10

GLOBAL OPTIMIZATION
FOR PROBLEMS WITH CONTINUOUS
AND DISCRETE VARIABLES
10.1 Methods for Global Optimizationciiieiiiiriinnnnne. 382
10.2 Smoothing Optimization Problemsc.coiiiiieneienenss 384
10.3 Branch-and-Bound Methodscciteeiiinniiinrecnnrenecnns 385
104 Multistart MethodSccvivieviennieeorrranessrscccsnsnsacnns 388
10.5 Heuristic Search Methods . ..o oot vvieiiireetieneeescsesosnsoanenaas 389
10.6 Other Software for Global Optimizationcc0veeeinnnens 411
ReEferenCes ..o evererrseneseeieneassneasocnssosssseasssasosnsss 412
Supplementary Referencesooeveeereiiireneascieiisainees 413

381

382 PART II: Optimization Theory and Methods

IN CHAPTERS 6 AND 8 we showed that in continuous variable minimization prob-
lems with convex feasible regions and convex objectives, any local minimum is the
global minimum. As discussed in Section 8.2, many problems do not satisfy these
convexity conditions, and it is often difficult to verify whether they satisfy them or
not. Models that include nonlinear equality constraints fall in this latter category.
These constraints arise from nonlinear material balances (for which both flows and
concentrations are unknowns), nonlinear physical property relations, nonlinear
blending equations, nonlinear process models, and so on. Another source of non-
convexity can be in the objective function if it is concave, which can occur when
production costs increase with the amount produced, but at a decreasing rate due to
economies of scale. A problem involved in minimizing a concave objective func-
tion over a convex region defined by linear constraints is that it may have many
local minima, one at each extreme point of the region. Nonconvex objective func-
tions and local minima can also occur when you estimate the values of the model
parameters using the least-squares or maximum likelihood objective functions.

Any problem containing discretely valued variables is nonconvex, and such
problems may also be solved by the methods described in this chapter. The search
methods discussed in Section 10.5 are often applied to supply chain and production-
sequencing problems.

10.1 METHODS FOR GLOBAL OPTIMIZATION

If an NLP algorithm such as SLP, SQP, or GRG described in Chapter 8 is applied
to a smooth nonconvex problem, it usually converges to the “nearest” local mini-
mum, which may not be the global mimimum. We refer to such algorithms in this
chapter as “local solvers.” The problem of finding a global minimum is much more
difficult than that of finding a local one, but several well-established general-
purpose approaches to the problem are discussed subsequently.

Figure 10.1 shows a classification of global optimization methods. Exact meth-
ods, if allowed to run until they meet their termination criteria, are guaranteed to
find an arbitrarily close approximation to a global optimum and to verify that they
have done so. These include branch-and-bound (BB) methods, which were dis-
cussed in the context of mixed-integer linear and nonlinear programming in Chap-
ter 9, methods based on interval arithmetic (Kearfott, 1996), and some multistart
procedures, which invoke a local solver from multiple starting points. Heuristic
search methods may and often do find global optimal solutions, but they are not
guaranteed to do so, and we are usually unable to prove that they have found a
global solution even when they have done so. Nonetheless, they are widely used,
often find very good solutions, and can be applied to both mixed-integer and com-
binatorial problems. A heuristic search method starts with some current solution,
explores all solutions in some neighborhood of that point looking for a better one,
and repeats if an improved point is found. Metaheuristics algorithms guide and
improve on a heuristic algorithm. These include tabu search, scatter search, simu-
lated annealing, and genetic algorithms. They use a heuristic procedure for the

CHAPTER 10: Global Optimization for Problems 383

Global
methods
I
Exact Heuristic
methods search methods
Branch .
and bound Interval Multistart
Scatter Simulated Genetic and
Tabu search . R
search annealing evolutionary
FIGURE 10.1

Classification of global optimization methods.

problem class, which by itself may not be able to find a global optimum, and guide
the procedure by changing its logic-based search so that the method does not
become trapped in a local optimum. Genetic and evolutionary algorithms use
heuristics that mimic the biological processes of crossover and mutation. They are
“population-based” methods that combine a set of solutions (the “population”) in
an effort to find improved solutions and then update the population when a better
solution is found. Scatter search is also a population-based procedure.

The methods mentioned earlier are general-purpose procedures, applicable to
almost any problem. Many specialized global optimization procedures exist for
specific classes of nonconvex problems. See Pinter (1996a) for a brief review and
further references. Typical problems are

« Problems with concave objective functions to be minimized over a convex set.
+ “Differential convex” (DC) problems of the form

Minimize: f(x)
Subject to: gj(x) =0, j=12,....J
and xeC

where C is a convex set, and f and each constraint function g; can be expressed as
the difference of two convex functions, such as f(x) = p(x) — g(x).

» Indefinite quadratic programs, in which the constraints are linear and the objec-
tive function is a quadratic function that is neither convex nor concave because
its Hessian matrix is indefinite.

» Fractional programming problems, where the objective is a ratio of two functions.

If a problem has one of these forms, the special-purpose solution methods
designed for it often produce better results than a general-purpose approach. In this

384 PART II: Optimization Theory and Methods

chapter, we focus on general-purpose methods and on frameworks that are applica-
ble to wide classes of problems and do not discuss special problem classes further.

10.2 SMOOTHING OPTIMIZATION PROBLEMS

All gradient-based NLP solvers, including those described in Chapter 8, are
designed for use on problems in which the objective and constraint functions have
continuous first partial derivatives everywhere. Examples of functions that do not
have continuous first partials everywhere are

1| f0)

2. max(f(x),g(x))

3. h(x) = {if x; = 0 then f(x) else g(x)}

4. A piecewise linear function interpolating a given set of (y,, x;) values.

If you encounter these functions, you can reformulate them as equivalent smooth
functions by introducing additional constraints and variables. For example, con-
sider the problem of fitting a model to n data points by minimizing the sum of
weighted absolute errors between the measured and model outputs. This can be for-
mulated as follows:

Minimize: e(x) = EW:'I)’[= h(v;, x)|
=1

where x = a vector of model parameter values
w; = a positive weight for the error at the ith data point
y; = the measured output of the system being modeled when the vector of
system inputs is v;
h(v;, x) = the calculated model output when the system inputs are v,

This weighted sum of absolute values in e(x) was also discussed in Section 8.4 as
a way of measuring constraint violations in an exact penalty function. We proceed
as we did in that section, eliminating the nonsmooth absolute value function by
introducing positive and negative deviation variables dp; and dn; and converting
this nonsmooth unconstrained problem into an equivalent smooth constrained prob-
lem, which is

n

Minimize: >, w;(dp; + dn;) (10.1)
i=1
Subject to: y; — h(v;,x) = dp; — dn, i=1,...,n (10.2)
and dp; =0, dn, =0 i=1,..,n (10.3)

In this problem, if the error is positive, then dp, is positive and dn; is zero in any
optimal solution. For negative errors, dp; is zero and dn, is positive. The absolute

CHAPTER 10: Global Optimization for Problems 385

error is thus the sum of these deviation variables. A similar reformulation allows the
problem of minimizing the maximum error to be posed as a smooth constrained
problem.

If it is difficult or impossible to eliminate the nonsmooth functions by these or
some other transformations, you can apply a gradient-based optimizer and hope
that a nonsmooth point is never encountered. If one is encountered, the algorithm
may fail to make further progress because the computed derivatives at the point are
not meaningful. A large body of literature on methods for nonsmooth optimization
exists (see Hiriart-Urruty and LeMarechal, 1993, for example), but software for
nonsmooth optimization is not yet widely available. Alternatively, you can apply an
optimization method that does not require first partial derivatives. Such algorithms
include the Nelder-Meade simplex method (not the same as the simplex method for
linear programming), the Hooke-Jeeves procedure, or a conjugate directions method
due to Powell that does not use derivatives (Avriel, 1976). These techniques are not
as sensitive to derivative discontinuities as gradient-based algorithms, but continu-
ally improve the objective function until they reach an approximation to a local
minimum. They are not guaranteed to converge to a local solution for nonsmooth
problems, and are basically unconstrained methods. You can incorporate constraints
by using penalty functions, but if a large penalty weight is used, the objective func-
tion becomes ill-conditioned and hard to optimize with high accuracy. The search
methods described in Section 10.5 are not as sensitive to discontinuities and are
much less likely than a local solver to be trapped near a local optimum.

10.3 BRANCH-AND-BOUND METHODS

We have already discussed branch-and-bound methods in Sections 9.2 and 9.3 in
the context of mixed-integer linear and nonlinear programming. The “divide-and-
conquer” principles underlying BB can also be applied to global optimization with-
out discrete variables. The approximation procedure for a function of one variable
is shown in Figure 10.2. The nonconvex function f has three local minima over the
interval [0, 2]. The convex underestimator function f(x) is defined over the entire
interval. The underestimating functions f;(x) and f,(x) are defined over the two
subintervals, and are “tighter” underestimates than f,. We will discuss procedures
for constructing such functions shortly. Because each underestimator is convex,
minimizing it using any convergent local solver leads to its global minimum. Let
x* minimize f;(x) over its associated interval, as shown in Figure 10.2. Then f(x*%)
is a lower bound on the global minimum over that interval, and f(x%) is an upper
bound over the entire interval. These bounds are used to fathom nodes in the BB
tree, in the same way as LP relaxations were used in Chapter 9.

