
dof(X) =2-2=0

Clearly a vertex is a point where »n or more independent constraints intersect in 7-
dimensional space to produce a point. Recall the discussion of LPs in Chapter 7; if
an LP has an optimal solution, an optimal vertex (or extreme point) solution exists.
Of course, this rule is not true for nonlinear problems. Optimal solutions x* of
unconstrained NLPs have dof(X) = n, since n,(X) = 0 (i.e., there are no con-
straints). Hence dof(X) measures how tightly constrained the point X is, ranging
from no active constraints (dof(X) = n) to completely determined by active con-
straints (dof(X) = 0). Degenerate vertices have “extra” constraints passing
through them, that is, more than » pass through the same point. In the example, one
can pass any number of redundant lines or curves through (4, 3) in Figure 8.7 with-
out affecting the feasibility of the optimal point.

If dof(X) = n — n,(X) =d > 0, then there are more problem variables
than active constraints at X, so the (n — d) active constraints can be solved for n — d
dependent or basic variables, each of which depends on the remaining d independ-
ent or nonbasic variables. Generalized reduced gradient (GRG) algorithms use the
active constraints at a point to solve for an equal number of dependent or basic vari-
ables in terms of the remaining independent ones, as does the simplex method for
LPs.

Continuing with the example, we linearize each function about (x,, y,) = (2, 2)
and impose step bounds of 1 on both A x and A y, leading to the following LP:

Maximize: 2x, +y, + 2Ax + Ay =2Ax + Ay + 6

Subject to:  x2 + y2 + 2x,Ax + 2y, Ay = 4Ax + 4Ay + 8 = 25
x2 — y2 4+ 2x,Ax — 2y, Ay = 4Ax — 4Ay < 7
2+ Ax =0, 2+Ay=0
-1 =Ax=1, ~1=Ay=1

The first two bounds require that the new point (2 + Ax, 2 + Ay) satisfy the orig-
inal bounds. The second two bounds, called step bounds, are imposed to ensure that
the errors between the nonlinear problem functions and their linearizations are not
too large.

Rearranging terms in the linearized LP yields the following SLP subproblem:

Maximize: 2Ax + Ay
Subjectto: Ax + Ay = 4.25
Ax — Ay = 1.75

and

L
IA
>g
=
IA

L
A
>
<
A
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FIGURE 8.8

SLP example with linear objective, nonlinear constraints.

Figure 8.7 also shows these LP constraints. Its optimal solution is at (Ax, Ay) =
(1, 1), which gives (x,, y,) = (3, 3). This point is determined entirely by the step
bounds. This is an improved point, as can be seen by evaluating the original func-
tions, so we set x, = x, and repeat these steps to get the next LP.

Maximize: 2Ax + Ay
Subjectto: Ax + Ay =
Ax — Ay =

AN

and
-1=Ax=1
-1=Ay=1

The feasible region can be seen in Figure 8.8 and the optimal solution is at (Ax, Ay)
=(, %) or (x,, ¥,) = (4, 3.167). This point is at the intersection of the constraints
Ax + Ay = 1 and Ax = 1, so one step bound is still active at the LP optimum.
The SLP subproblem at (4, 3.167) is shown graphically in Figure 8.9. The LP
solution is now at the point (4, 3.005), which is very close to the optimal point x*.
This point (x,,) is determined by linearization of the two active constraints, as are
all further iterates. Now consider Newton’s method for equation-solving applied to
the two active constraints, x> + y* = 25 and x> — y? = 7. Newton’s method involves
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FIGURE 8.9

The optimal point after solving the third SLP
subproblem. A is the linearization of x> + y? = 25 and
B is the linearization of x? — y? = 7.

linearizing these two equations and solving for (Ax, Ay), exactly as SLP is now
doing. Hence, when SLP converges to a vertex optimum, it eventually becomes
Newton’s method applied to the active constraints. As discussed in Chapter 5, the
method has quadratic convergence, that is, the new error is bounded by a constant
times the previous error squared. This is the most rapid convergence we could hope
to obtain, so SLP is very efficient when the optimum is at a constraint vertex.

SLP convergence is much slower, however, when the point it is converging
toward is not a vertex. To illustrate, we replace the objective of the example with
x + 2y. This rotates the objective contour counterclockwise, so when it is shifted
upward, the optimum is at x* = (2.2, 4.4), where only one constraint, x* + y° <
25, is active. Because the number of degrees of freedom at x* is 2 — 1 = 1, this
point is not a vertex. Figure 8.10 shows the feasible region of the SLP subproblem
starting at (2, 5), using step bounds of 1.0 for both Ax and Ay.

The point (2, 5) is slightly infeasible, and the SLP subproblem is

Maximize: f= Ax + 2Ay
4Ax + 10Ay = —4
Subjectto: —1 = Ax =1
-1=Ay=1

We ignore the constraint x> — y? < 7 because its linearization is redundant in this
subproblem. The LP optimum is at Ax = 1, Ay = —0.8, so the new point is (3, 4.2),



298 PART II: Optimization Theory and Methods

(Ax=-1,4y=0)
fip=-1

\ Base point = (2, 5)
5 / Optimum = (2.2, 4.4)
New point = (3, 4.2)

(Ax=1,Ay=-0.8)
fp=-06

X2 +y2=25

FIGURE 8.10
SLP subproblem at (2, 5) for the revised example (f = x + 2y).

which is on the “other side” of the optimum. If we continue this process without
reducing the step bounds, the iterates will oscillate about the optimum and never
converge to it because the new point will always be at the intersection of the lin-
earized constraint and a step bound.

The penalty SLP algorithm (PSLP), described in Zhang et al. (1985) and dis-
cussed in the next section, contains logic for reducing the step bounds so that con-
vergence to the optimal solution is guaranteed. The sequence of points generated
by PSLP for this problem, starting at (2, 5), with initial step bounds of 0.9, is shown
in Table 8.3. The algorithm converges, but much more slowly than before. The rate
of convergence is linear, as occurs in the steepest descent method for unconstrained
optimization. The step bounds must be reduced to force convergence, as is shown
in the “max step bound” column. The significance of the “ratio” column is
explained in the next section.

8.5.1 Penalty Successive Linear Programming

The PSLP algorithm is a steepest descent procedure applied to the exact L, penalty
function (see Section 8.4). It uses a trust region strategy (see Section 6.3.2) to guar-
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TABLE 8.3
Convergence of PSLP on the modified Griffith—Stewart problem
Iteration Objective Sum of infeasibilities Ratio Max step bound
0 12.000 4,000 0.900
1 11.2900 0.538 0.870 0.900
2 11.2169 0.238 0.560 0.900
3 11.2247 0.251 —0.060 0.450
4 11.1950 0.065 0.720 0.450
5 11.1821 0.064 0.020 0.225
6 11.1810 0.015 0.760 0.450
7 11.1903 0.064 —3.080 0.225
8 11.1839 0.016 —0.010 0.113
9 11.1807 3.94E-03* 0.750 0.113
10 11.1812 3.97E-03 —0.010 0.056
11 11.1805 9.86E-04 0.750 0.056
12 11.1805 9.89E-03 0.000 0.028
13 11.1804 2.46E-04 0.750 0.028
14 11.1804 2.46E-04 0.000 0.014
15 11.1803 6.16E-05 0.750 0.014
16 11.1804 247E-04 —3.010 0.007
17 11.1804 6.17E-05 0.000 0.003
18 11.1803 0.000 0.750 0.003
OPT 11.1803 0.000

*E-03 represents 1073.

antee convergence. To explain PSLP, we begin with an NLP in the following gen-
eral form:
Minimize: f(x)

Subjectto: g(x) = b (8.51)

and
l=x=u (8.52)

Any inequalities have been converted to equalities using slack variables, which are
included in x. The exact L; penalty function for this problem is

P(x,w) = flx) + wé lg(x) — b (8.53)

If the penalty weight w is larger than the maximum of the absolute multiplier val-
ues for the problem, then minimizing P(x, w) subject to 1 = X =< u is equivalent to
minimizing f in the original problem. Often, such a threshold is known in advance,
say from the solution of a closely related problem. If w is too small, PSLP will usu-
ally converge to an infeasible local minimum of P, and w can then be increased.
Infeasibility in the original NLP is detected if several increases of w fail to yield a
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feasible point. In the following, we drop the dependence of P on w, calling it sim-
ply P(x).

Let x* be the value of x at the start of PSLP iteration k. A piecewise linear func-
tion that closely approximates P(x) for x near x* is

P1(Ax,x*) = f(x*) + Vf(x*)Ax + wi lgi(x*) + Vel(x*)Ax — b,| (8.54)
=

As Ax approaches 0, P1(Ax, x*) approaches P(x*), so P1 approximates P arbitrarily
well if Ax is small enough. We ensure that Ax is small enough by imposing the step
bounds

—s* = Ax = §* (8.55)

where s* is a vector of positive step bounds at iteration k, which are varied dynam-
ically during the execution of PSLP. We also want the new point x* + Ax to satisfy
the original bounds, so we impose the constraints

l=x*+Ax=<u (8.56)

The trust region problem is to choose Ax to minimize P1 in (8.54) subject to the
trust region bounds (8.55) and (8.56). As discussed in Section (8.4), this piecewise
linear problem can be transformed into an LP by introducing deviation variables p;
and n;. The absolute value terms become (p; + »;) and their arguments are set equal
to p; — n;. The equivalent LP is

Problem LP(x, s¥)

Minimize: f+ VfTAx +w >, (p; + n) (8.57)

Subjectto: g;+ VglAx —b;=p,—n, i=1,....,m (8.58)
—s=Ax=s I=x*+Ax=wu p=0, n=0, i=1..n

where all functions and gradients are evaluated at x¥,
Let Ax* solve LP (x*, s¥). The new point x* + Ax* is “better” than x* if

P(x* + Ax¥) < P(x%)
The actual reduction in P is
ared, = P(x*) — P(x* + AxF)

Of course, ared, can be negative because P need not be reduced if the step bounds
s* are too large. To decide whether s* should be increased, decreased, or left the
same, we compare ared, with the reduction predicted by the piecewise linear
“model” or approximation to P, P1. This predicted reduction is

pred,, = P1(0,x*) — P1(Ax%x*) (8.59)
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Remember that Ax* solves LP (x*, s¥), Ax = 0 is feasible in this LP, and P1 is its
objective. Because the minimal objective value is never larger than the value at any
feasible solution

pred, = 0 (8.60)

If pred, = 0, then no changes Ax within the rectangular trust region (8.58) can
reduce P1 below the value P1(0, x¥). Then x* is called a stationary point of the non-
smooth function P, that is, the condition pred, = 0O is analogous to the condition
Vf(x¥) = 0 for smooth functions. If pred, = 0, the PSLP algorithm stops. Other-
wise pred, > 0, so we can compute the ratio of actual to predicted reduction.

ared,

(8.61)

Fi atlok pre dk
Changes in the step bounds are based on ratio,. Its ideal value is 1.0 because then
the model function P1 agrees perfectly with the true function P. If the ratio is close
to 1.0, we increase the step bounds; if it is far from 1.0, we decrease them; and if it
is in between, no changes are made. To make this precise, we set two thresholds u
and /; a ratio above u (typical value is 0.75) is “close” to 1.0, and a ratio below [
(typical value is 0.25) is “far” from /. Then, the steps in PSLP iteration k are;

1. Solve the LP subproblem LP (x*, s¥), obtaining an optimal solution Ax¥, and
Lagrange multiplier estimates A*. These are the LP multipliers for the equalities
in (8.58).
2. Check the stopping criteria, including
a. pred, is nearly zero.
b. The KTC are nearly satisfied.
c. x* is nearly feasible and the fractional objective change is small enough.
. Compute ared,, pred,, and ratio,.
If ratio, < 0, s* < s%2, go to step 1 (reject the new point).
. xF « x* + Ax* (accept the new point).
f ratio, < 1, s* « s42.
If ratio, > u, s* < 2s.
7.Gotostep 1 withk <k + 1.

AN W

Step 4 rejects the new point and decreases the step bounds if ratio, < 0. This step
can only be repeated a finite number of times because, as the step bounds approach
zero, the ratio approaches 1.0. Step 6 decreases the size of the trust region if the
ratio is too small, and increases it if the ratio is close to 1.0. Zhang et al. (1986)
proved that a similar SLP algorithm converges to a stationary point of P from any
initial point.

Table 8.3 shows output generated by this PSLP algorithm when it is applied to
the test problem of Section 8.5 using the objective x + 2y. This version of the prob-
lem has a nonvertex optimum with one degree of freedom. We mentioned the slow
linear convergence of PSLP in this problem previously. Consider the “ratio” and
“max step bound” columns of Table 8.2. Note that very small positive or negative
ratios occur at every other iteration, with each such occurrence forcing a reduction
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of all step bounds (they are divided by 2.0). After each reduction (once two reduc-
tions are needed), a positive ratio occurs and the new point is accepted. When the
ratio is negative, the new point is rejected.

8.6 SUCCESSIVE QUADRATIC PROGRAMMING

Successive quadratic programming (SQP) methods solve a sequence of quadratic
programming approximations to a nonlinear programming problem. Quadratic
programs (QPs) have a quadratic objective function and linear constraints, and
there exist efficient procedures for solving them; see Section 8.3. As in SLP, the
linear constraints are linearizations of the actual constraints about the selected
point. The objective is a quadratic approximation to the Lagrangian function, and
the algorithm is simply Newton’s method applied to the KTC of the problem.

Problem formulation with equality constraints

To derive SQP, we again consider a general NLP of the form (8.51)-(8.52), but
temporarily ignore the bounds to simplify the explanation;

Minimize: f(x) (8.62)
Subjectto: g(x) =b

The Lagrangian function for this problem is

L(x,\) = f(x) + M (g(x) — b) (8.63)
and the KTCare
V.L = Vf(x) + i/\ngi(x) =0 (8.64)
i=1
and
gx)=> (8.65)

As discussed in Section (8.2), Equations (8.64) and (8.65) is a set of (n + m) non-
linear equations in the # unknowns x and m unknown multipliers A. Assume we
have some initial guess at a solution (X,\). To solve Equations (8.64)—(8.65) by
Newton’s method, we replace each equation by its first-order Taylor series approx-
imation about (X,\). The linearization of (8.64) with respect to x and A (the argu-
ments are suppressed)

VL + VALAx + VgTAA =0 (8.66)
and that for (8.65) is
g+ VgAx =0 8.67)
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In Equations (8.66)—(8.67) all functions and derivatives are evaluated at (X,X), Vg
is the Jacobian matrix of g, and V2L is the Hessian matrix of the Lagrangian.

VLEX) = VAR) + D7 Vg () (8.68)
i=1

Note that second derivatives of all problem functions are now involved.

For problems with only equality constraints, we could simply solve the linear
equations (8.66)-(8.67) for (Ax, AN) and iterate. To accommodate both equalities
and inequalities, an alternative viewpoint is useful. Consider the quadratic pro-
gramming problem

Minimize: VLT Ax + 1Ax” V2L Ax (8.69)
Subjectto: g+ VgAx =10 (8.70)

If we call the Lagrange multipliers for (8.70) A\, the Lagrangian for the QP is
Li(Ax,AN) = VLTAx + Ax" V2L Ax + ANT(g + VgAx)  (8.71)

Setting the derivatives of L; with respect to Ax and AN equal to zero yields the
Newton equations (8.66)—(8.67) so they are the KTC of the QP (8.69)—(8.70).
Hence in the equality-constrained case, we can compute the Newton step (Ax, AN)
either by solving the linear equations (8.66)—(8.67) or by solving the QP
(8.69)—(8.70).

Inclusion of both equality and inequality constraints
When the original problem has a mixture of equalities and inequalities, it can

be transformed into a problem with equalities and simple bounds by adding slacks,
so the problem has an objective function f, equalities (8.62), and bounds

Il=sx=u (8.72)

Repeating the previous development for this problem, Newton’s method applied to
the KTC yields a mixed system of equations and inequalities for the Newton step
(Ax, AN). This system is the KTC for the QP in (8.69)—(8.70) with the additional
bound constraints

I=x+Ax=u (8.73)

Hence the QP subproblem now has both equality and inequality constraints and
must be solved by some iterative QP algorithm.

The approximate Hessian

Solving a QP with a positive-definite Hessian is fairly easy. Several good algo-
rithms all converge in a finite number of iterations; see Section 8.3. However, the
Hessian of the QP presented in (8.69), (8.70), and (8.73) is V2L (X,A), and this
matrix need not be positive-definite, even if (X,X) is an optimal point. In addition,
to compute V2L, one must compute second derivatives of all problem functions.
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Both difficulties are eliminated by replacing V2L by a positive-definite quasi-
Newton (QN) approximation B, which is updated using only values of L and V,L
(See Section 6.4 for a discussion of QN updates.) Most SQP algorithms use Pow-
ell’s modification (see Nash and Sofer, 1996) of the BFGS update. Hence the QP
subproblem becomes

QP (%,B)
Minimize: VLTAx + 1 Ax”B Ax (8.74)
Subjectto: VgAx=-g, 1=Xx+Ax=u (8.75)
The SQP line search

To arrive at a reliable algorithm, one more difficulty must be overcome. New-
ton and quasi-Newton methods may not converge if a step size of 1.0 is used at each
step. Both trust region and line search versions of SQP have been developed that
converge reliably [see Nocedal and Wright (1999) and Nash and Sofer (1996)]. A
widely used line search strategy is to use the L, exact penalty function P(x, w) in
(8.53) as the function to be minimized during the line search. This function also
plays a central role in the PSLP algorithm discussed in Section 8.5. In a line search
SQP algorithm, P(x, w) is used only to determine the step size along the direction
determined by the QP solution, Ax. Let x be the current iterate, and let Ax solve the
QP subproblem, QP(x, B). The L, exact penalty function for the NLP problem is

m

P(x,w) = f(x) + ;wi|g,~(x) - by (8.76)

where a separate penalty weight w; is used for each constraint. The SQP line search
chooses a positive step size « to find an approximate minimum of

Ha) = P(X + aAx,w) (8.77)
A typical line search algorithm, which uses the derivative of () evaluated at o =
0, denoted by #'(0), is
l.ae1
2. If
ra) < r(0) — 0.1ar'(0) (8.78)

stop and return the current o value.
3. Let @, be the unique minimum of the convex quadratic function that passes
through r(0), 7'(0), and (). Take the new estimate of « as

a < max (0.1, a;) (8.79)

4. Go to step 2.
This backtracking line search tries & = 1.0 first and accepts it if the “sufficient
decrease” criterion (8.78) is met. This criterion is also used in unconstrained mini-
mization, as discussed in Section 6.3.2. If & = 1.0 fails the test (8.78), a safe-
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guarded quadratic fit (8.79) chooses the next «. The trust region in (8.79) ensures
that the new « is not too small.

SQP algorithm

Based on this line search and the QP subproblem QP (x, B) in (8.74)—(8.75), a
typical SQP algorithm follows:

1. Initialize: B® < I (or some other positive-definite matrix), x° < x (user-
provided initial point), k < 0.

2. Solve the QP subproblem QP (x*, B¥), yielding a solution A x* and Lagrange
multiplier estimates A*.

3. Check the termination criteria (KTC, fractional objective change), and stop if
any are satisfied to within the specified tolerances.

4. Update the penalty weights w in the penalty function p(x, w). See Nash and
Sofer (1996) for details. Let the new weights be w*.

5. Apply the line search algorithm just described to the function

r(a@) = P(x* + aAx*, wk)
yielding a positive step size a*
6. Xk+1 — Xk + OlkAXk )\k+1 — )\k
7. Evaluate all problem functions and their gradients at the new point. Update
the matrix B* (Nash and Sofer, 1996) using

L(Xk), L(Xk+1), VxL(Xk,}\k), VxL(XkH,)\k)
8. Replace kby k + 1, and go to step 2

Convergence of SQP

Because of the quasi-Newton updating of B¥, this SQP algorithm estimates
second-order information, that is, B is a positive-definite approximation of V2L.
Hence a correctly implemented SQP algorithm can have a superlinear convergence
rate, just as the BFGS algorithm for unconstrained minimization is superlinearly
convergent. If the optimum is not at a vertex, SQP usually requires fewer iterations
than SLP, but each iteration requires solution of a QP, which is often much slower
than solving an LP (as SLP does). Hence each iteration takes longer than the cor-
responding SLP iteration. In addition, the approximate Hessian matrix B is dense,
even when the matrix it approximates, V2L, is sparse, so the algorithm gets slower
and requires more storage (order of n?) as the number of variables n increases. For
problems with #» > 1000, say, the SQP algorithm posed here is not practical. How-
ever, similar methods using sparse approximations to V2L do exist, and these can
solve much larger problems.

SQP code performance

Table 8.4 shows the convergence of an SQP algorithm very similar to the one
described here, applied to the Griffith—Stewart test problem of Section 8.5, using the
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TABLE 8.4
Convergence of SQP on modified
Griffith-Stewart problem

Iteration Objective Sum of infeasibilities
0 12.0000 4.000
1 11.2069 0.172
2 11.1810 0.015
3 11.1831 0.012
4 11.1803 2.1E-06
OPT 11.1803 0.000

objective x + 2y. This is the same problem as solved by PSLP in Table 8.3, using
the same initial point (2, 5). Comparing the two tables shows that SQP converges
much more rapidly on this problem than PSLP. This is because of the second-order
information (second derivatives) estimated in the matrices B¥. The price one pays
for this rapid convergence is the need to store and manipulate the dense matrices B¥,
and to solve a more difficult subproblem (a QP instead of an LP). For problems with
several thousand constraints and variables, these disadvantages usually mean that
SLP is preferred. In fact, SLP is widely used in the oil and chemical industries to
solve large production planning models. See Baker and Lasdon (1985) for details.

8.7 THE GENERALIZED REDUCED GRADIENT METHOD

The generalized reduced gradient (GRG) algorithm was first developed in the late

1960s-by-Jean-Abadie-(Abadie-and Carpentier, 1969)-and-has-since-been-refined-by:

several other researchers. In this section we discuss the fundamental concepts of
GRG and describe the version of GRG that is implemented in GRG2, the most
widely available nonlinear optimizer [Lasdon et al., 1978; Lasdon and Waren,

1978; Smith and Lasdon, 1992].

GRG algorithms use a basic descent algorithm described below for uncon-

strained problems. We state the steps here:

General descent algorithm

1. Compute the gradient of f(x) at the current point x,, giving VAX,).

2. If the current point X, is close enough to being optimal, stop.

3. Compute a search direction d, using the gradient VAx,) and perhaps other
information such as the previous search direction.

4. Determine how far to move along the current search direction d,, starting
from the current point x,. This distance o, is most often an approximation of
the value of « that minimizes the objective function f(x, + ad,) and is used
to determine the next point x, = (x, + o d,).

5. Replace the current point x, by the next point x,, and return to step 1.
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FIGURE 8.11
Circular objective contours and the linear equality constraint
for the GRG example.

Equality constraints

To explain how GRG algorithms handle equality constraints, consider the fol-
lowing problem:

Minimize: x2? + y?
Subjectto: x +y =4

The geometry of this problem is shown in Figure 8.11. The linear equality con-
straint is a straight line, and the contours of constant objective function values are
circles centered at the origin. From a geometric point of view, the problem is to find
the point on the line that is closest to the origin at x = 0, y = 0. The solution to the
problem is at x = 2, y = 2, where the objective function value is 8.

GRG takes a direct and natural approach to solve this problem. It uses the
equality constraint to solve for one of the variables in terms of the other. For exam-
ple, if we solve for x, the constraint becomes

x=4-y (8.80)

Whenever a value is specified for y, the appropriate value for x, which keeps the
equality constraint satisfied, can easily be calculated. We call y the independent, or
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nonbasic, variable and x the dependent, or basic, variable. Because x is now deter-
mined by y, this problem can be reduced to one involving only y by substituting
(4 — y) for x in the objective function to give:

F(y) = (4 —y)* +y*

The function F(y) is called the reduced objective function, and the reduced prob-
lem is to minimize F(y) subject to no constraints. Once the optimal value of y is
found, the optimal value of x is computed from Equation (8.80).