To illustrate, consider a minimization problem involving two variables with
upper and lower bounds:

Minimize: f(x)

Subjectto: 0 =x;, =2, i=1,2

386 PART II: Optimization Theory and Methods

Fx)
fx)
o)
N
Jox) v —
0 x1 1 X % 2
FIGURE 10.2

Convex underestimator of a nonconvex function.

x2
2
1 2
: 3 4
Xy
FIGURE 10.3

Branch-and-bound partitions.

where X = (x,, x,) and fis a2 nonconvex function having several local minima within
the rectangle defined by the bounds. Let the initial partition be composed of four
smaller rectangles, as shown in Figure 10.3.

Figure 10.4 shows a BB tree, with the root node corresponding to the original
rectangle, and each node on the second level associated with one of these four par-
titions. Let f,(x) be the underestimating function for the partition associated with
node i. The lower bounds shown next to each node are illustrative and are derived
by minimizing f,(x) over its partition using any local solver, and the upper bounds

CHAPTER 10: Global Optimization for Problems 387

Upper bound, lower bound
3,22 (0)

Level 1

Level 2 34,22 (1) 3.1,23)(2)

2.9,2.6) (5)

FIGURE 104
Branch-and-bound tree.

are the f values at the points that minimize f;. Because the f; functions for each par-
tition are better estimates for f over their rectangles than f; is, the lower bounds over
each partition are generally larger than the lower bound at the root node, as shown
in Figure 10.4. The upper bounds need not improve at each level, but the f and x
values associated with the smallest upper bound found thus far are retained as the
“incumbent,” the best point found thus far. The best f value at level two is 3.0.

The iterative step in this BB procedure consists of choosing a node to branch
on and performing the branching step. There are several rules for choosing this
node. A popular rule is to select the node with the smallest upper bound, on the
assumption (possibly incorrect) that it leads to better f values sooner. This is node
3 in Figure 10.4. This node’s rectangle is partitioned into two (or possibly more)
subsets, leading to nodes 5 and 6, and the convex subproblems at each node are
solved, yielding the upper and lower bounds shown. Because the lower bound at
node 6 (3.1) exceeds the incumbent value of 3.0, an f value lower than 3.0 cannot
be found by further branching from node 6. Hence this node has been fathomed.
The procedure stops when the difference between the incumbent f value and the
lower bound at each unfathomed node is smaller than a user-defined tolerance.

If each underestimating function is “tighter” than that at the node immediately
above in the tree, the BB procedure eventually terminates. Floudas (2000a) suggests
procedures for constructing these underestimating functions, which apply to specific
commonly occurring nonconvex functions, such as the bilinear function xy, quo-
tients x/y, concave functions of a single variable, and so on. For a general function
f(x) of n variables, defined over a rectangle 1 < x < u, a convex underestimator is

L(x) = f(x) + éai(li) (4 — %) (104)

where the a;’s are positive scalars. Because the summation in Equation (10.4) is
nonpositive, L(x) < f(x), so L is an underestimator of . The summation is a positive
linear combination of convex quadratic functions, so this term is convex. For L to

388 PART II: Optimization Theory and Methods

be convex, the scalars a; must be sufficiently large, as can easily be seen by con-
sidering the Hessian matrix of L:

V2L(x) = V2f(x) + D (10.5)

where D is a positive diagonal matrix with diagonal elements 2¢;. If these elements
are sufficiently large, the Hessian of L is positive-definite for all x in the domain of
J, which implies that L is convex over that domain. Tests to determine how large the
a;’s need to be are in Floudas (2000a, b), and other references cited there. Floudas
has also shown that the maximum difference between the approximating function
L and the actual function fis

n

& > (= L)’ (10.6)

d =
max 4 =

As rectangles are partitioned, the difference (u; — I;) decreases, so the successive
underestimating functions become tighter approximations to f.

104 MULTISTART METHODS

Because software to find local solutions of NLP problems has become so efficient
and widely available, multistart methods, which attempt to find a global optimum
by starting the search from many starting points, have also become more effective.
As discussed briefly in Section 8.10, using different starting points is a common
and easy way to explore the possibility of local optima. This section considers mul-
tistart methods for unconstrained problems without discrete variables that use ran-
domly chosen starting points, as described in Rinnooy Kan and Timmer (1987,
1989) and more recently in Locatelli and Schoen (1999). We consider only uncon-
strained problems, but constraints can be incorporated by including them in a
penalty function (see Section 8.4).

Consider the unconstrained global minimization of a smooth function of » vari-
ables f(x). We assume that upper and lower bounds can be defined for each variable,
so that all local minima lie strictly inside the rectangle R formed by the bounds. Let
L denote the local optimization procedure to be used. L is assumed to operate as fol-
lows: Given any starting point, X, in R, L converges to a local minimum of f that
depends on x, and is “closest” to X in a loose sense. If L is started from each of N
randomly generated starting points, which are uniformly distributed in R, the prob-
ability that the best local optimum found in these N trials is global approaches one
as N approaches infinity (Rinnooy Kan and Timmer, 1989). In fact, L is not even
necessary for this asymptotic result to hold, because the best function value over all
the starting points converges to the globally optimal value as N — oo with prob-
ability 1, but this search usually converges much more slowly.

Because each local optimum may be found many times, this multistart proce-
dure is inefficient. If x¥ denotes the ith local optimum, we define the region of

CHAPTER 10: Global Optimization for Problems 389

attraction of x*, R,, to be the set of all starting points in R from which L converge
to x*. The goal of an efficient multistart method is to start L exactly once in each
region of attraction.

Rinnooy Kan and Timmer (1987, 1989) developed an efficient multistart pro-
cedure called multilevel single linkage (MLSL), based on a simple rule. A uni-
formly distributed sample of N points in R is generated, and the objective function
fis evaluated at each point. The points are sorted according to their f values, and the
PN best points are retained, for which p is an algorithm parameter between O and 1.
L is started from each point of this reduced sample, except if another sample point
with a lower f value exists within a certain critical distance. L is also not started
from sample points that are too near the boundary of R or too close to a previously
discovered local minimmum. Then, N additional uniformly distributed points are
generated, and the procedure is applied to the union of these points and those
retained from previous iterations. The critical distance decreases each time a new
set of sample points is added. The authors show that, even if the sampling contin-
ues indefinitely, the total number of local searches ever initiated by MLSL is finite
with a probability of 1, and each local minimum of fis located with a probability
of 1. They also developed Bayesian stopping rules, which incorporate assumptions
about the costs and potential benefits of further function evaluations, to determine
when to stop the procedure.

10.5 HEURISTIC SEARCH METHODS

Chapter 9 describes several types of problems that require the use of integer-valued
variables and discusses two solution approaches for such problems: branch-and-
bound (BB) and outer approximation (OA). These methods can guarantee a global
solution under certain conditions, but the computational effort required increases
rapidly with the number of integer variables. In addition, BB is guaranteed to find
a global optimum only if the global optimum of each relaxed subproblem is found.
As discussed in Sections 10.3 and 10.4, this may be very hard to do if the sub-
problems are not convex. OA also requires convexity assumptions to guarantee a
global solution (see Section 9.4). Hence, there is a need for alternative methods that
are not guaranteed to find an optimal solution, but often find good solutions more
rapidly than BB or OA. We describe such methods, called heuristic search proce-
dures, in this section. They include genetic algorithms (or, more generally, evolu-
tionary algorithms), simulated annealing, tabu search, and scatter search.
Heuristic search procedures can be applied to certain types of combinatorial
problems when BB and OA are difficult to apply or converge too slowly. In these
problems, it is difficult or impossible to model the problem in terms of a vector of
decision variables, which must satisfy bounds on a set of constraint functions, as
required by OA. One example is the “traveling salesman” problem, in which the fea-
sible region is the set of all “tours” in a graph, that is, closed cycles or paths that visit
every node only once. The problem is to find a tour of minimal distance or cost,

390 PART II: Optimization Theory and Methods

which is to be used by a vehicle that is routed to several stops. The traveling sales-
man problem is the simplest type of vehicle-routing problem, with a single vehicle
leaving from a single starting point. Multivehicle, multistarting point problems can
have constraints such as time windows within which stops must be visited, vehicle
capacities, restrictions on which vehicles can visit which stops, and so on (Crainic
and Laporte, 1998). In all cases, the problem is to find a set of routes and an assign-
ment of vehicles to routes, that visit all stops and meet all the constraints.