Because the reduced problem is unconstrained and quite simple, it can be
solved either analytically or by the iterative descent algorithm described earlier.
First, let us solve the problem analytically. We set the gradient of F(y), called the
reduced gradient, to zero giving:

dF(y
VR) = T = 24 =) + 2
= —8+4y=0

Solving this equation we get y = 2. Substituting this value in (8.80) gives x = 2 and
(x ¥) = (2, 2) is, of course, the same solution as the geometric one.

Now apply the steps of the descent algorithm to minimize F(y) in the reduced
problem, starting from an initial y, = 0, for which the corresponding x, = 4. Com-
puting the reduced gradient gives VF(y,) = VF(0) = —8, which is not close enough
to zero to be judged optimal so we proceed with step 3. The initial search direction
is the negative reduced gradient direction, so d = 8 and we proceed to the line
search of step 4. New points are given by

y=y,+ ad

=0+ 8« (8.81)

where « is the step size. We start at (4, 0) with @ = 0; as « increases, y also
increases. This increase is determined by Equation (8.81) and keeps (x, y) on the
equality constraint shown in Figure 8.11.

Next « is selected to minimize g(a), the reduced objective function evaluated
along the current search direction, which is given by

g(@) = Fy. + ad)
= F(0 + 8a)
= (4 — 8a)? + (8a)*

Again, in this simple case, we can proceed analytically to determine « by setting
the derivative of g(a) to zero to get

dg(a)
do

= ~16(4 — 8a) + 128c

= —64 + 256a = 0
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FIGURE 8.12
Circular objective function contours and linear inequality
constraint.

Solving for o gives & = %. Substituting this value into Equation (8.81) gives y, =
2 and then (8.80) gives x, = 2, which is the optimal solution.

Inequality constraints

Now examine how GRG proceeds when some of the constraints are inequalities
and there are bounds on some or all of the variables. Consider the following problem:

Minimize: (x — 0.5)> + (y — 2.5)*
Subjectto: x—y =0

0=x
O0=y=2

The feasible region and some contours of the objective function are shown in
Figure 8.12. The goal is to find the feasible point that is closest to the point (0.5,
2.5), which is (1.5, 1.5).

GRG converts inequality constraints to equalities by introducing slack variables.
If s is the slack in this case, the inequality x — y = 0 becomes x —y — s = 0. We
must also add the bound for the slack, s = 0, giving the new problem:
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Minimize: (x — 0.5)* + (y — 2.5)*
Subjectto: x—y—s =0

0=x

O=y=2

0=s

Let the starting point be (1, 0), at which the objective value is 6.5 and the
inequality is satisfied strictly, that is, its slack is positive (s = 1). At this point the
bounds are also all satisfied, although y is at its lower bound. Because all of the con-
straints (except for bounds) are inactive at the starting point, there are no equalities
that must be solved for values of dependent variables. Hence we proceed to mini-
mize the objective subject only to the bounds on the nonbasic variables x and y.
There are no basic variables. The reduced problem is simply the original problem
ignoring the inequality constraint. In solving this reduced problem, we do keep track
of the inequality. If it becomes active or violated, then the reduced problem changes.

To solve this first reduced problem, follow the steps of the descent algorithm
outlined at the start of this section with some straightforward modifications that
account for the bounds on x and y. When a nonbasic variable is at a bound, we must
decide whether it should be allowed to leave the bound or be forced to remain at
that bound for the next iteration. Those nonbasic variables that will not be kept at
their bounds are called superbasic variables [this term was coined by Murtaugh and
Saunders (1982)]. In step 1 the reduced gradient of f(x,y) is

OF(x,y) OF (x,y)]”
ax dy
= [2(x - 0.5) 2()’ - 2~5)]T

VF(x,y) =

VF(1,0) = [T =5

In this example x is a superbasic variable. To decide whether y should also be a
superbasic variable and be allowed to leave its bound, examine the value of its
reduced gradient component. Because this value (—5) is negative, then moving y
from its bound into the feasible region, that is, increasing the value of y, decreases
the objective value. We therefore consider letting y leave its bound. In GRG, a non-
basic variable at a bound is allowed to leave that bound only if (1) doing so improves
the value of the objective and (2) the predicted improvement is large compared with
the improvement obtained by varying only the current superbasic variables. In this
example, because the magnitude of the y component of the reduced gradient is five
times the magnitude of the x component, the incentive to release y from its bound
is large. Thus y is added to the list of superbasic variables.

In step 3 of the descent algorithm (because the gradient is clearly not small
enough to stop), the first search direction is chosen as the negative gradient direction:

d,=—[1 -5]=[-1 5]

In Figure 8.12, this direction (the dashed line) points to the center of the circular
objective function contours at (0.5, 2.5). In step 4, the line search moves along d,
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until either the objective stops decreasing or some constraint or variable bound is
reached. In this example the condition that is first encountered is that the constraint
x — y = 0 reaches its bound, and we then select the intersection of the search direc-
tion and the constraint x — y = 0 as the next point. This is the point (3,2) where
F=7% =288

Because we now have reached an active constraint, use it to solve for one vari-
able in terms of the other, as in the earlier equality constrained example. Let x be
the basic, or dependent, variable, and y and s the nonbasic (independent) ones.
Solving the constraint for x in terms of y and the slack s yields

x=y+s

The reduced objective is obtained by substituting this relation for x in the objective
function:

F(y,s) =(y+s— 05?2+ (y — 25)?
The reduced gradient is
VF(y,s) =2[(y + s — 05) + (y — 2.5) (y+s—-05)]
=[4y+2s—6 .2y+2s—1]

which evaluated at (2, 0) is
VF(30) =[-% 31

The variable y becomes superbasic. Because s is at its lower bound of zero, con-
sider whether s should be allowed to leave its bound, that is, be a superbasic vari-
able. Because its reduced gradient term is %, increasing s (which is the only feasi-
ble change for s) increases the objective value. Because we are minimizing F, fix s
at zero; this corresponds to staying on the line x = y. The search direction d = §

5 8

where « is the step size from the current point. The function to be minimized by the
line search is

gla) = F(ys) = F¢ + $a,0)
= [+ e + [3 + P
The optimal step size of & = } is determined by setting dg(e)/da = 0, which gives
the next point as y, = 1.5. Because s has been fixed at zero, we are on the line x =
y and at step 5 we have (x,, y,) = (1.5, 1.5), which is the optimal value for this prob-

lem. To confirm this, return to step 1 of our descent algorithm, and calculate the
reduced gradient of F(y,s) at (1.5, 0) to get

VE(y,s) = VF(1.5,0) = [0 1]
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First, the first element in the reduced gradient with respect to the superbasic vari-
able y is zero. Second, because the reduced gradient (the derivative with respect to
s) is 1, increasing s (the only feasible change to s) causes an increase in the objec-
tive value. These are the two necessary conditions for optimality for this reduced
problem and the algorithm terminates at (1.5, 1.5) with an objective value of 2.0.

Nonlinear constraints

To illustrate how GRG handles nonlinear constraints, replace the linear con-
straint of the previous example by

(x=2)+y*=4
The new problem is
Minimize: (x — 0.5)* + (y — 2.5)%
Subjectto: (x — 2)* + y? =< 4
0=x
0=y=<2

The feasible region is shown in Figure 8.13. It is bounded by a semicircle of radius
2 centered at (2, 0) and by the x axis. The point in this region closest to (0.5, 2.5)
is optimal, which is (0.971, 1.715).

4
3l =064/ /\
F=0.25

*
\

\

/

(0.971, 1.715) optimum

y
N (0.697, 1517)
1+ \
\
\
\
: L @9
(1,0)
starting
x=0 point
-1 ! I l L L L |
-1 0 1 2 3 4
X
FIGURE 8.13

Circular objective function contours with a nonlinear
inequality constraint.
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We again start from the point (1, 0). At this point the nonlinear constraint is
inactive, y is released from its lower bound to become superbasic (along with x) and
progress continues along the negative gradient direction until the constraint is
encountered. The intersection of the constraint and the negative gradient direction
from the starting point is at (0.697, 1.715). Now the nonlinear constraint is active.
Adding a slack variable s gives

(x =22 +y*+s=4 (8.82)

To form the reduced problem, this equation must be solved for one variable in terms
of the other two. The logic in GRG for selecting which variables are to be basic is
complex and is not discussed here [see Lasdon et al. (1978); and Lasdon and Waren
(1978) for more information]. In this example GRG selects x as basic.

Solving (8.82) for x yields

x=2+Vd—y'—s5

The reduced objective is obtained by substituting this expression into the objective
function. The slack s will be fixed at its current zero value for the next iteration
because moving into the interior of the circle from (0.697, 1.517) increases the
objective. Thus, as in the linearly constrained example, y is again the only super-
basic variable at this stage.

Because analytic solution of the active constraints for the basic variables is
rarely possible, especially when some of the constraints are nonlinear, a numerical
procedure must be used. GRG uses a variation of Newton’s method which, in this
example, works as follows. With s = 0, the equation to be solved for x is

(x =22 +y2—4=0 (8.83)

GRG determines a new value for y as before, by choosing a search direction 4 and
then a step size «. Because this is the first iteration for the current reduced prob-
lem, the direction d is the negative reduced gradient. The line search subroutine in
GRG chooses an initial value for a. At (0.697, 1.517), d = 1.508 and the initial
value for e is 0.050. Thus the first new value for y, say y;, is

Y1 =y, + ad = 1.517 + 0.050(1.508) = 1.592

Substituting this value into Equation (8.83) gives
glx) = (x—2)*— 1466 =0 (8.84)

Given an initial guess x, for x, Newton’s method is used to solve Equation (8.84)
for x by replacing the left-hand side of (8.84) by its first-order Taylor series approx-
imation at x,:

38 (xo)

g(xo) +< - )(x—xo) =0
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Solving this equation for x and calling this result x,; yields

9 -1
= %o — ( ggﬁ")) ey (8.85)

If g(x;) is close enough to zero, x; is accepted as the solution and this procedure
stops. “Close enough” is determined by a feasibility tolerance E (which can be set
by the user, and has a default value of 0.0001) using the criterion:

abs[g(xy)] = E; (8.86)

If this criterion is not satisfied, x, replaces x;,, and a new iteration of Newton’s method
begins. For this example, the sequence of x and y values generated by GRG is

Iteration x g(x)

Initial point 0.7849  —0.134E-01
1 0.7900  —0.940E-03
2 0.7904  —0.675E-04

In the “pure” Newton’s method, dg(x)/ox is reevaluated at each new value of x. In
GRG, dg(x)/dx is evaluated only once for each line search, at the point from which
the line search begins. In this example, dg(x)/dx evaluated at x = 0.697 is 2.606, so
the GRG formula corresponding to (8.85) is

x; = x5 — 0.383g(x,)

This variation on Newton’s method usually requires more iterations than the pure

version, but it takes much less work per iteration, especially when there are two or
more basic variables. In the multivariable case the matrix Vg(x) (called the basis
matrix, as in linear programming) replaces dg/dx in the Newton equation (8.85),
and g(x,) is the vector of active constraint values at x,.

Note that the initial guess for x in row 1 of the preceding table is 0.7849, not
its base value of 0.697. GRG derives this initial estimate by using the vector that is
tangent to the nonlinear constraint at (0.697, 1.517), as shown in Figure 8.14. Given
¥, = 1.592, the x value on this tangent vector is 0.7849. The tangent vector value is
used because it usually provides a good initial guess and results in fewer Newton
iterations.

Of course, Newton’s method does not always converge. GRG assumes Newton’s
method has failed if more than ITLIM iterations occur before the Newton termination
criterion (8.86) is met or if the norm of the error in the active constraints ever
increases from its previous value (an occurrence indicating that Newton’s method is
diverging). ITLIM has a default value of 10. If Newton’s method fails but an
improved point has been found, the line search is terminated and a new GRG itera-
tion begins. Otherwise the step size in the line search is reduced and GRG tries again.
The output from GRG that shows the progress of the line search at iteration 4 is
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Initial estimate for Newton’s method to return to the nonlinear

constraint.