Another important class of combinatorial problems is “job-shop” scheduling,
in which you seek an optimal sequence or order in which to process a set of jobs
on one or more machines. Such problems are often encountered in chemical engi-
neering when sequencing a set of products through a batch process, in which set-
up times and costs must be incurred for each unit operation before a product can be
produced, and these times depend on the product previously produced. If there is a
single machine, and the products are numbered from 1 to #, then the feasible region
is the set of all permutations of the positive integers 1, 2, ..., , corresponding to
the order in which the jobs are processed. This is equivalent to a traveling salesman
problem in which each node in a graph corresponds to a job, and the travel times
between nodes are the set-up times between jobs.

These combinatorial problems, and many others as well, have a finite number
of feasible solutions, a number that increases rapidly with problem size. In a job-
shop scheduling problem, the size is measured by the number of jobs. In a travel-
ing salesman problem, it is measured by the number of arcs or nodes in the graph.
For a particular problem type and size, each distinct set of problem data defines an
instance of the problem. In a traveling salesman problem, the data are the travel
times between cities. In a job sequencing problem the data are the processing and
set-up times, the due dates, and the penalty costs.

One measure of the efficiency of an algorithm designed to solve a class of com-
binatorial problems is an upper bound on the time required to solve any problem
instance of a given size, and this time increases with size. Time is often measured by
the number of arithmetic operations or constraint and objective function evaluations
to find a solution. If, for a given algorithm and problem class, it can be shown that
the time required for the algorithm to solve any instance of the problem is bounded
by a polynomial in the problem size parameter(s), then that algorithm is said to solve
the problem class in polynomial time. Some combinatorial problems, for example,
sorting a list, are solvable in polynomial time. For many combinational problems,
however, no known algorithm can solve all instances in polynomial time. Such prob-
lems are called NP-hard. Although methods to find optimal solutions have been
devised that avoid complete enumeration of all solutions (often based on branch-
and-bound concepts), none of them can guarantee a solution in polynomial time.
Hence, heuristic and metaheuristic search methods, which cannot guarantee an opti-
mal solution but often find a good (or optimal) one quickly, are now widely used.

10.5.1 Heuristic Search

Consider the problem: Minimize f(x) subject to xeX, where x represents the vari-
ables or other entities over which we are optimizing f. The objective function f may

CHAPTER 10: Global Optimization for Problems 391

TABLE 10.1
Data for sequencing problem
Processing time Due date Tardiness penalty
Job (days) (day) ($/day)
1 2 5 1
6 7 2
3 4 9 4
TABLE 10.2A
Objective function computation for the sequence (3, 1, 2)
Completion time Tardiness Delay cost
Job (days) (days) 6]
1 4+2=6 6—-5=1 1x1=1
6+6=12 12-7=5 5%2 =10
3 4 Max (4 —9,0)=0 0x4=0
TABLE 10.2B
Swap neighborhood of (3, 1, 2)
i J New permutation Move value
1 2 (1,3,2) 10— 11=-1
1 3 2,1,3) 15-11=
3 3,2, 1 13-11=

be linear or nonlinear, and X is defined by the constraints of the problem. x may be
a cycle in a graph, a permutation (representing a sequence in which to process jobs
on a machine), or, in the simplest case, a vector of n decision variables. The con-
straints may be bounds on functions of x, or they may include verbal logic-based
statements or conditions like “x is a tree in this graph that connects all nodes” or
“if—then” statements.

As an example, consider a problem of sequencing three jobs on a single
machine to minimize the sum of weighted “tardiness” for all jobs, where tardiness
is defined as the difference between the completion time of a job and its due date
if this difference is positive, and zero otherwise. Job processing times, due dates,
and delay penalties for an instance of this problem are shown in Table 10.1.

To show how the objective function is computed, consider the sequence x = (3,
1, 2). The job completion times, tardiness values, and delay costs for this sequence
are shown in Table 10.2A.

The objective value for this sequence is the sum of the costs in the “delay cost”
column:

AB,1,2) =11

392 PART II: Optimization Theory and Methods

TABLE 10.3
Descent method using the search
neighborhood N(x)

1. Start withx e X

2. Find X’ e N(x) such that f (x") < f(x).

3. If no such x’ exists, stop and return x.

4. Otherwise replace x by x’ and return to step 2.

In neighborhood-based heuristic searches, each x € X has an associated neigh-
borhood N(x) that contains all the feasible solutions that the search will explore
when the current point is x. Each alternative solution X' € N(x) is reached from x
by an operation called a move. Consider again the three-job problem based on
Table 10.2A. Let the current sequence x be (3, 1, 2), and suppose that we consider
only neighboring permutations x” that can be reached from x by swapping a pair of
jobs in x. This “swap neighborhood” is shown in Table 10.2B, in which i and j are
the indices of the jobs to be swapped. If there are n jobs, then a swap neighborhood
contains n(n — 1)/2 permutations.

The “move value” column in Table 10.2B contains the change in objective
value realized by making the move, fix") — Ax). Because x = (3, 1, 2), we deter-
mined earlier that f(x) = 11. If the objectives for the new permutations shown in
Table 10.2B are evaluated, move values can be obtained. By moving to permutation
(1, 3, 2), we improve the objective by one unit. Then the same procedure can be
applied at this new point.

This straightforward descent method can be generalized for discrete-variable
problems as shown in Table 10.3 (Glover and Laguna, 1997, Chapter 2). This algo-
rithm is similar to the algorithms for linear programs and continuous-variable non-
linear programs discussed in Chapters 68, where step 2 was conducted by choos-
ing a search direction and performing a line search along that direction. The
variation of this algorithm that seeks the x’' € N(x) with lowest f value is called
steepest descent (see Chapter 6). Although this simple descent method solves some
combinatorial problems from any starting point, for many important problems
(routing and sequencing included) it usually stops at a nonoptimal point, which is
often far from optimal. Such a point is called a local solution relative to the neigh-
borhood N(x). As noted by Glover and Laguna (1997), descent methods by them-
selves have had very limited success in solving hard combinatorial optimization
problems, but they provide an underlying heuristic for a meraheuristic procedure to
guide the search. The resulting metaheuristic algorithms have been widely and suc-
cessfully used.

In fact, most metaheuristics do not require a preexisting heuristic. They simply
require a way to define a neighborhood of any current solution, which contains
alternative solutions as possible moves. For example, tabu search, which is dis-
cussed in the following section, includes strategies for operating directly with such
neighborhoods. Some neighborhood structures allow solutions to be built up one

CHAPTER 10: Global Optimization for Problems 393

element at a time in a constructive way. For example, a spanning tree in a network
may be constructed one arc at a time, each time choosing a new arc that creates no
loops, connects a new node, and has the greatest value or least cost.

10.5.2 Tabu Search

Tabu search (TS) is widely used by operations research analysts, but has received
little attention from chemical engineers, even though it can be used to solve many
important and difficult real-world problems. These include problems of the follow-
ing types: planning and scheduling, telecommunications and multiprocessor com-
puting systems, transportation networks and vehicle routing, operation and design
of manufacturing systems, and financial analysis. An excellent survey of these
applications and pertinent references is found in Glover and Laguna (1997).

As discussed in the previous section, descent heuristics fail to solve many prob-
lems because they get trapped in local minima (relative to the type of neighbor-
hoods they use). That is, they stop at the first solution encountered where no neigh-
boring solution is better. TS, and in fact any metaheuristic search method,
overcomes this limitation by allowing nonimproving moves. The term fabu refers
to TS’s definition of certain moves as forbidden. These are usually specified as
moves to solutions with particular attributes, as illustrated in the following exam-
ple. The tabu moves are specified so as to keep previously performed moves from
being reversed or to prevent already visited solutions from being revisited. These
and other mechanisms force the search process to move beyond the nearest local
minimum and to explore regions where improved solutions may lie.

We explain the ideas behind TS using a problem from Barnes and Vanston
(1981) of sequencing five different product batches through a single-batch process.
Each batch has a processing time and a delay penalty cost, as shown in Table 10.4.
The penalty is charged for any delay in starting production beyond time zero; set-
up costs must also be taken into account.

It is reasonable to schedule jobs with short processing times and high penalty
costs first. This is motivation for a heuristic that computes the ratio of processing
time to penalty cost (see column four of Table 10.4) and sequences the batches in
order of increasing value of this ratio, which is the order given in the table. However,

TABLE 10.4
Batch processing times and delay penalties

Processing time Delay penalty

Batch) (100$/h) Ratio
1 3 7 3/700 = 4.28E-3
2 4 8 4/800 = 5.0E-3
3 1 1 1/100 = 1.0E-2
4 4 3 4/300 = 1.33E-2
5 5 2 5/200 = 2.5E-2

394 PART II: Optimization Theory and Methods

TABLE 10.5
Batch set-up costs

j—=

i 1 2 3 4 5 6

L o 11 6 12 20 14
1 13 7 12 11 10
2 9 11 13 6 12
3 9 10 20 7 15
4 10 7 8 6 12
5 14 13 12 13 9
TABLE 10.6
Calculated completion
times

Batch Completion time

1 3

2 4+4=28
3 3+1=4
4 13+4=17
5 8§+5=13

this ignores the fact that, if batch i was last produced, and batch j is next, there is a
set-up cost of s;; dollars before baich j can begin, representing the time and expense
associated with cleaning up after batch i and preparing the process to produce batch
J- These set-up costs are shown in Table 10.5. The table includes fictitious batches 0
and 6 (always sequenced first and last, respectively, and with zero processing times
and delay penalties), whose set-up costs represent the cost of starting up the first
batch and cleaning up after the last one.
Let

P = (p(1),p(2), -...p(5))

be a permutation of the integers 1 through 5, representing a sequence for produc-
ing the batches, where p(i) is the index of the job in position i. If P = (1, 3, 2, 5,
4), then the completion times of the jobs are as shown in Table 10.6.

The corresponding objective value obj(P) is computed as follows:

Objective (P) = Delaycost(P) + Setupcost(P)

Delay cost(P)

700(3) + 800(8) + 100(4) + 300(17) + 200(13) = 16,600
1100 + 700 + 1000 + 600 + 1300 + 1200 = 5900

(
Setup cost(P)
(

Objective(P) = 22,500

CHAPTER 10: Global Optimization for Problems 395

A TS algorithm for this problem described in Laguna, et al. (1991) modifies the
swap heuristic as follows:

» At each iteration, certain moves are forbidden or tabu.

* One or more move attributes are chosen, and the tabu moves are those whose
attribute(s) satisfy the specified tabu conditions.

* A short-term memory function determines how long a tabu restriction remains
active. This can be expressed as the number of iterations a tabu condition is
enforced once it is imposed.

» The tabu status of a move can be overridden if the objective value after the move
is better than a specified threshold, called an aspiration level.

« A long-term memory function determines when to restart the entire procedure and
what the new starting point should be. These new starting points are chosen to be
in regions of the search space (i.e., the space of all permutations) that have not
been previously explored. This diversifies the search. Long-term memory can
diversify the search in ways other than by direct restarting (Glover and Laguna,
1997) and can also intensify the search by inducing it to explore attractive areas
more thoroughly.

The purpose of a tabu restriction is to prevent a move from being reversed dur-
ing the length of the short-term memory, which is a number of future moves spec-
ified by the variable tabu_size. If, at a given iteration, jobs p(i) and p(j) are
swapped, then any move that places job p(i) earlier in the sequence than position i
is tabu, until zabu_size iterations have occurred or the aspiration level is exceeded.
To keep track of which moves are tabu and to free those moves from their tabu sta-
tus, Laguna et al. define the following data structures

* tabu_list (k) = p(i) if job p(i) is prevented from moving to the left of its tabu posi-
tion at iteration k. This is a circular list of length tabu_size.

* tabu_position p(i) = tabu position for job p(i).

* tabu_state (p(i)) = number of times job p(i) appears on the tabu list.

* agpiration_level (p(i)) = aspiration level for job p(i).

The aspiration level allows a tabu move of a job p(j) to an earlier position if
Current objective value + move_value < aspiration level for job p(})

The aspiration level for a job is initialized to a large value and updated as follows.
Let P be the current sequence and assume that the move of jobs p(i) and p(j) has
the best move_value.

» If aspiration level (p(j)) > objective(P), then aspiration level (p(i)) = objective(P)
» If aspiration level (p(j)) > objective(P) + move_value, then aspiration level
(p(j)) = objective(P) + move_value.

This prevents the immediate reversal of a nonimproving move (one with a positive
move_value) in the next iteration. The reversal of this move now has a negative
move_value, but it is classified as tabu, and the previous update does not allow it to
satisfy the aspiration criterion.

396 PART II: Optimization Theory and Methods

Begin

¢ Initialize long term memory function

* Best_obj = large value

* Do while (Best_obj has changed in the last max_moves_long starting points) Beginl
Generate starting solution P, and set Best_solution = P
Evaluate 0bj(P)
Initialize move_value_matrix
Initialize short term memory function
Do while (moves without improvement < max_moves) Begin2

* Update long term memory function

* Best_move value = large value

* For (all candidate moves) Begin3

» [If (candidate move is admissable) Begin4

* If (move_value<best_move value) Begin5

* Best_move value = move_value

* Best_move = current_move End5

End4

End3

* Execute best_move

* Update objective value: obj(P) = obj(P) + best_move_value

* Update move_value_matrix

* Update short term memory function

» If obj(P)<Best_obj, then Begin6

* Best_obj = 0bj(P)

* Best_solution = P Endé6

End2

End1

FIGURE 10.5
Tabu search procedure for batch sequencing.

Figure 10.5 shows the TS procedure in pseudo-code. This entire procedure is
executed until max_moves_long successive restarts fail to improve the best objec-
tive value. Given a starting solution, the inner do loop is executed until there are
max_moves successive moves without improvement in the best solution found in
the current “pass,” that is, using the current starting solution. A move is considered
a candidate if the jobs being swapped are within a specified “distance” (number of
positions) of one another. This limitation allows search time to be limited, but a
complete search can be done by making this distance equal to the number of
batches. A candidate move is admissible if either it is not tabu or it is tabu but its
tabu status is overridden by the aspiration criterion.

The long-term memory function uses the matrix called “move_value_matrix”
in Figure 10.5, whose (i, j) element is the number of times that job i has been sched-
uled in position j. This matrix is updated after every move by adding 1 to the (7, j)
element if p(i) = j in the current sequence. Then, the fraction of time each job has
spent in each position can be calculated by dividing these matrix elements by the

CHAPTER 10: Global Optimization for Problems 397

total number of moves so far. Penalty costs proportional to these time fractions are
defined and are used in the heuristic that generates starting solutions to force it to
choose diverse starting points. This one-pass heuristic starts by scheduling batch 0
in position 0. Then, the unsequenced job j that minimizes the “distance” from the
previously selected job, say job i, is scheduled next. The “distance” is the set-up
cost between jobs i and j plus a multiple of the ratio of the delay penalty for job j
divided by the largest delay penalty for all unsequenced jobs. If this heuristic is
being used to restart the algorithm, a multiple of the fraction of time that job j has
occupied the current position is added to the “distance,” biasing it to choose differ-
ent positions for the jobs from those they occupied frequently thus far. Such diver-
sification strategies are important elements of intelligent search procedures.

The performance of this TS algorithm on the five-batch problem descnbed ear-
lier is shown in Table 10.7, using the following TS parameter values:

» Maximum moves without improvement = max_moves = 2.

* Maximum number of positions between swapped jobs = 1.

* Length of short-term memory = tabu_size = 3.

* Maximum restarts without improvement = max_moves_long = 4.

At iteration 1, the best move interchanges jobs 1 and 3, with a move value of —1000.
This leads to the new sequence in row 2. In row 1, because job 3 was moved to the
right, it is added to tabu_list in its first position, tabu_state (3) is set to 1 because
job 3 appears once on tabu_list, and tabu_position (3) is set to 1, the original posi-
tion of job 3. Moves that swap job 3 back to position 1 are henceforth tabu, unless
they satisfy the aspiration criterion. At iteration 2, the best available move is to
swap jobs 2 and 3, so job 3 is again added to tabu_list, its tabu_state is increased to
2, and its tabu_position entry is changed to 2. Iterations 2 and 3 fail to improve
Best_obj, so the inner loop is restarted at iteration 4. Note that the current schedule
in row 4 is quite different from those in earlier rows, due to the long-term memory
function. The schedule in row 5 is optimal, but there is no way to prove its opti-
mality, so the search must continue. It is restarted at iterations 7, 9, and 11, and the
procedure stops at iteration 12 due to the limit of four successive restarts without
improvement. A linear mixed-integer programming formulation of a similar pro-
duction sequencing problem is described in Chapter 16.

Unfortunately, no general-purpose TS software is commercially available.
Thousands of TS implementations have been made over the last 15 years (Glover
and Laguna, 1997), but all address specific classes of problems, such as the job
sequencing problem discussed earlier. Many of these implementations have been
extremely successful, because the flexibility of TS allows an experienced analyst to
incorporate his or her knowledge of the problem into the algorithm in many ways.
Specific knowledge can include selecting the neighborhood that defines the possi-
ble next solutions, the short- and long-term memory structures, and the attributes
that determine which solutions are tabu, among other things.