STEP = 5.028E-02 OBJ =
STEP = 1.005E-01 OBJ =
STEP = 2.011E-01 OBJ =

QUADRATIC INTERPOLATION
STEP 1.242E-01 OBJ =

9.073E-01 NEWTON ITERS
8.491E-01 NEWTON ITERS
9.128E-01 NEWTON ITERS

8.386E-01 NEWTON ITERS

4

Note that as the line search process continues and the total step from the initial
point gets larger, the number of Newton iterations generally increases. This
increase occurs because the linear approximation to the active constraints, at the
initial point (0.697, 1.517), becomes less and less accurate as we move further from

that point.

Infeasible starting point

If the initial values of the variables do not satisfy all of the constraints, GRG
starts with a phase I objective function (as is also done in linear programming) and
attempts to find a feasible solution. To illustrate this approach consider a problem
that has no objective function and has the following three constraints:

=

x2+y2
=1

x+y=
0

x =Y

4
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FIGURE 8.15

Finding a feasible point in GRG; the feasible region is the dashed line.

We-use-a-starting-point-of (0.75,-0).-The feasible region-is-shown-in Eigure 8.15-as—
the dashed line segment. At the initial point constraint 1 is strictly satisfied, but con-
straints 2 and 3 are violated. GRG constructs the phase I objective function as the
sum of the absolute values of all constraint violations. For this case the sum of the
infeasibilities (sinf) is
sinf(xy) = (x —y) +[1 = (x +y)]
= 0.75 + 0.25
=1.0

The first term is the violation of constraint 2 and the second term is the violation
of constraint 3. Note that both terms are arranged so that the violations are posi-
tive.
The optimization problem solved by GRG is
Minimize: sinf(x,y)

Subjectto: x>+ y*=4
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At the initial point, the preceding nonlinear constraint is inactive, the reduced objec-
tive is just sinf(x, ), and the reduced gradient is

Vsinf(x,y) = [0 —2]

The initial search direction is, as usual, the negative reduced gradient direction so
d =[0 2] and we move from (0.75, 0) straight up toward the line x + y = 1. The
output from GRG is shown in the following box.

Norm of
Iteration  Objective = Number Number Number reduced Hessian
number function binding superbasics infeasible gradient condition
0 1.000E+00 1 2 2 2.000E+00 1.000E+00
STEP = 2.500000E-02 OBJ = 9.00000E-01 »
STEP = 5.000000E-02 OBJ = 8.00000E-01
STEP = 1.000000E~01 OBJ = 6.00000E-01
STEP = 2.000000E-01 OBJ = 3.50000E-01
STEP = 4.000000E-01 OBJ = 0.00000E+00

CONSTRAINT #3 VIOLATED BOUND
ALL VIOLATED CONSTRAINTS SATISFIED. NOW BEGIN TO OPTIMIZE TRUE OBJECTIVE

Norm of
Iteration  Objective = Number Number Number reduced Hessian
number function binding superbasics infeasible gradient condition

0 1.000E-+00 1 2 0 2.000E+00 1.000E+00

KUHN-TUCKER CONDITIONS SATISFIED

As can be seen in the output shown in the box, at the starting point (iteration
0) there are two infeasible constraints, two superbasics, and sinf = 1. Using the
usual formula, (x, y) for the first line search is calculated as follows:

(x,9) = (xey.) + aldy,dy)
= (x, + ad},y. + ad,)
= (075 + 0a,0 + 2a)
= (0.75,2a)

It is clear that the x values remain fixed at 0.75 and the y values are twice the
step size at each step. In Figure 8.15 these steps are labeled 1 through 6. At step 5,
GRG detects the change in sign of constraint number 3 and backs up until the con-
straint is binding. Because at this stage (x,y) is feasible, GRG prints the message

ALL VIOLATED CONSTRAINTS SATISFIED
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If the problem had an objective function, GRG would begin minimizing the
“true” objective, starting from this feasible point. Because we did not specify an
objective for this problem, the algorithm stops. Minimizing sirf to find a feasible
point, if needed, is phase I of the GRG algorithm; optimization of the true objec-
tive is phase II. If GRG cannot find a feasible solution, then phase I will terminate
with a positive value of sinf and report that no feasible solution was found.

8.8 RELATIVE ADVANTAGES AND DISADVANTAGES OF NLP
METHODS

Table 8.5 summarizes the relative merits of SLP, SQP, and GRG algorithms, focus-
ing on their application to problems with many nonlinear equality constraints. One
feature appears as both an advantage and a disadvantage—whether or not the algo-
rithm can violate the nonlinear constraints of the problem by relatively large
amounts during the solution process.

SLP and SQP usually generate points with large violations. This can cause dif-
ficulties, especially in models with log or fractional power expressions, because neg-
ative arguments for these functions may be generated. Such problems have been
documented in reference to complex chemical process examples (Sarma and

TABLE 8.5
Relative merits of SLP, SQP, and GRG algorithms
Algorithm Relative advantages Relative disadvantages
SLP Widely used in practice May converge slowly on
problems with nonvertex

Rapid convergence when optimum is at a vertex .
optima

Can handle very large problems Will usually violate nonlinear

Does not attempt to satisfy equalities at each constraints until convergence
iteration to optimum, often by large
. amounts
Can benefit from improvements to LP solvers
SQP Usually requires the fewest function and gradient Will usually violate nonlinear
evaluations of all three algorithms (by far) constraints until convergence,

. -, fte: large amount:
Does not attempt to satisfy equalities at each often by larg ounts

iteration

GRG Probably most robust of all three methods Needs to satisfy equalities at

Versatile—especially good for unconstrained or each step of the algorithm

linearly constrained problems but also works
well for nonlinear constraints

Once it reaches a feasible solution it remains
feasible and then can be stopped at any stage
with an improved solution
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Reklaitis, 1982) in which SLP and some exterior penalty-type algorithms failed, but
the GRG code succeeded and was quite efficient. On the other hand, algorithms that
do not attempt to satisfy the equalities at each step can be faster than those that do
(Berna et al., 1980). The fact that SLP and SQP satisfy any linear constraints at each
iteration should ease the difficulties cited in Table 8.5 but does not eliminate them.

In some situations the optimization process must be terminated before the algo-
rithm has reached optimality and the current point must be used or discarded. These
cases usually arise in on-line process control in which time limits force timely deci-
sions. In such cases, maintaining feasibility during the optimization process may be
a requirement for the optimizer because an intermediate infeasible point makes a
solution unusable.

Clearly, all three algorithms have advantages that dictate their use in certain sit-
uations. For large problems, SLP software is used most widely, because it is rela-
tively easy to implement given a good LP code. Large-scale versions of GRG and
SQP are increasingly employed, however.

8.9 AVAILABLE NLP SOFTWARE

In this section we survey implementations of the algorithms described in Sections
8.5 through 8.7. Although an increasingly large proportion of NLP users employ
systems with higher level user interfaces to optimizers, such as spreadsheets and
algebraic modeling systems, all such systems have at their core adaptations of one
or more “stand-alone” optimization packages. By stand-alone we mean software
designed specifically to accept the specification of a nonlinear program, attempt to
solve it, and return the results of that attempt to the user or to an invoking applica-
tion. The NLP capabilities and characteristics of those higher level systems there-
fore naturally derive from those of their incorporated optimizers. As a result, we
begin our discussion with an overview of significant stand-alone NLP optimizers.
We also illustrate, for a simple NLP problem, the inputs and outputs of some of the
optimizers described later on. A comprehensive list of vendors and sources for the
products discussed in this section (as well as for a large number of linear, uncon-
strained, and discrete optimization products) is found in Moré and Wright (1993)
and Wright (2000). Advertisements for many of the systems described here can be
found in the monthly magazine OR/MS Today, published by INFORMS (Institute
for Operations Research and the Management Sciences). This magazine is an
excellent source of information on analytical software of all kinds. The June 1998
issue contains an excellent NLP software survey (Nash, 1998).

8.9.1 Optimizers for Stand-Alone Operation or Embedded Applications
Most existing NLP optimizers are FORTRAN-based, although C versions are becom-

ing more prevalent. Most are capable of operation as true stand-alone systems (the
user must usually code or modify main programs and routines that return function
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values) or as subsystems that are embedded in larger systems and solve problems
generated by or posed through those systems. Some vendors supply source code,
and others supply only object code for the customers’ target platform. Details are
available from the vendors as noted later on or in Moré and Wright (1993) and
Wright (2000). All NLP optimizers require that the user supply the following:

* A specification of the NLP problem to be solved—at a minimum, the number of
functions, the number of variables, which function is the optimization objective,
bounds on the functions and variables (if different from some default scheme),
and initial values of some or all variables (the system may supply default values,
but using these is recommended only as a last resort).

* One or more subprograms that supply to the optimizer, on demand, the values of
the functions for a specified set of variable values. Some systems also allow the
user the option of supplying derivative values.

GRG-based optimizers

GRG2. This code is presently the most widely distributed for the generalized
reduced gradient and its operation is explained in Section 8.7. In addition to its use
as a stand-alone system, it is the optimizer employed by the “Solver” optimization
options within the spreadsheet programs Microsoft Excel, Novell’s Quattro Pro,
Lotus 1-2-3, and the GINO interactive solver.

In stand-alone operation, GRG?2 requires the user to code a calling program in
FORTRAN or C that allocates working storage and passes through its argument list
the problem specifications and any nondefault values for user-modified options (an
option using text files for problem specifications also exists). In addition, the user
must code a subroutine that accepts as input a vector of variable values and returns
a vector of function values calculated from the inputs. All constraints are assumed

{0 b€ ot the 1orm
L= g(x) = u

where /; and u; are (constant) lower and upper bounds.

GRG?2 represents the problem Jacobian (i.e., the matrix of first partial deriva-
tives) as a dense matrix. As a result, the effective limit on the size of problems that
can be solved by GRG2 is a few hundred active constraints (excluding variable
bounds). Beyond this size, the overhead associated with inversion and other linear
algebra operations begins to severely degrade performance. References for descrip-
tions of the GRG2 implementation are in Licbman et al. (1985) and Lasdon et al.
(1978).

LSGRG2. This extension of GRG2 employs sparse matrix representations
and manipulations and extends the practical size limit to at least 1000 variables and
constraints. The interfaces to LSGRG2 are very close to those described earlier for
GRG2. LSGRG2 has been interfaced to the GAMS algebraic-modeling system.
Performance tests and comparisons on several large models from the GAMS library
are described by Smith and Lasdon (1992).
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CONOPT. This is another widely used implementation of the GRG algorithm.
Like LSGRG2, it is designed to solve large, sparse problems. CONOPT is available
as a stand-alone system, callable subsystem, or as one of the optimizers callable by
the GAMS systems. Description of the implementation and performance of
CONOPT is given by Drud (1994).

SQP-based optimizers
Implementations of the SQP algorithm described in Section 8.6 are

SQP. This is a sister code to GRG2 and available from the same source. The
interfaces to SQP are very similar to those of GRG2. SQP is useful for small
problems as well as large sparse ones, employing sparse matrix structures
throughout. The implementation and performance of SQP are documented in Fan,
et al. (1988).

NPSOL. This is a dense matrix SQP code developed at Stanford University. It
is available from the same source as MINOS (see following description of
MINOS). Additional details are available in Moré and Wright (1993).

NLPQL. This is another SQP implementation, callable as a subroutine and
notable for its use of reverse communication. The called subsystem returns codes
to the calling program, indicating what information is required on reentry. (Moré
and Wright, 1993).