In closing this section, we emphasize that the adaptive memory structures used
in TS encompass a variety of elements not treated in this simple example. Further
details can be found in Glover and Laguna (1997).

urod Junrels mou e SI HONN[OS UKD,

o100 (XN I10'1'1°0°0) 0001— (1'e) 00671 (SHT1°E) Al 00
(0€'0°0°0) 9°9%) (Z°0°1°0°0°0) 00€T1— @) 00291 (S TY1E) «1T N
#0100 (9°6°¢) (I1°0°1°0°0) 0001~ #'s) 0061 F'sTen 01
00°1°0°0) 9'9°¢) (T'00'1°0°0) 000T1— (1'e) 00681 FsTTE) +6
F0'1°0°0) 9¢9) ‘1°'0'1'0'0) 006~ A) 0061 (SH'1°TE) 8
#0°0°0°0) 99°6) (T'1°0°0°0°0) 0091~ (2] 00591 FS1TE) *L
0c'0°0'D) I‘v'p) 00T°0°0°1) 0 €1 000¥T (S'€'1°0) 9

00S€1 (0°€°0°00) () (1°0'C°0°0°0) 00S (€p) 00S€1 (S€v'1°D) S
(0°T°0°0°0) (9°9*%) (T0'1°0°0°0) 0002 1) 00SST (S € 19D b
00T°0°1) (1e'e) ©0°0°T01) 006~ (Al 00671 SY'ETD) €

006€1 (0000 9c'e) (1°0°0°T°0°0) 0001 (T€) 006€T SYTET) (4
0°0'T'0°D) (9'9°¢) (T'00°T°0°0) 0001~ (1'¢) 0061 S'YT1'e) 1

0061 (0°0°0°0°0) (9°99) (€°0°0°0°0°0) 00611 (SY'TTE) +0

9A1309 _.Qo :o_«mmon si aje)s Jnjea A0 0>_uov _.Qo I[NPIYos uoneny
iseg nqey, ngey, nqey, JAOTAI Jsog uﬂ@.ﬁﬂO LICARELG)

wdpqoxd Surouanbas gojeq-9Al € U0 YoIeds Nge} JO SOUBULIOLIdJ

L0T HT9VL

CHAPTER 10: Global Optimization for Problems 399

10.5.3 Simulated Annealing

Simulated annealing (SA) is a class of metaheuristics based on an analogy to the
annealing of metals. Consider a solid with crystalline structure being heated to a
molten state and then cooled until it solidifies. If the temperature is reduced rapidly,
irregularities appear in the crystal structure of the cooling solid, and the energy
level of the solid is much higher than in a perfectly structured crystal. If the mate-
rial is cooled slowly, with the temperature held steady at a series of levels long
enough for the material to reach thermal equilibrium with its environment, the final
energy level will be minimal. Let the state of the system at any temperature be
described by a vector of coordinates g. At a given temperature, while the system is
attaining equilibrium, the state changes in a random way, but transitions to states
with lower energy levels are more likely at lower temperatures than at higher ones.

To apply these ideas to a general optimization problem, let the system state
vector q correspond to the objects to be optimized (job sequences, vehicle routes,
or vectors of decision variables), denoted by x. The system energy level corre-
sponds to the objective function f(x). As in Section 10.5.1, let N(x) denote a neigh-
borhood of x. The following procedure (Floquet et al., 1994) specifies a basic SA
algorithm:

» Choose an initial solution x, an initial temperature 7, a lower limit on tempera-
ture TLOW, and an inner iteration limit L.
* While (T > TLOW), do
e Fork=1,2,...,L do
* Make a random choice of an element X' € N(x).
* Move_value = f(x') — f(x)
* If move_value < 0 (downhill move), set x = x’
* If move_value > 0 (uphill move), set x = x' with probability
exp(—move_value/T). .
* End inner loop
* Reduce temperature according to an annealing schedule. An example is new T =
cT, where 0 < ¢ < 1.
* End temperature loop

Simulated annealing depends on randomization to diversify the search, both in
selecting a move to evaluate (all moves to neighboring points are equally likely)
and in deciding whether or not to accept a move. This basic SA algorithm uses the
Metropolis algorithm (Johnston et al., 1989) to determine move acceptance, in
which downhill moves are always accepted and uphill moves are accepted with a
probability exp(—move_value/T). Note that, as T approaches 0, the probability of
accepting an uphill move approaches 0. Hence, when the temperature is high, many
uphill moves may be accepted, thereby possibly preventing the method from being
trapped at a local minimum with respect to the neighborhood N(x). The Glauber
algorithm accepts all moves with the following probability:

exp(-move_value/T)

Glauber probability = 1 + exp(-move_value/7)

400 PART II: Optimization Theory and Methods

ABCD P—> B ABCD B
L—c
L/ L/ ,
—_— D
——> D

FIGURE 10.6
Separation sequences.

so here an improving move may be rejected. This leads to a search that is well
diversified, so it will come closer to a global optimum, but may take longer than a
Metropolis-based search, which is more likely to find a good solution quickly.

Applying simulated annealing to separation sequence synthesis

Floquet et al. (1994) applied SA to problems of separating a mixture of n com-
ponents into pure products at minimal annual investment plus operating costs. The
assumptions used were

* Each component of the feed stream exits in exactly one output stream of a sepa-
rator. This is called sharp separation.

¢ Only one input/two output (simple) or one input/three output (complex) sharp
separators are used.

Under these assumptions, the problem is to select the separators to be connected
and the way they will be connected. Two possible separation sequences are shown
in Figure 10.6. Floquet et al. (1994) show how to encode possible separation
sequences as vectors containing the entries {-1, 0, 1}, which satisfy appropriate
restrictions, and how to transform such vectors into neighboring sequences. For
example, some transformations correspond to the insertion or deletion of a complex
separator. Given this definition of a solution x and its neighborhood N(x), and given
fixed and operating costs for each type of separator that defines the objective func-
tion f(x), the authors applied simulated annealing to find the cheapest separation
sequence. In solving problems with 5, 10, and 16 components with known optimal
solutions, their SA algorithm found optimal solutions for all cases, and less than
2% of the feasible sequences were evaluated when the best solution was found.
Recall, however, that an optimal solution is not guaranteed in general, and there is
no way to tell when an optimal solution has been found unless the optimal objec-
tive value is known in advance.

10.5.4 Genetic and Evolutionary Algorithms
With the exception of parallel implementations (which are becoming increasingly

important), tabu search and simulated annealing operate by transforming a single
solution at a given step. By contrast, genetic algorithms (GAs) work with a set of

CHAPTER 10: Global Optimization for Problems 401

solutions P = {x;, x,, . . . , x,}, called a population, with each population member
x;, called an individual or member. An initial population is created, and the popu-
lation at the start of an iteration is modified by replacing one or more individuals
with new solutions, which are created either by combining two individuals
(crossover) or by changing an individual (muzation). The procedure is inspired by
the evolution of populations of living organisms, whose chromosomes undergo
crossover and mutation during reproduction. The genetic algorithm template that
follows corresponds to the description in Reeves (1997).

« Choose an initial population, and evaluate the fitness of each individual.
« While termination condition not satisfied do
o If crossover condition satisfied then
Select parent individuals.
Choose crossover parameters.
Perform crossover.
« If mutation condition satisfied then
Choose mutation points.
Perform mutation.
« Evaluate fitness of offspring.
» Update population.

We now discuss the main steps of this algorithm. For more details, see Reeves
(1997) and several other articles in that issue of the INFORMS Journal on Com-

puting.

Solution encoding

In the original genetic algorithms proposed by Holland (1975), the individuals
were binary vectors that represented encodings of solutions. For example, if a solu-
tion X is a vector of n decision variables, a binary encoding is obtained by repre-
senting each component of X as a binary number and concatenating these bit
strings. In this encoding, the bits 0 and 1 are called the alphabet. Other alphabets
are possible, and many GAs are designed to deal with x vectors of n variables
directly without any encoding.

Initial population and population size

The initial population should be diverse. Elements are often generated ran-
domly using a uniform distribution over the solution space. As for population size,
many authors have reported satisfactory results with population sizes as small as
30, although values of 50-100 are more common.

Crossover and mutation conditions

Crossover and mutation conditions are usually randomized rules, which
determine if these operators are to be applied in the current iteration. Crossover
is commonly applied in most if not all iterations, whereas mutation is applied less
frequently.

402 PART II: Optimization Theory and Methods

Crossover and mutation

The crossover operation replaces some of the elements in each parent solution
with those in the other. For example, in one-point crossover, with parents P1 and
P2 represented by real-valued vectors, and with the crossover point after the third
component, the parents and offspring are as shown here for a five-variable problem:

P1 =(1.2,3,5,3.1,4) 01 = (12,3,5,6.3,5)
P2 = (2,1,0,6.3,5) 02 = (2,1,0,3.1,4)

Multipoint crossover is also used, with r crossover points chosen randomly.
Crossover can be further generalized by making r a random variable, and copying
an element from the first parent with probability g, and from the second parent with
probability (1 - g). The case ¢ = 0.5 is called uniform crossover. As an example of
a mutation operator, for populations of real-valued vectors, Fogel (1995) suggests
simply adding a Gaussian random variable to each component of a population
member. When the individuals are bit strings, the “mutation points” are often ran-
domly selected bits, which are then complemented to create the new solution.

In an evolutionary algorithm, the “classical” crossover operation is replaced by
a more general “recombination” operation, which can be any procedure that com-
bines two or more “parents” to produce one or more “offspring.” As an example,
the scatter search procedure described in Glover and Laguna (1997) uses linear
combinations of several individuals to produce offspring. Fogel (1995) creates one
offspring from each individual (a vector of » real numbers) by adding an inde-
pendent, normally distributed random variable to each component. This can also be
viewed as a replacement for mutation.

Fitness and its role in selecting parents and mutation candidates

In unconstrained optimization problems, you can use the value of the objective
Jfx) as a measure of the “fitness” of an individual X, but some transformation must
be applied when the objective is being minimized (for example, use —f(x)). More
generally, fitness can be any monotonically increasing function of the objective.
Using the objective directly or some simple modification of it is rarely effective,
however, because it is sensitive to objective function scaling. Consider two values
of f: 10 and 20. Adding 1000 to f transforms these values to 1010 and 1020, whose
percentage difference is much smaller. If the probability of being chosen to be a
parent is equal to an individual’s share of total population fitness, then before
adding 1000, these probabilities are 1/3 and 2/3, and after they are 1010/2030 and
1020/2030, both close to 0.5. Reeves (1997) recommends ranking procedures, the
simplest of which ranks individuals in order of their objective function values and
sets fitness equal to that ranking. Once a measure of fitness has been chosen, a com-
mon procedure for selecting parents or mutation candidates is random selection
from the population, using a probability distribution that assigns higher probabili-
ties to individuals with higher fitness, such as that used in the previous example.

CHAPTER 10: Global Optimization for Problems 403

Updating the population

After a number of new solutions are produced by crossover (or more generally,
recombination) and mutation operations, improved solutions must be incorporated
into the population. The best solution found thus far is almost always retained. A
common strategy replaces a certain fraction of the remaining individuals, either
with improved offspring or with new individuals chosen to maintain diversity.
Another strategy is tournament selection, in which new solutions and current pop-
ulation members compete in a “tournament.” Each solution competes with K other
solutions, which may be randomly selected, and, in each pairwise comparison, the
solution with best fitness value wins. If P is the population size, the P solutions with
the most wins become the new population.

Constraints

When there are constraints, GAs face a fundamental difficulty, namely that
many crossover or mutation operators rarely yield feasible offspring, even if the
parents are feasible. This can lead to a population with an excessive number of
infeasible solutions. To alleviate this problem, GAs often include a penalty function
in f (see Section 8.4) to measure fitness. A value must be chosen for the penalty
weight, however. If this is too small, the original problem of too many infeasible
solutions remains, and if it is too large, the search tends to reject points with small
infeasibilities, even if they are close to an optimal solution.

For an excellent introduction to genetic algorithms, see the website constructed
by Marek Obitko of the Czech Technical University at http:/cs.felk.cvut.cz/
~xobitko/ga/. It contains a genetic algorithm, coded as a Java Applet, which the
user can run interactively, specifying his or her own objective if desired.

10.5.5 Using the Evolutionary Algorithm in the Premium Excel Solver

An evolutionary algorithm is included in the current release of Frontline Systems’
Premium Excel Solver (for current information, see www.frontsys.com). It is
invoked by choosing “Standard Evolutionary” from the Solver dropdown list in the
Solver Parameters Dialog Box. The other nonlinear solver is “Standard GRG Non-
linear,” which is the GRG2 solver described in Section 8.7. As discussed there,
GRG2 is a gradient-based local solver, which will find the “nearest” local solution
to its starting point. The evolutionary solver is much less likely to stop at a local
minimum, as we illustrate shortly.

The “Options” box for the evolutionary solver is shown in Figure 10.7. The
solver stops when either the time or iterations limit is reached, or when 99% of the
population members have fitness values such that the fractional deviation between
largest and smallest is less than the “Convergence” tolerance shown in the figure.
The population size cannot be less than 10 or more than 200, and the initial popu-
lation is chosen mainly by random sampling from within the hyperrectangle spec-
ified by the bounds on the variables. You are advised to define bounds for all vari-
ables, so the initial sampling can be performed from a hyperrectangle of limited

404 PART II: Optimization Theory and Methods

FIGURE 10.7
Options dialog for the evolutionary solver. Permission by Microsoft.

size. The initial decision variable values entered in the spreadsheet are also
included in the initial population, perhaps several times, so the method benefits
from a good starting point.

As in the GA template presented earlier, an iteration of the evolutionary algo-
rithm consists of a crossover step involving two or more parents, mutation of a sin-
gle population member (which is performed with the probability specified in the
“Mutation Rate” box), and an optional local search. Note that the default mutation
probability is 0.075, so if this value is used, mutation is fairly rare. Three mutation
strategies are possible, one of which is selected if mutation is performed. A single
variable in the single population element is selected for mutation. The three strate-
gies alter the variables value as follows: (1) replace it by a random value from a uni-
form distribution; (2) move it to either its upper or lower bound; or (3) increase or
decrease it by a randomly chosen amount, whose magnitude decreases as the iter-
ations progress. In the population update, if a new element is “worse” than all pop-
ulation members, it is discarded. If not, the member to be replaced may not be the
worst. Instead, a probabilistic replacement process is used, where the worst mem-
bers have higher probabilities of being replaced. Computational experiments have
shown that this leads to a more diverse population and to overall better performance
than if the worst element were replaced each time. The measures of goodness used
to define better and worse are complex, involving both objective values and penal-

CHAPTER 10: Global Optimization for Problems 405

TABLE 10.8
GRG results for Branin problem

Changing cells Starting point 1 Starting point 2 Starting point 3

Initial x, 1 -5 =5
x 1 5 10
Final x; 3.141590675 9.000272447 —2.619502503
X, 2.274999493 0.999727553 10
Final objective 0.397887358 2.550824843 2.791184064

ties for infeasibility. In some cases, infeasible points with good objective function
values are accepted into the population. In others, an attempt is made to modify a
solution to “repair” infeasibilities.

Table 10.8 shows the result of applying the “Standard GRG Solver” to a two-
variable, one-constraint problem called the Branin problem that has three local
optima and a global optimum with objective function value of 0.397. The objective
function is constructed in three steps:

=(3)[(5) -

= (x,—t; — 6) (10.7)
t; = 9.602113 cos(x;) + 10
=ttt

and the problem is
Minimize: f
Subjectto: x; + x, = 10

Starting from (1, 1), GRG finds the global solution, but it finds the two inferior
local optima starting from the points (-5, 5) or (-5, 10). . . . The evolutionary solver
finds the global optimum to six significant figures from any starting point in 1000
iterations.

This problem is very small, however, with only two decision variables. As the
number of decision variables increases, the number of iterations required by evolu-
tionary solvers to achieve high accuracy increases rapidly. To illustrate this, con-
sider the linear project selection problem shown in Table 10.9. The optimal solu-
tion is also shown there, found by the LP solver. This problem involves determining
the optimal level of investment for each of eight projects, labeled A through H, for
which fractional levels are allowed. Each project has an associated net present value
(NPV) of its projected net profits over the next 5 years and a different cost in each
of the 5 years, both of which scale proportionately to the fractional level of invest-
ment. Total costs in each year are limited by forecasted budgets (funds available in

*anfeA Juasald 19U = AJN HOUDIAGY

I 8LLO I 0 0 70 L99°0 0 suospa(f rewndQ
0S 0S G Teag 0 01 0T o1 01 01 0¢ 01 § I8ax
0S 0¢ ¥ X 0 01 0T o1 0T 01 0 0z dvax
0S 0S € Teax 174 01 0T 01 0¢ 01 0 0T € dua)g
001 06 T 1) 0€ ov 0C o1 0€ o1 01 0C T 189K
0€T 0€T [Tea) 08 0S ov 0S 0€ 0T 001 07 [Ieax :8)50D)
IT°6€8 AdN 1e10], 00€ S91 €57 o€t 0L 611 L6IT ST IN[BA JUISAIJ N
J[qepiese (spafoxd J) H D) A q a 2 g 14
spung uonnjos
rewmdo 13foxg

sjureI)suod 1PSpng Pim waqoxd uonddas 1Pfoig

601 H'TAVL

406

CHAPTER 10: Global Optimization for Problems 407

TABLE 10.10
Final objective values obtained by
evolutionary solver

Run Iterations Best objective value found
1 1,000 769.91
2 1,000 771.77
3 1,000 789.23
4 5,000 804.67
5 5,000 784.99
6 10,000 811.21
7 10,000 792.47
8 28,244 806.69

the last column), and the problem is to maximize the total value from all projects
subject to the budget constraints. The summed NPV and the summed annual cost
for each year at the optimum is in the next to last column. Note that the optimal
solution in the bottom row of the table is at an extreme point because there are eight
variables and eight active constraints (including those that require each decision
variable to be between zero and one).