MINOS. This employs a modified augmented Lagrangian algorithm
described in Murtagh and Saunders (1982). MINOS uses sparse matrix
representations throughout and is capable of solving nonlinear problems exceeding
1000 variables and rows. MINOS is also capable of exploiting, to the greatest
extent possible, the presence of purely linear variables and functions. Because the
user must communicate this structure to the optimizer, the greatest utility of this
feature results from coupling MINOS to higher level modeling systems that can
determine problem structure. As a stand-alone system, problem specifications and
user options are supplied to MINOS via an external text file, and problem Jacobian
information is supplied through another file. As with the other optimizers described
here, the user must supply FORTRAN routines that compute function values and,
optionally, derivatives. MINOS is the default optimizer option under the GAMS
system for both linear and nonlinear problems. Details for stand-alone use of
MINOS and additional references are given in Murtagh and Saunders (1982).

Mathematical software libraries

Many of the major callable libraries of mathematical software include at least
one general NLP component (i.e., capable of solving problems with nonlinear
constraints). IMSL provides individual callable routines for most variations of
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linear and nonlinear constraints and objectives. The NAG FORTRAN Library
(also available as a toolbox of MATLAB) contains an SQP method for con-
strained problems and a variety of routines for unconstrained or specialized opti-
mization problems. In addition, most such libraries, even those without specific
constrained NLP solvers, contain routines that perform such tasks as equation
solving, unconstrained optimization, and various linear algebra operations. These
routines can be used as subalgorithm components to build customized NLP
solvers. References for the IMSL and NAG libraries and their vendors may be
found in Moré and Wright (1993).

8.9.2 Spreadsheet Optimizers

In the 1980s, a major move away from FORTRAN and C optimization began as
optimizers, first LP solvers, and then NLP solvers were interfaced to spreadsheet
systems for desktop computers. The spreadsheet has become, de facto, the univer-
sal user interface for entering and manipulating numeric data. Spreadsheet vendors
are increasingly incorporating analytic tools accessible from the spreadsheet inter-
face and able, through that interface, to access external databases. Examples
include statistical packages, optimizers, and equation solvers.

The Excel Solver. Microsoft Excel, beginning with version 3.0 in 1991,
incorporates an NLP solver that operates on the values and formulas of a
spreadsheet model. Versions 4.0 and later include an LP solver and mixed-integer
programming (MIP) capability for both linear and nonlinear problems. The user
specifies a set of cell addresses to be independently adjusted (the decision varia-
bles), a set of formula cells whose values are to be constrained (the constraints), and
a formula cell designated as the optimization objective. The solver uses the spread-
sheet interpreter to evaluate the constraint and objective functions, and
approximates derivatives, using finite differences. The NLP solution engine for the
Excel Solver is GRG2 (see Section 8.7).

For examples that use the Excel Solver, see Chapters 7, 9, and 10. For a descrip-
tion of the design and use of the Excel Solver, see Fylstra, et al. (1998). An enhanced
version of the Excel Solver, which can handle larger problems, is faster, and includes
enhanced solvers is available from Frontline Systems—see www.frontsys.com. This
website contains a wealth of information on spreadsheet optimization.

The Quattro Pro Solver. The same team that packaged and developed the
Excel Solver also interfaced the same NLP engine (GRG2) to the Quattro Pro
spreadsheet. Solver operation and problem specification mechanisms are similar to
those for Excel.

LOTUS 123. The LOTUS 123 WINDOWS-based products incorporate linear
and nonlinear solvers that operate in a fashion similar to those described earlier and
use the same solver engines.
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8.9.3 Algebraic Modeling Systems

An algebraic modeling system normally accepts the specification of a model in
text as a system of algebraic equations. The system parses the equations and gen-
erates a representation of the expressions that can be numerically evaluated by its
interpreter. In addition, some analysis is done to determine the structure of the
model and to generate expressions for evaluating the Jacobian matrix. The
processed model is then available for presentation to an equation solver or opti-
mizer. The following paragraphs describe four algebraic modeling systems with
NLP capabilities.

GAMS—General algebraic modeling system

The general algebraic modeling system (GAMS) allows specification and solu-
tion of large-scale optimization problems. The modeling language is algebraic with
a FORTRAN-like style. The default NLP solver for GAMS is MINOS with
ZOOM-XMP available for mixed-integer programming. Optional interfaces are
available for most currently available LP, NLP, and MILP solvers. GAMS is avail-
able on a wide variety of platforms ranging from PCs to workstations and main-
frames. Examples of GAMS models and solution output are given in Chapter 9.
General references, system details, and user procedures are given in Brooke and
coworkers (1992). See www.gams.com for more information.

AMPL

The main features of a mathematical programming language (AMPL) include
an interactive environment for setting up and solving mathematical programs; the
ability to select among several solvers; and a powerful set construct that allows for
indexed, named, and nested sets. This set construct allows large-scale optimization
problems to be stated tersely and in a form close to their natural algebraic expres-
sion. AMPL is described in Fourer et al. (1993). A WINDOWS version, AMPL
PLUS, is available, with a graphical user interface (GUI) that greatly enhances pro-
ductivity.

MPL and AIMMS

Both MPL and the advanced interactive multidimensional modeling software
(AIMMS) are algebraic modeling languages operating under Microsoft Windows,
with convenient GUIs; powerful modeling languages; and excellent connections to
external files, spreadsheets, databases, and a wide variety of linear and nonlinear
solvers. See www.maximal-usa.com for MPL, and www.aimms.com for AIMMS.

8.10 USING NLP SOFTWARE

This section addresses some of the problems with NLP optimization software. The
primary determinant of solution reliability with LP solvers is numerical stability
and accuracy. If the linear algebra subsystem of an LP solver is strong in these
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areas, the solver will almost always terminate with one of three conditions—opti-
mal, infeasible, unbounded—or will run up against a time or iteration limit set by
the user prior to detecting one of those conditions. In contrast, many additional fac-
tors affect NLP solvers and their ability to obtain and recognize a solution.

8.10.1 Evaluation of Derivatives: Issues and Problems

All major NLP algorithms require estimation of first derivatives of the problem
functions to obtain a solution and to evaluate the optimality conditions. If the val-
ues of the derivatives are computed inaccurately, the algorithm may progress very
slowly, choose poor directions for movement, and terminate due to lack of progress
or reaching the iteration limits at points far from the actual optimum, or, in extreme
cases, actually declare optimality at nonoptimal points.

Finite difference substitutes for derivatives

When the user, whether working on stand-alone software or through a spread-
sheet, supplies only the values of the problem functions at a proposed point, the
NLP code computes the first partial derivatives by finite differences. Each function
is evaluated at a base point and then at a perturbed point. The difference between
the function values is then divided by the perturbation distance to obtain an approx-
imation of the first derivative at the base point. If the perturbation is in the positive
direction from the base point, we call the resulting approximation a forward differ-
ence approximation. For highly nonlinear functions, accuracy in the values of
derivatives may be improved by using central differences; here, the base point is
perturbed both forward and backward, and the derivative approximation is formed
from—the—difference—of -the—function—values—at—thosepoints—The price for this—
increased accuracy is that central differences require twice as many function eval-
uations of forward differences. If the functions are inexpensive to evaluate, the
additional effort may be modest, but for large problems with complex functions, the
use of central differences may dramatically increase solution times. Most NLP
codes possess options that enable the user to specify the use of central differences.
Some codes attempt to assess derivative accuracy as the solution progresses and
switch to central differences automatically if the switch seems warranted.

A critical factor in the accuracy of finite difference approximations for deriva-
tives is the value of the perturbation step. The default values employed by all NLP
codes (generally 1.E-6 to 1.E-7 times the value of the variable) yield good accuracy
when the problem functions can be evaluated to full machine precision. When prob-
lem functions cannot be evaluated to this accuracy (perhaps due to functions that
are the result of iterative computations), the default step is often too small. The
resulting derivative approximations then contain significant error. If the function(s)
are highly nonlinear in the neighborhood of the base point, the default perturbation
step may be too large to accurately approximate the tangent to the function at that
point. Special care must be taken in derivative computation if the problem functions
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are not closed-form functions in compiled code or a modeling language (or, equiv-
alently, a sequence of simple computations in a spreadsheet). If each function eval-
uation involves convergence of a simulation, solution of simultaneous equations, or
convergence of an empirical model, the interaction between the derivative pertur-
bation step and the convergence criteria of the functions strongly affects the deriv-
ative accuracy, solution progress, and reliability. In such cases, increasing the per-
turbation step by two or three orders of magnitude may aid the solution process.

Analytic derivatives

Algebraic modeling systems, such as those described in Section 8.9.3,
accept user-provided expressions for the objective and constraint functions and
process them to produce additional expressions for the analytic first partial deriv-
atives of these functions with respect to all decision variables. These expressions
are exact, so the derivatives are evaluated to full machine precision (about 15
correct decimal digits using double precision arithmetic), and they are used by
any derivative-based nonlinear code that is interfaced to the system. Finite-
difference approximations to first derivatives have at most seven or eight signif-
icant digits. Hence, an NLP code used within an algebraic modeling system can
be expected to produce more accurate results in fewer iterations than the same
solver using finite-difference derivatives. Chemical process simulators like
Aspen also compute analytic derivatives and provide these to their nonlinear
optimizers. Spreadsheet solvers currently use finite-difference approximations to
derivatives.

Of course, many models in chemical and other engineering disciplines are
difficult to express in a modeling language, because these are usually coded in
FORTRAN or C (referred to as “general purpose” programming languages), as are
many existing “legacy” models, which were developed before modeling systems
became widely used. General-purpose languages offer great flexibility, and mod-
els coded in these languages generally execute about ten times faster than those in
an algebraic modeling system because FORTRAN and C are compiled, whereas
statements in algebraic modeling systems are interpreted. This additional speed is
especially important in on-line control applications (see Chapter 16).

Derivatives in FORTRAN or C models may be approximated by differencing,
or expressions for the derivatives can be derived by hand and coded in subroutines
used by a solver. Anyone who has tried to write expressions for first derivatives of
many complex functions of many variables knows how error-prone and tedious this
process is. These shortcomings motivated the development of computer programs
for automatic differentiation (AD). Given FORTRAN or C source code which eval-
uates the functions, plus the user’s specification of which variables in the program
are independent, AD software augments the given program with additional state-
ments that compute partial derivatives of all functions with respect to all indepen-
dent variables. In other words, using AD along with FORTRAN or C produces a
program that computes the functions and their first derivatives.

Currently, the most widely used AD codes are ADIFOR (automatic differentia-
tion of FORTRAN) and ADIC (automatic differentiation of C). These are available
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at no charge from the Mathematics and Computer Science division of Argonne
National Laboratories—see www.mcs.anl.gov for information on downloading the
software and further information on AD. This software has been successfully applied
to several difficult problems in aeronautical and structural design as well as chemi-
cal process modeling.

8.10.2 What to Do When an NLP Algorithm Is Not “Working”

Probably the most common mode of failure of NLP algorithms is termination due
to “fractional change” (i.e., when the difference in successive objective function
values is a small fraction of the value itself over a set of consecutive iterations) at
a point where the Kuhn-Tucker optimality conditions are far from satisfied. Some-
times this criterion is not considered, so the algorithm terminates due to an itera-
tion limit. Termination at a significantly nonoptimal point is an indication that the
algorithm is unable to make any further progress. Such lack of progress is often
associated with poor derivative accuracy, which can lead to search directions that
do not improve the objective function. In such cases, the user should analyze the
problem functions and perhaps experiment with different derivative steps or differ-
ent starting points.

Parameter adjustment

Most NLP solvers use a set of default tolerances and parameters that control
the algorithm’s determination of which values are “nonzero,” when constraints are
satisfied, when optimality conditions are met, and other tuning factors.

Feasibility and optimality tolerances

Most NLP solvers evaluate the first-order optimality conditions and declare
optimality when a feasible solution meets these conditions to within a specified tol-
erance. Problems that reach what appear to be optimal solutions in a practical sense
but require many additional iterations to actually declare optimality may be sped up
by increasing the optimality or feasibility tolerances. See Equations (8.31a) and
(8.31b) for definitions of these tolerances. Conversely, problems that terminate at
points near optimality may often reach improved solutions by decreasing the opti-
mality or feasibility tolerances if derivative accuracy is high enough.