Table 10.10 shows the performance of the evolutionary solver on this problem
in eight runs, starting from an initial point of zero. The first seven runs used the iter-
ation limits shown, but the eighth stopped when the default time limit of 100 sec-
onds was reached. For the same number of iterations, different final objective func-
tion values are obtained in each run because of the random mechanisms used in the
mutation and crossover operations and the randomly chosen initial population. The
best value of 811.21 is not obtained in the run that uses the most iterations or com-
puting time, but in the run that was stopped after 10,000 iterations. This final value
differs from the true optimal value of 839.11 by 3.32%, a significant difference, and
the final values of the decision variables are quite different from the optimal values
shown in Table 10.9.

If constraints that the decision variables be binary are added, however, the evo-
lutionary solver reaches the optimal objective value of 767 in two runs with a 5000-
iteration limit, and in one of two runs with a 1000-iteration limit. This is because
only 28 = 256 possible solutions need to be explored. Hence, if high accuracy is
required, general-purpose evolutionary algorithms seem best suited to small prob-
lems with continuous variables, but they can find good solutions to larger problems,
including integer and mixed-integer problems. Of course, evolutionary solvers (or
any other search method) can be combined with local solvers like GRG, simply by
starting the local solver at the final point obtained by the search procedure. If the
problem is smooth and this point is near a global optimum, the local solver may
well find the global solution to high accuracy. A local solver or heuristic can also
be combined with scatter search, as described in the next section.

408 PART II: Optimization Theory and Methods
10.5.6 Scatter Search

Scatter search, described in Glover and Laguna (1997) and Glover (1998), is a
population-based search method that primarily uses deterministic principles to
strategically guide the search. Its steps are shown here, stated for problems whose
only constraints are bounds on the variables. These bounds are taken into account
when generating trial and combined solutions. It may, however, be applied to prob-
lems with more general constraints by augmenting the objective function with a
penalty function (see Section 8.4).

Steps of Scatter Search

1. Create an initial diverse trial set of solutions.
2. Apply an improvement method to some or all trial solutions. Save the r best solu-
tions found as members of the initial reference set, R.
3. Repeat steps 1 and 2 until some designated number of reference set solutions
have been found.
. Select subsets of the reference set to use in step 5.
. For each subset chosen in step 4, use a solution combination method to produce
one or more combined solutions.
6. Starting from each of the combined solutions in step 5, use the improvement
method to create a set of enhanced solutions.
7. If an enhanced solution is better than any member of the reference set, insert it
in the reference set and delete the worst member of the set.
8. Return to step 4, and repeat until some stopping condition is met. Such condi-
tions may be based on elapsed time or iterations, or on lack of improvement in
the objective.

O A~

Explanation of scatter search steps

Step 1. starts with a large set of “seed” solutions, which may be created by
heuristics or by random generation. One possible implementation then generates a
diverse subset of these by choosing some initial seed solution, then selecting a sec-
ond one that maximizes the distance from the initial one. The third one maximizes
the distance from the nearest of the first two, and so on.

The improvement method used in steps 2 and 6 may be one of the following:

* A heuristic descent method like that outlined in Figure 10.5 if the problem is
combinatorial.

* A local NLP solver like the GRG or SQP algorithms described in Chapter 8; in
this case, the problem must be a constrained, possibly nonconvex problem with
continuous variables.

* Simply an evaluation of the objective and constraint functions.

Steps 4 through 6 are the scatter search counterparts to the crossover and muta-
tion operators in genetic algorithms, and the reference set corresponds to the GA

CHAPTER 10: Global Optimization for Problems 409

population. The solution combination method produces combined solutions that are
linear combinations of those in the subsets produced in step 4. However, variables
that are required to take on integer values are subjected to generalized rounding
processes, that is, processes for which the rounding of each successive variable
depends on the outcomes of previous roundings. In the simplest case, two subsets,
each containing a single solution, are chosen, with one solution selected to have a
good objective value (to intensify the search in the neighborhood of good solutions)
and the second chosen to be far from the first (to diversify the search). In this case,
taking linear combinations of these two solutions produces new ones that are on the
line segment between and beyond the two “parent” solutions. These are then used
as starting points for the improvement method.

Scatter search has been implemented in software called OPTQUEST (see
www.opttek.com). OPTQUEST is available as a callable library written in C,
which can be invoked from any C program, or as a dynamic linked library
(DLL), which can be called from a variety of languages including C, Visual
Basic, and Java. The callable library consists of a set of functions that (1) input
the problem size and data, (2) set options and tolerances, (3) perform steps 1
through 3 to create an initial reference set, (4) retrieve a trial solution from
OPTQUEST to be input to the improvement method, and (5) input the solution
resulting from the improvement method back into OPTQUEST, which uses it as
the input to step 7 of the scatter search protocol. The improvement method is
provided by the user. We use the term improvement loosely here because the user
can simply provide an evaluation of the objective and constraint functions.

Optimizing simulations

OPTQUEST has also been combined with several Monte Carlo and discrete-
event simulators. The Monte Carlo simulators include an Excel add-on called Crys-
tal Ball (see www.decisioneering.com). It allows a user to define a subset of spread-
sheet cells as random input variables with specified probability distributions and to
designate several output cells that depend on these inputs and on other nonrandom
input cells. The program then samples a specified number of times from the input
distributions, evaluates the output cells, and computes statistics and histograms of
the distributions of each output cell. In an optimization, a set of (nonrandom) input
cells are designated as decision cells, some statistic associated with an output cell
(typically its mean) is selected to be the objective function, and other statistics of
other outputs may be taken as constraints. OPTQUEST is then applied to vary the
decision variables in order to optimize the objective subject to the constraints. For
each trial solution suggested by OPTQUEST, a complete simulation is run, and the
designated cell statistics are returned to OPTQUEST. As an example, one can min-
imize the average of total holding plus set-up cost in an inventory problem with ran-
dom demand, by choosing an optimal reorder level and order quantity. In such
problems, the average value returned by Crystal Ball is only an estimate of the true
average, so it contains some random error, which can be reduced by using a larger
sample size. OPTQUEST is able to process these noisy objective values and still
return a good approximation to an optimal solution.

410 PART II: Optimization Theory and Methods

TABLE 10.11
OPTQUEST applied to problem in Table 10.8
Iteration Best objective x1 x2
1 27.7029 1 1
4 8.8072 8.00106 1.99894
19 0.471901 3.19623 1.98847
89 0.406846 3.18067 2.28509
150 0.401044 3.15053 2.3207
205 0.39855 3.14473 2.29735
335 0.398046 3.14732 2.26958
459 0.397898 3.14194 2.2716
565 0.397887 3.14159 2.2751
TABLE 10.12
OPTQUEST applied to problem in Table 10.9
Iteration Best objective A B E
1 0.00 0 0 0
3 300.00 0 0 0
10 565.00 1 0 1
35 604.76 0.13 0.67 0.89
67 609.51 0.89 0.53 0.72
78 721.47 0.07 0.40 0.78
80 730.94 0.08 0.48 0.77
82 74277 0.09 0.58 0.76
84 757.56 0.10 0.70 0.75
159 766.88 0.09 0.72 0.77
161 769.21 0.09 0.72 0.78
1005 794.13 0.28 0.69 0.72
2084 794.35 0.28 0.69 0.72
2963 794.73 0.27 0.69 0.72
4024 794.82 0.27 0.69 0.72
4996 797.25 0.24 0.70 0.72
Optimal 839.11 0.00 0.67 0.00

OPTQUEST examples

Crystal Ball can deal with spreadsheets that contain no random variables, and
OPTQUEST can be applied to deterministic optimization problems arising from
such spreadsheets. Table 10.11 shows the performance of OPTQUEST applied to
the two-variable, one-constraint problem defined in Equations (10.7), which was
solved by an evolutionary algorithm in Section 10.5 to six-digit accuracy in 1000
iterations. OPTQUEST finds the same solution with similar effort.

Table 10.12 shows OPTQUEST"’s progress on the project selection LP, whose
optimal solution is given in Table 10.9. Initial progress is rapid, but it slows rapidly
after about 1000 iterations, and after 5000 iterations the best objective value found
is 797.25, about 5% short of the optimal value of 839.11. The values of variables A,

CHAPTER 10: Global Optimization for Problems 411

TABLE 10.13
Classification of metaheuristic
search procedures

Metaheuristic Classification

Genetic algorithms M/S/P

Scatter search A/N/P
Simulated annealing M/S/1
Tabu search A/N/1

B, and E are also shown. Although B is reasonably near its optimal value, A and E
are far from theirs. This performance is comparable to that of the evolutionary algo-
rithm in the Extended Excel Solver, shown in Table 10.10. If the decision variables
in this problem must be binary, however, then OPTQUEST finds the optimal solu-
tion, whose objective value is 767, in only 116 iterations. The evolutionary algorithm
found this same optimal solution in one of two runs using 1000 iterations.