Other “tuning” issues

The feasibility tolerance is a critical parameter for GRG algorithms because it
represents the convergence tolerance for the Newton iterations (see Section 8.7 for
details of the GRG algorithm). Increasing this tolerance from its default value may
speed convergence of slow problems, whereas decreasing it may yield a more accu-
rate solution (at some sacrifice of speed) or “unstick” a sequence of iterations that are
going nowhere. MINOS requires specification of a parameter that penalizes con-
straint violations. Penalty parameter values affect the balance between seeking feasi-
bility and improving of the objective function.
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Scaling

The performance of most NLP algorithms (particularly on large problems) is
greatly influenced by the relative scale of the variables, function values, and Jaco-
bian elements. In general, NLP problems in which the absolute values of these
quantities lie within a few orders of magnitude of each other (say in the range
0-100) tend to solve (if solutions exist) faster and with fewer numerical difficulties.
Most codes either scale problems by default or allow the user to specify that the
problem be scaled. Users can take advantage of these scaling procedures by build-
ing models that are reasonably scaled in the beginning.

Model formulation

Users can enhance the reliability of any NLP solver by considering the follow-
ing simple model formulation issues:

* Avoid constructs that may result in discontinuities or undefined function argu-
ments. Use exponential functions rather than logs. Avoid denominator terms that
may tend toward zero (i.e., 1/x or 1/(x—1), etc.), multiplying out these denomi-
nators where possible.

» Be sensitive to possible “domain violations,” that is, the potential for the optimizer
to move variables to values for which the functions are not defined (negative log
arguments, negative square roots, negative bases for fractional exponents) or for
which the functions that make up the model are not valid expressions of the sys-
tems being modeled.

Starting points

The performance of NLP solvers is strongly influenced by the point from
which the solution process is started. Points such as the origin (0, 0, . . .) should be
avoided because there may be a number of zero derivatives at that point (as well as
problems with infinite values). In general, any point where a substantial number of
zero derivatives are possible is undesirable, as is any point where tiny denominator
values are possible. Finally, for models of physical processes, the user should avoid
starting points that do not represent realistic operating conditions. Such points may
cause the solver to move toward points that are stationary points but unacceptable
configurations of the physical system.

Local and global optima

As was discussed in Section 4.3, a global optimum is a feasible solution that
has the best objective value. A local optimum has an objective value that is better
than that of any “nearby” feasible solution. All NLP algorithms and solvers here are
only capable of finding local optima. For convex programs, any local optimum is
also global. Unfortunately, many NLPs are not convex or cannot be guaranteed to
be convex, hence we must consider any solution returned by an NLP solver to be
local. The user should examine the solution for reasonableness, perhaps re-solving
the problem from several starting points to investigate what local optima exist and
how these solutions differ from one another. He/she can also try a global optimizer;
see Chapter 10.
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PROBLEMS

8.1 Solve
Minimize: —x;
Subjectto: x; +x5=0

by solving the constraint for x; and substituting into the objective function. Do you
get x* = [0 0]™

8.2 Solve
Minimize: —x?
Subjectto:  1075x3 + x; =1

by solving the constraint for x; and substituting into the objective function. Do you
get x¥ =[1 0]7?
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8.3 Explain in no more than three sentences how the nonlinear inequality constraints in a
nonlinear programming problem can be converted into equality constraints. Demon-
strate for g(x) = x;x, + x + e =< 4,

8.4 Use the method of Lagrange multipliers to solve the following problem. Find the val-
ues of x;, x,, and  that
Minimize: f(x) = x? + x2

Subjectto: A(x) =2x, +x, —2=10

8.5 Solve the following problem via the Lagrange multiplier method:
Find the maximum and minimum distances from the origin to the curve

5x% + 6x,x, + 5x3 =8

Hint: The distance Vx? + x3 is the objective function.

8.6 Show that Lagrange multipliers do not exist for the following problem:
Minimize: f(x) = x? + x3

Subjectto: (x; — 1> —x2=10

8.7 Examine the reactor in Figure P8.7. The objective function, fic, T) = (¢ — ¢,)* + T?
is subject to the constraint ¢ = ¢, + €7 and also ¢, < K, where ¢, is the set point for
the outlet concentration, a constant, and X is a constant.

Find the minimum value of the objective function using Lagrange multipliers for
the case in which K = ¢, — 2.

Reactor
Control /
valves C\E
N

FIGURE P8.7

8.8 Examine the continuous through-circulation dryer problem posed by Luus and Jaakola
(1973):

Maximize: P given by
P = 0.0064x,[1 — exp(—0.184x3%x,)]
Subject to:  the power constraint

(3000 + x,)x2x, = 1.2 X 10'
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and the moisture content distribution constraint
| exp (0.184x9%x,) = 4.1

They obtained the solution x* = [31,766 0.342] P = 153.71. Does this problem sat-

isfy the first-order conditions?
‘ Repeat for the problem of minimizing the capital investment for batch processes.
The problem is to choose x;, x,, and x; to minimize

0.22
P = 592V0%6 + 580y03 4 1200V% + 370 <xz)
1

v\ 040 v\ 062 V| 040
caso(2) s o 2 af )
X2 X2 X3
Vv O\ 08
c(2)
X3

subject to the simple constraint
V = 50(10 + x; + x, + x3)
They obtained the solution P = 126,302.9 and
x* = [0.11114 146175 3.42476]

8.9 Maximize: f= x? + x} + 4xx,
Subjectto: x; + x, = 8

(a) Form the Lagrangian L. Set up the necessary conditions for a maximum, and solve
for the optimum.
(b) If the constraint is changed to x; + x, = 8.01, compute f and L without resolv-

ing as in part a.
8.10 (2) Minimize f= x? + x% + 10x; + 20x, + 25
Subjectto: x; +x, =0

using the Lagrange multiplier technique. Calculate the optimum values of
X1,%, A, and f.

(b) Using sensitivity analysis, determine the increase in f°P* when the constraint is
changed to x; + x, = 0.01.

(c) Let the constraint be added to f by a penalty function:

P=f+ r(x; + x,)*

Find the optimum of P with respect to x; and x, (an unconstrained problem), not-
ing that x* and x% are functions of r.

(d) Is there a relationship between 7, x¥, x%, and A*?

(e) Perform the second derivative test on P; is it convex for P >> 1?
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8.11 Is the problem
Minimize: f(x) = x3 + 4x3 — 4x,
Subjectto: 2x, — x; = 12
a convex programming problem?
8.12 Determine whether the vector x” = [0 0] is an optimal solution of the problem

Minimize: f(x) = (x; — 1)* + x%

I

Subjectto: A(x) =x?+xi+x +x,=0

8x) =~ +x5 = 0

8.13 Determine whether the point x = [0 0 O]T is a local minimum of the problem:
Minimize: f(x) = %(x% — x1x2)3/4 + x5

Subjectto: x?+ x3+x3=0

Show all computations.

8.14 Test whether the solution x* = [2 2]” meets the sufficient conditions for a mini-
mum of the following problem.

Minimize: f(x) = —x%x,
. x2
Subject to:  hy(x) = xx, + 5 )=
&X) =x—x=0

8.15 Do (a) the necessary and (b) the sufficient conditions hold at the optimum X* =
[0.82 0.91]7 for the following problem?

Minimize: f(x) = (x; — 2)? + (x, — 1)?
xt
Subject to:  g,(x) = -2 #B+1=0

hz(x)=xl_2x2+1=0

Note: x* = [(—1 + W)/Z <1 + \/’;>/4]T exactly.
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8.16 Does the following solution x* = [% %] T meet the sufficient conditions for a mini-

mum of the following problem?
Minimize: Ax) = —In(1 + x;) — In(1 + x,)?
Subjectto: g,(x) =x; +x —2=<0
&(x) =x, 20
g(x) =x, =0

8.17 ‘Solve the following problems via a quadratic programming code.
P84 P89 P820 P822a

8.18 Find the stationary point of the function f(x) = x] + x5 + 4x,x, subject to the con-
straint x; + x, = 8. Use direct substitution. What kind of stationary point is it?
For the same objective function and constraint, form a new function

P =x}+ x3+ dxx, + r(x; + x, — 8)?
where r is a large number. Then optimize P.
(a) Find the stationary point of P with respect to x; and x,, solving for x§ and x§ in
terms of 7.
(b) Find x*%, x5 as r »> o0
(c) Does P* — f* for r — c0?
8.19 Minimize: x3 — x?

Subject to:  x} + x3 = 4.

(a) Use Lagrange multipliers
(b) Use a penalty function.

8.20 The problem is to
Minimize: f(x) = x7 + 6x; + x5 + 9
Subjectto: g(x) =x; = 0, fori=1,2
From the starting vector x° = [1  0.5]".

(a) Formulate a penalty function suitable to use for an unconstrained optimization
algorithm.
(b) Is the penalty function convex?

8.21 A statement in a textbook is

The penalty term of an augmented Lagrangian method is designed to
add positive curvature so that the Hessian of the augmented function is
positive-definite.

Is this statement correct?
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8.22

8.23
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Formulate the following problems as

(a) Penalty function problems
(b) Augmented Lagrangian problems

O Minimize: f(x) = 2x3 — 2xx, + 2x% — 6%, + 6

Subjectto: A(x) =x, +x,—2=0

@ Minimize: f(x) = x} — 3xyx, + 4

Subject to:  g(x) = 5x; + 2x, = 18

hx) = —2x, +x3—-5=0

Comment on the following proposed penalty functions suggested for use with the
problem.

Minimize: f(x)

Subjectto: g(x) =0, i=12,...,m
starting from a feasible point. The P functions are

(@)

kY — 1 S :
P(x,x") f(Xk) ~ f(x) + ;=21 gj(X)

(b

P(x,r) =fx) —r zlng,-(X)

8.24

(c)
m 1

P(x,r%) = f(x) + r* ;g»(x)

What advantages might they have compared with one another? What disadvantages?

The problem of optimizing production from several plants with different cost struc-
tures and distributing the products to several distribution centers is common in the
chemical industry. Newer plants often yield lower cost products because we learn from
the mistakes made in designing the original plant. Due to plant expansions, rather
unusual cost curves can result. The key cost factor is the incremental variable cost,
which gives the cost per pound of an additional pound of product. Ordinarily, this vari-
able cost is a function of production level.

Consider three different plants producing a product called DAB. The Frag plant
located in Europe has an original design capacity of 100 X 10° lb/year but has been
expanded to produce as high as 170 X 106 Ib/year. The incremental variable cost for
this plant decreases slightly up to 120 X 10° Ib/year, but for higher production rates
severe reaction conditions cause the yields to deteriorate, causing a gradual increase in
the variable cost, as shown by the following equation. No significant byproducts are
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sold from this plant. Using VC = variable cost is $/100 1b and x = production level X
107¢ Ib/year

VC =45 — (x — 100)(0.005), 100 < x =< 120

VC =44 + (x — 120)(0.02), 120 =< x < 170

The Swung-Lo plant, located in the Far East, is a relatively new plant with an improved
reactor/recycle design. This plant can be operated between 80 X 10° and 120 X 10°
Ib/year and has a constant variable cost of $5.00/100 Ib.

The Hogshooter plant, located in the United States, has a range of operation from
120 X 10° to 200 X 10° Ib/year. The variable cost structure is rather complicated due
to the effects of extreme reaction conditions, separation tower limitation, and several
byproducts, which are affected by environmental considerations. These considerations
cause a discontinuity in the incremental variable cost curve at 140 X 10°lb/year as
given by the following equations:

VC =39 + (x — 120)(0.005), 120 = x < 140
VC = 4.6 + (x — 140)(0.01), 140 < x =< 200

The three main customers for the DAB are located in the Europe (C1), the Far East
(C2), and the United States (C3), respectively. The following matrix shows the trans-
portation costs of (¢/lb) and total demand to the customers (C1, C2, C3) with plant
locations denoted as Al (Frag), A2 (Swung-Lo), and A3 (Hogshooter). The closest
pairing geographically is A1-C1; A2-C2; and A3-C3.

Al A2 A3 Total demand

Cl 0.2 0.7 0.6 140
C2 0.7 0.3 0.8 100
C3 0.6 0.8 0.2 170

Use an iterative method based on successive linearization of the objective function to
determine the optimum distribution plan for the product, DAB. Use an LP code to min-
imize total cost at each iteration.
8.25 Maximize: F(x) = 0.5(xxs — Xp%3 T X3%9 — XsXg + XsXg — XgX7)
Subject to: 1-x3-x2=0
1-x2=0
1—x2—x2=0

1-xi—(n—x)=0

%

1= (x - x5)2 = (- x6)2

v

1= (x - x7)2 = (e — xs)z
1= (x5 = x5)" = (x4 — x6)°

1= (x; = x7)2 — (x4 — x8)2

v
© © o o

v
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1—x3— (x5 — %)* =0
X1Xg = Xp%3 = 0
X9 = 0
—Xsxg = 0
XsXg — Xgx7 = 0
X =0 |
Starting point: x{ =1, i=1,9

Solve using an SQP code.

8.26 Solve the following over-constrained problem.

Minimize: f(x) = x2 + x% + x?
Subject to: gx) = —2x; —x, = -5
8X) = —x; —x3 = -2

g3(X) = =X — ZX2 — X3 = —10
hl(x) = 2x1 - 2x2 + X3 = -2
hz(x) = 10x1 + SXZ - 14X3 =26

h3(x) = —4.x1 + SJC2 - 6X3 =6

v

X 1 =2 x=0

Starting point: x°=1[1 1 1]7

Use successive quadratic programining,

8.27 Solve the following problems by the generalized reduced-gradient method. Also, count

the number of function evaluations, gradient evaluations, constraint evaluations, and
evaluations of the gradient of the constraints.

(@ Minimize: f(x) = —(x} + x3 + x3)

Subject to: x| + 2x, + 3x3, — 1 =0

Use various starting points.
xX=1{nnn], wheren=246,8,10, -2, —4, —6, =8, —10

()  Minimize: f(x) = (x; — 1) + (x; — %)% + (x, — x3)?

+ (x5 — xg)* + (x4 — x5)*
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Subjectto: x, +x2+x3—-2-3V2=0
x2—x§+x4+2—2\/_=0
(x)(xs) —2 =0

X =[nnn n nl’, wheren =2,4,6,8,10, -2, —4, —6, —8, —10

8.28 At stage k = 2, the generalized reduced-gradient method is to be applied to the fol-
lowing problem at the pointx = [0 1 1]%.

Minimize: f(x) = 2x? + 2x3 + x§ — 2xx, — 4x; — 6x,
Subjectto: x, +x, + x3 =2
x% + SX2 = 5

x =0, i=123

(a) Compute the component step direction (+ or —) and value of each of the three
variables after searching in the selected direction.

(b) Reduce f(x) in the search direction.

Explain (only) in detail how you would reach the feasible point to start the next stage

(k = 3) of optimization.

8.29 Answer true or false:

(a) In the generalized reduced-gradient method of solving NLP problems, the nonlin-
ear constraints and the objective function are repeatedly linearized.

(b) Successive quadratic programming is based on the application of Newton’s
method to some of the optimality conditions for the Lagrangian function of the
problem, that is, the sum of the objective function and the product of the Lagran-

gian multipliers times the equality constraints.

8.30 Solve the following problems using
i. A generalized reduced-gradient code
ii. A successive quadratic programming code. Compare your results.

10 1 2
(a) Minimize:  f(x) = > (;x% + kx; + kz)
k=1
Subjectto:  Ay(X) =x; +x3 + x5+ x;, £ X9 =0
hz(x) = X5 + ZX4 + 3x6 + 4x8 + 5x10 =0
h3(x) = 2x2 - 5X5 + 8x3 =0

gi(x) = —x +3x,—5x; +x0=0
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g(x) = —x; — 2x, — 4x, — 8xg = —100

g3(x) = —x; — 3x; — 6xg + 9xy = —50

~10° = x, = 105, i=1.2,...,10
Starting point (feasible): x?=0, i=1,2,...,10

f(x%) = 25,333.0

11 10
(b) Minimize: f(x) = > x + > ( + Xi11)
i=1 i=1

Subjectto: x; =0, i=1,...,11

hy(x) = 0.1x; + 0.2x; + 0.3x3 + 0.2x, + 0.2x;, = 1.0

hy(x) = 0.1x, + 0.2x5 + 0.3xy + 0.4x; + 1.0x;; = 2.0

ha(x) = 0.1x3 + 0.2xg + 0.3xy + 0.4, + 2.0x;; = 3.0

84(x) = x4 + x5 + 0.5x5 + 0.5x;5 + 1.0x; = 1.0

8s(x) = 2.0x5 + x4 + 0.5x; + 0.5x3 + 0.25x + 0.25x;5 + 0.5x; = 1.0
86(X) = x4 + x5+ xg+ %9 + x0 +x; = 1.0

87(x) = 0.1x; + 1.2x; + 1.2xg + 1.4xy + 1.1xy + 2.0x;, = 1.0

Starting point (feasible): x; = 1.0, i=1,2,...,11

10
(c) Maximize: fX) = 3x,e OB + Ax, + x% + Tx, + T %
s

Subject to: —x4 + x5 — x5 = 0.1
Xp+ Xy T x5+ x4+ x5 +x5=10
2%+ xy x5+ 3x, = 2
—8x; — 3%, —4x;+x,— x5 = —10
—2x; — 6%y — x3 — 3x, —xg = —13
—x; — 4x; — 5x3 — 2x, = —18
-0=x=20, i=1,...,6

Starting point (nonfeasible): x;, =10, i=1,...,6
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(d) Minimize: f(x) = x? + 2x3 + 3x3 + 4x + 5x3
Subjectto: Ay(x) =2x; +xp —4dx3 + x4 —x5=0
hy(x) = 5x; — 2x3 + x4 — x5 =0
gx)=x;,+2x, +x3 =6
&%) =4dxy + x4 —2x5; =0

Starting point (nonfeasible): x;=1, i =1,...,5

(e) Minimize: f(x) = (x; — %) + (x; — x3)% + (x5 — x4)* + (x4 — x5)*
Subjectto: x; +2x, + 3x; — 6 =0
X, + 2%+ 3x, —6=0
X3+ 2x,+3x5—6=0

Starting point (feasible): x° = [35 —-31 11 5 -5]

(f) Minimize: Ax) = (x; — 1)2 + (x; — x,)% + (x5 — 1)* + (x5 — 1)?
+ (o= 1)+ (s = 1)°
Subject to:  x%x, + sin (x, — xs5) — 2V2=0
X+ xi-8-V2=0
Starting point: x°=[2 2 2 2 2]
(g) Minimize: f(x) = (x; = 1)%+ (x; = %)% + (x2 = x3)* + (x5 = x4)* + (x4 — x5)°*
Subjectto: x; + x3 +x3 —2—-3V2 =0
xz—x§+x4+2—2\/5=0
xix5—2=0
Starting points:  x; = *10,x, = £8,x3 = *£6,x, = £4,x5 = X2

8.31 Explain in no more than three sentences how an initially feasible starting point can be
obtained in solving a nonlinear programming problem. Demonstrate on the problem

-1
Maximize: f(x) = [(1 + x)* + x%}

Subjectto: g(x) =4 —x}—x3=0
ex)=x2+x3-16=0

h(x)=x —x, =3
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8.32

Minimize: —X;

Subject to: exp(xfx,) —1 =0

exp(xt+x5—1)=1
Starting point (nonfeasible): x° = [2.0,1.0]7
Do you get both solutions?
x* = [£1.0,007 and [0.0, £ 1.0]"

8.33

Minimize: —x,
Subjectto:  x3 + 3xfx3 + 3xxf + x5 — 4xt + 8x2x3 —4xi=0
Starting point (nonfeasible): x° = [—2.0,2.0]7

Do you get all three solutions?

x* =[2.0,0.0]", [0.0,0.0], [0.0,2.0]

8.34 The cost of constructing a distillation column can be written
C=CPAN+CS.HAN+Cf+Cd+Cb+CL+Cx (a)

where C = Total cost, $
C, = cost per square foot of plate area, $/ft*
A = column cross-sectional area, ft?

number of plates
Ni» = minimum number of plates

2
It

C, = cost of shell, $/ft3

H = distance between plates, ft
C; = cost of feed pump, $

C, = cost of distillate pump, $

C, = cost of bottoms pump, $
C, = cost of reflux pump, §
C, = other fixed costs, $

The problem is to minimize the total cost, once produce specifications and the
throughput are fixed and the product and feed pumping costs are fixed; that is, C;, C,,
C,, and C,, are fixed. After selection of the material of construction, the costs are deter-
mined; that is, Cp, C,, C, are also fixed.

The process variables can be related through two empirical equations:

5~ =] (5).. ®

A =K(L + D)? ©
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D
(Distillate)
L
(Reflux)
i F N
;‘ (Feed)
L - B
(Bottoms)
FIGURE P8.34
For simplicity choose & = 8 = 1; then
L 1 L
e —_— - br
D [1_(Nmm/N):|<D)mm ®9
A = K(L + D) (c")
For a certain separation and distillation column the following parameters are known to
apply:
C,=30 C, = 8000
C, =10 F = 1500
H=2 D = 1000

C;=4000  Npp =5

1 (b))
C, =2 =—
, = 2000 K=2o"1

The pump cost for the reflux stream can be expressed as
C, = 5000 + 0.7L (d)
(a) Determine the process decision or independent variables. Which variables are

dependent?
(b) Find the minimum total cost and corresponding values of the variables.
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8.35 A chemical manufacturing company sells three products and has found that its revenue
function is f = 10x + 4.4y? + 2z, where x, y, and z are the monthly production rates
of each chemical. It is found from breakeven charts that it is necessary to impose the
following limits on the production rates:

x=2

30 +y7 =3

In addition, only a limited amount of raw material is available; hence the following
restrictions must be imposed on the production schedule:

x+ 4y + 57 =32
x+ 3y + 2z <29

Determine the best production schedule for this company, and find the best value of
the revenue function.

8.36 A problem in chemical equilibrium is to minimize

n

n xi
fx)= D5 w,+ P+ In
=

i=1%
subject to the material balances
X+ 2%+ 2x3 +xg + x;0=2
x4+2x5+x6+x7=1
X3+ x;+ xg+ 2x9 + x9p =1
Given P = 750 and w,,
i w; i w;
1 —10.021 6 —18.918
2 —21.096 7 —28.032
3 —37.986 8 —14.640
4 —9.846 9 —30.594
5 —28.653 10 —26.111

what is x* and f(x*)?

8.37 The objective is to fit a fifth-order polynomial to the curve y = x3. To avoid fluctua-
tions from the desired curve, divide the curve into ten points.

x(=1,..,10) = (0.5,1,4.5,8,17.5,27,45.5,64,94.5,125)
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and fit the polynomial (find the values of a,)
P(a,x) = ayx + ayx? + azx® + ax* + asx’

by solving the following problem
10
Minimize: f(x) >, [P(a,x;) — x}/*)?
i=1

| Subjectto: 0= P(a,j) =5, j=1,8,27,64

‘ P(a,125) =5

8.38 The Williams—Otto process as posed in this problem involves ten variables and seven
constraints leaving 3 degrees of freedom. Three starting points are shown in Table
P8.38.1. Find the maximum Q and the values of the ten variables from one of the start-
ing points (S.P.). The minimum is very flat.

Figure P8.38 shows a simplified block diagram of the process. The plant consists
of a perfectly stirred reactor, a decanter, and a distillation column in series. There is
recycle from the column reboiler to the reactor.

The mathematical descriptions of each plant unit are summarized in Tables P8.38.2
and P8.38.3. The return function for this process as proposed by Williams and Otto
(1960) and slightly modified by DiBella and Stevens (1965) to a variable reactor volume
problem is

100
600 V,

Maximize: Q = [8400(0.3F, + 0.0068 F), — 0.02F, — 0.03F; — 0.01F)

! — 2.22F, — (0.124)(8400)(0.3F, + 0.0068F),) — 60V,]

\ = Return (%)

;‘ TABLE P8.38.1

| Starting points
Variable x X X, X3
Fpa 1 18,187 6,000 22,381
Frg 2 60815 35,000 72,297

i Fpe 3 3,331 10,000 4,391
Fre 4 60,542 15,000 78,144
Fs 5 3,609 5,000 3,140

' Frp 6 10,817 6,000 12,557
a 7 0.761 0.789 0.81
F, 8 13,546 10,000 12,876
Fg 9 31,523 40,000 29,416
T 10 656 610 648
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Fp, product
Fy > Williams-Otto process schematic
Fg——)
Reactor
% (T, V)
Column
F F.
2 Decanter £
F t
¢ waste F,
(c)Fy .
Splitter
(1-a)Fy,
dumped
FIGURE P8.38
TABLE P8.38.2

g; = residual of mass balance on
componenti,i =A, B, C, E G

Constraints

&1 =Fy+Fpy—Fpy =P, =0
& =Fpt+ Frg~Fpp— P —P,=0
83 = Fpe+ 2P — Fpe — 2P, — P3 =0
84 =Frg + 2P, — Fpg =0
85 = Fpc+ Py — Fpg — 0.5P; = 0
8¢ = overall mass balance
=F+F—F,—F=0
g7 = production requirement
=F,— 4763 =0
O0=a=1 500=T=1000

Il
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TABLE P8.38.3
Williams-Otto unit mathematical models
Decanter
Fg = Fy i=A,B CEP
Fe, = Fpe
Distillation column
Fy =Fg i=A B CEG
Fp=Fgp— 0.1Fg
Fyp=Fsp— Fp
Splitter
Fp = aFy i=A B CEGP
Fp,=(1— a)Fy
Reactor (V = 0.0002964 Fy) i a; b;
K; = a,exp (=b/T)V/F}
P, =K Fp,Fpp 1 5.9755 X 10° 12,000
P, = K, FppFpe 2 2.5962 X 1012 15,000
Py = K;FpcFre 3 9.6283 X 101 20,000
TABLE P8.38.4

Williams—Otto process nomenclature

FoFy

"QQQHM

Fresh feeds of components 4, B (1b/h)

Total reactor output flow rate

Reactor output flow rate of component i

Decanter output flow rate of component i
Decanter bottoms flow rate of component G
Column overhead flow rate of component P
Column bottoms flow rate of component i

Total column bottoms takeoff flow rate

Column bottoms takeoff flow rate of component i
Total column bottoms recycle flow rate

Column bottoms recycle flow rate of component i
Fraction of column bottoms recycled to reactor
Reactor volume (ft?) i

Density of reaction mixture (assumed constant, 50 Ib/ft)

345
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8.39 Klein and Klimpel (1967) described an NLP involving the optimal selection of plant
sites and plant sizes over time. The functions representing fixed and working capital
were of the form

Fixed capital: Cost = ay + a;S*

Working capital: Cost = by + b P + b,S*

where S = plant size
P = annual production
a’s, b’s = known constants obtained empirically

Variable annual costs were expressed in the form of
Cost = P(c; + ¢35 + ¢35%)

Transportation costs were assumed to be proportional to the size of the shipments
for a given source and destination.

The objective function is the net present value, NPV (sum of the discounted cash
flows), using a discount rate of 10 percent. All flows except capital were assumed to be
uniformly distributed over the year; working capital was added or subtracted instanta-
neously at the beginning of each year, and fixed capital was added only in the zero year.

The continuous discounting factors were
1. For instantaneous funds,

F,=¢™” (r = interestrate,y = years hence)

2. For uniformly flowing funds,

The variable y may be positive (after year zero) or negative (before year zero) or zero
(for year ending with point zero in time).

As prices and revenue were not considered, maximization of net present value
was equivalent to minimization of net cost.

Let Py, be the amount of product shipped from location i(i = 1, 2, 3, 4) to market
jG=12, 3) inyeark (k=0,1,2,3).Let S;and S; be, respectively, the size of plant
in location 7, and a variable restricted to O or 1, depending on whether S; is 0. Further-
more, let M, be the market demand at center j in year k. Finally, for the sake of con-
venience, let P, denote the total production in plant i during year k.

The nonlinear programming problem is: Find S; and Py, that will

Maximize: > NPV (including shipping)

Subject to: 2 Py = My
i

S,-ZO, P,JkZO

Table P8.39.1 indicates how the net present value was determined for location 1;
NPV relations for the other locations were similarly formed. Table P8.39.2 lists the
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TABLE P8.39.1
Net percent value

1. Contribution of fixed capital (plant 1)

Year Fixed capital Discount factor Discounted cash flow

0(1967) 0.75, + 1.58¢% 1.0517 -0.73625, — 1.57758¢

2. Contribution of working capital (plant 1)

Year Discount Discounted cash flow
end Working capital factor at 10% discount rate
0 0.45, + 0.2Py; + 0.055% 1.000 —0.4S5, — 0.2P;5; — 0.055%
; 1 0.2(P1go — Piop) 0.9048 —0.1810P,y, + 0.1810P,,
! 2 0.2(P1g3 — Pig) 0.8187 —0.1637P,o; + 0.1637P,,
3 ~0.4S; — 0.2P;5; — 0.058¢ 0.7408 +0.2963S; + 0.1482P,o; + 0.0370S¢

3. Contribution of operational cost (plant 1) a. Cost tabulation (excluding shipping)

Year Amount Depreciation® Other costs
1 Py 046675, + 1.0S§  0.035; — 0.01S; + 0.0559% + 0.0759% + 0.1Pyy,
—0.05Py,S; + 0.4PS7%%
2 P 0.11678, + 0.258%  0.03S; — 0.01S, + 0.055%% + 0.075%% + 0.095P,,
—0.0048P;0,8; + 0.38P;5,87%%
3 Py 0.11665, + 0.255%  0.03S; — 0.015; + 0.0559% + 0.0759 + 0.0903Py

—0.0045P103Sl + 0.361P10351

b. Discounted cash flow of costs (plant 1)

Year Discount factor Discounted cost flow at 10% discount rate
1 0.9516 0.19835; + 0.00495, — 0.02475%% + 0.422159% — 0.0495P,,
+0.0025P,;S; — 0.1979P;,ST%%
2 0.8611 0.0348S, + 0.00455, — 0.02245%% + 0.072059% — 0.0425P,,
+0.0020P;,8; — 0.1702P;,S %5
3 0.7791 0.03158, + 0.00415; — 0.020359% + 0.06515%¢ — 0.0366P,q;

+0.0017P;38; — 0.1463P 1,595

4. Contribution of shipping costs (from plant 1)

Discount Discounted cash flow

Year factor Shipping cost at 10% discount rate
1 0.9516 0.8P,,, + 0.5P;,; —0.396P,,; — 0.247P,5;
2 0.8611 0.7P,5, + 0.45P5, —0.313P;,, — 0.201P3,
3 0.7791 0.6Py; + 0.4P;3; —0.243P 3 — 0.162P;3;

*Method of double rate-declining balance and straight-line crossover was used.
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TABLE P8.39.2
The objective function

Zmx = —0.57535, — 1.031359% — 0.0685P,5; — 0.0597P 5, — 0.0522P,; + 0.01355,
—~0.06745% + 0.0025P,(,S; + 0.0020P,,S; + 0.0017P,05S,
—0.1979P,,S7%55 — 0.1702P0,S %% — 0.1463P;(389° — 0.396P,,,
—0.247P 3, — 0.313P,, — 0.202P5, — 0.243P 53 — 0.162P 3, — 0.34285,
—0.89205%° — 0.0685P,y, — 0.0597P,g, — 0.0522P, + 0.01358, — 0.080959%
+0.0025P,,5, + 0.0020P,0,8, + 0.0017P,058, — 0.02227P,,S5 %%
—0.1914P,3,55 %% — 0.1645P355 %% — 0.396P,;; — 0.495P,;; — 0.313P,),
—0.448P,3, — 0.243P,; — 0.405P,;; — 0.31645; — 1.298753% — 0.0942P5,
—0.0819P5y, — 0.0712P3; — 0.053953% + 0.0030P5,S; + 0.0026P5,S,

+ 0.0022P;35; — 0.2227P;30,55 %% — 0.1914P;0,8 5 %55 — 0.1645P30389%
—0.247P5,; — 0.495Ps,; — 0.202P;;, — 0.448Py,, — 0.162P5,; — 0.405Ps;
—~0.24418, — 13707835 — 0.0577P4; — 0.0504P,5 — 0.0440P,q,

+ 0.0020P,;S; + 0.0017P40,S; + 0.0015P 43S, — 0.1484P,, ;%%
—0.1276P43,S7%%5 — 0.1097P44357 %55 — 0.495P,,; — 0.099P,,, — 0.040P,3,
—0.448P,), — 0.090P,y, — 0.040P,3, — 0.405P,;; — 0.088P,; — 0.041P,,

TABLE P8.39.3
The constants

S+ 8+ 8S+5=10 (2) Pyy + Py + Py + Py = 1
(3) Pip+ Pyp + Pyjp + Pyp = 4 (4) Pyj3+ Pz + Pz + Py3 =5
(5) Pipy + Py + Py + Py =2 (6) Piyy + Pogp + Papp + Pypy =3
(7) Pigs & Pagz + Pypy + Py = 2 (8) P13y + Pygy + Pazp + Pz = 4
(9) Pip &+ Pysg + Pygp + Py = 3 (10) Py33 + Poyzy + Pagz + Pyz3 = 2
(I11) Pygy = S, = 0 (12) Pipp = 8§, =0 (13) Pis = 51 =0
(14) Pyyy — S, = 0 (15) Pygp — 82 = 0 (16) Py3 — S, =0
(17) P3y — S3 = 0 (18) P, — 83 = 0 (19) P33 — S, =0
(20) Pyoy =S4 = 0 (1) Pyop =S4 = 0 (22) Py — Sy =0

overall objective function, and Table P8.39.3 lists (1) the 22 constraints, (2) one equa-
tion constraining the total plant capacity to be 10 million pounds per year, (3) nine
equations requiring satisfaction of the three markets every year, and (4) 12 inequalities
calling for plant production not to exceed plant capacity. In addition, the nonnegativ-
ity constraints are applicable to all 40 variables. Thus the problem has 10 linear equal-
ity constraints and 52 inequality constraints.
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8.40 Consider the problem of minimizing the purchase of fuel oil when it is needed to pro-

duce an output of 50 MW from a two-boiler turbine—generator combination that can
use fuel oil or blast furnace gas (BFG) or any combination of these. The maximum
available BFG is specified.

By applying nonlinear curve fitting, we obtained the fuel requirements for the two
generators explicitly in terms of MW produced. For generator 1 we have the fuel
requirements for fuel oil in tons per hour (x;;)

£, = 1.4609 + 0.15186x,, + 0.00145x2,

and for BFG in fuel units per hour (x,,)

f, = 1.5742 + 0.1631x,, + 0.001358x2,

where (x;; + x;,) is the output in MW of generator 1. The range of operation of the
generator is

18 = (xll + xlz) = 30
Similarly for generator 2 the requirement for fuel oil is

g, = 0.8008 + 0.2031x,, + 0.000916x3,

and for BFG,
g, = 0.7266 + 0.2256x,, + 0.000778x2,

where (x,; t+ x,,) is the output in MW of generator 2. The range of operation of the
second generator is

14 = (x21 + ng) = 25

It is assumed that only 10.0 fuel units of BFG are available each hour and that
each generator may use any combination of fuel oil or BFG. It is further assumed that
when a combination of fuel oil and BFG is used, the effects are additive.

The problem is to produce 50 MW from the two generators in such a way that the
amount of fuel oil consumed is minimum. Use successive linear programming.

8.41 For the purposes of planning you are asked to determine the optimal heat exchanger

areas for the sequence of three exchangers as shown in Figure P8.41.
Data:

Overall heat Area
transfer coefficient required Duty
Exchanger [U Btw/(h)(Ft2)(°F)] (ft?) (Btw/h)
U, =120 A 0,
U, =80 Ay 1023
3 U; =40 As Qs

wCp = 10° Btw/(h)(°F)

Hint: Find the temperatures T, T,, T; such that 3 A, is a minimum.
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