Classifying metaheuristics

Glover and Laguna (1997) classify metaheuristics according to a three-attribute
scheme as shown in Table 10.13. In the first position, “A” denotes the use of adap-
tive memory, and “M” means memoryless. An important feature of tabu and scat-
ter search is remembering attributes of past solutions to guide the search in an adap-
tive way, that is, the length and operation of the memory may vary as the search
progresses. Genetic algorithms and simulated annealing are viewed as not having
adaptive memory, although GAs do retain information on the past through the pop-
ulation itself. An “N” in the second position indicates that a systematic neighbor-
hood search is used to find an improved solution, and “S” indicates that a random-
ized sampling procedure is employed. Although traditional GA and SA methods
use random sampling, some recent SA and evolutionary algorithms either replace
this with a neighborhood search or initiate a search from a point found by a ran-
domized procedure. A “1” in the third position indicates that the method uses a pop-
ulation of size 1, that is, it moves from a current solution to a new one; “P” indi-
cates that a population of size P is used.

10.6 OTHER SOFTWARE FOR GLOBAL OPTIMIZATION

In addition to the Premium Excel Solver and Optquest, there are many other soft-
ware systems for constrained global optimization; see Pintér (1996b), Horst and
Pardalos (1995), and Pintér (1999) for further information. Perhaps the most widely
used of these is LGO (Pintér, 1999), (Pintér, 2000), which is intended for smooth
problems with continuous variables. It is available as an interactive development
environment with a graphical user interface under Microsoft Windows, or as a
callable library, which can be invoked from an application written by the user in

412 PART II: Optimization Theory and Methods

Fortran, C/C+ +, Visual Basic, or Delphi. The user provides the model coded as a
corresponding subroutine or function.

LGO operates in two phases. The first is the global phase, which attempts to
find a point which is a good approximation to a global optimum. It uses an adap-
tive deterministic as well as a random sampling technique, with an option to apply
these within a branch-and-bound procedure. The ensuing local phase starts from
this point and finds an improved point, which is the “nearest” local optimum, using
a combination of local gradient-based NLP algorithms.

REFERENCES

Avriel, M. Nonlinear Programming. Prentice-Hall, Englewood Cliffs, NJ (1976).

Barnes, J. W.,; and L. K. Vanston. “Scheduling Jobs with Linear Delay Penalties and
Sequence Dependent Setup Costs.” Oper Res 29: (1) 146-161 (1981).

Crainic, T. G.; and G. Laporte, eds. Fleet Management and Logistics. Kluwer Academic
Publishers, Boston/Dordrecth/London (1998).

Floquet, P.; L. Pibouleau; and S. Domenech. “Separation Sequence Synthesis: How to Use
a Simulated Annealing Procedure.” Comput Chem Eng 18: 1141-1148 (1994).

Floudas, C. A. “Global Optimization in Design and Control of Chemical Process Systems.”
J Process Cont 10: 125-134 (2000a).

Floudas, C. A. Deterministic Global Optimization: Theory, Methods, and Applications.
Kluwer Academic Publishers, Norwell, MA (2000b).

Fogel, D. B. “A Comparison of Evolutionary Programming and Genetic Algorithms on
Selected Constrained Optimization Problems.” Simulation 64: 397-404 (1995).

Glover, F. A Template for Scatter Search and Path Relinking, working paper, School of Busi-
ness, University of Colorado, Boulder, CO, 80309 (1998).

Glover, E; and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA
(1997).

Hiriart-Urruty, J. D.; and C. Lemarechal. Convex Analysis and Minimization Algorithms.
Springer-Verlag, Berlin (1993).

Holland, J. H. Adaptations in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI (1975), reissued by MIT Press, Cambridge, MA (1992).

Horst, R.; and P. M. Pardalos. Handbook of Global Optimization. Kluwer Academic Pub-
lishers, Dordrecht/Boston/London (1995).

Johnston, D. S.; C. R. Aragon; L. A. McGeoch; et al. “Optimization by Simulated Anneal-
ing: An Experimental Evaluation: Part 1, Graph Partitioning.” Oper Res 37: 865-892
(1989).

Kearfott, R. B. Rigorous Global Search: Continuous Problems. Kluwer Academic Publish-
ers, Norwell, MA (1996).

Laguna, M.; J. W. Barnes; and F. Glover. “Tabu Search Methods for a Single Machine
Scheduling Problem.” J Intell Manufact 2: 63 (1991).

Locatelli, M.; and F. Schoen. “Random Linkage: A Family of Acceptance/Rejection Algo-
rithms for Global Optimization.” Math Prog 85: 379-396 (1999).

Pintér, J. D. Global Optimization in Action (Continuous and Lipschitz Optimization: Algo-
rithms, Implementations, and Applications). Kluwer Academic Publishers, Norwell,
MA (1996a).

CHAPTER 10: Global Optimization for Problems 413

Pintér, J. D. “Continuous Global Optimization Software: a Brief Review.” Optima 52: 1-8
(1996b).

Pintér, J. D. “Continuous Global Optimization.” Interactive Transactions of ORMS 2 (1999).
Available online at http://catt.bus.okstate.edu/itorms.

Pintér, J. D. Computational Global Optimization in Nonlinear Systems: An Interactive Tuto-
rial. Published for INFORMS by Lionheart Publishing, Atlanta (2000). Available
online at www.lionhrtpub.com/books.

Reeves, C. R. “Genetic Algorithms for the Operations Researcher.” INFORMS J Comput
9(3): 231-250 (1997).

Rinnooy Kan, A. H. G.; and G. T. Timmer. “Stochastic Global Optimization Methods, Part
2: Multi Level Methods.” Math Prog 39: 57-78 (1987).

Rinnooy Kan, A. H. G.; and G. T. Timmer. “Global Optimization,” Chapter 9 In Handbooks
in OR and MS, vol. 1. G. L. Nemhauser et al., eds. Elsevier Science Publishers B. V.,
Amsterdam, The Netherlands (1989).

SUPPLEMENTARY REFERENCES

Adjiman, C. S.; and C. A. Floudas. “Rigorous Convex Underestimators for General Twice-
Differentiable Problems.” J Global Optim 9: 23 (1996).

Adjiman, C. S.; L. P. Androulakis; C. D. Maranas; and C. A. Floudas. “A Global Optimiza-
tion Method aBB for Process Design.” Comput Chem Eng 20: S419—-424 (1996).
Adjiman, C. S.; I. P. Androulakis; and C. A. Floudas. “A Global Optimization Method aBB,
for General Twice-Differentiable Constrained NLPs II. Implementation and Computa-

tional Results.” Comput Chem Eng 22: 1159-1179 (1998).

Adjiman, C. S.; S. Dallwig; C. A. Floudas; and A. Neumaier. “A Global Optimization
Method, aBB, for General Twice-Differentiable Constrained NLPs—I, Theoretical
Advances.” Comput Chem Eng 22: 1137-1158 (1998).

Angeline, P. J.; and K. E. Kinnear Jr. Advances in Genetic Programming, vol. 2. MIT Press,
Cambridge, MA (1998).

Azzaro-Pantel, C.; L. Bernal-Haro; P. Baudet; S. Demenech, et al. “A Two-Stage Method-
ology for Short-term Batch Plant Scheduling: Discrete-Event Simulation and Genetic
Algorithm.” Comput Chem Eng 22: 1461-1481 (1998).

Choi, H.; J. W. Ko; and V. Manousiouthakis. “A Stochastic Approach to Global Optimiza-
tion of Chemical Processes.” Comput Chem Eng 23: 1351-1358 (1999).

Esposito, W. R.; and C. A. Floudas. “Parameter Estimation in Nonlinear Algebraic Models
via Global Optimization.” Comput Chem Eng 22: S213-220 (1998).

Fogel, D. B. “A Comparison of Evolutionary Programming and Genetic Algorithms on
Selected Constrained Optimization Problems.” Simulation 64: 3499 (1995).

Friese, T.; P. Ulbig; and S. Schulz. “Use of Evolutionary Algorithms for the Calculation of
Group Contribution Parameters in Order to Predict Thermodynamic Properties. Part 1:
Genetic Algorithms.” Comput Chem Eng 22: 1559-1572 (1998).

Garrard, A.; and E. S. Fraga. “Mass Exchange Network Synthesis Using Genetic Algo-
rithms.” Comput Chem Eng 22: 1837-1850 (1998).

Greeff, D. J.; and C. Aldrich. “Empirical Modelling of Chemical Process Systems with Evo-
lutionary Programming.” Comput Chem Eng 22: 995-1005 (1998).

Gross, B.; and P. Roosen. “Total Process Optimization in Chemical Engineering with Evo-
lutionary Algorithms.” Comput Chem Eng 22: $229~236 (1998).

414 PART II: Optimization Theory and Methods

Hanagandi, V.; and M. Nikolaou. “A Hybrid Approach to Global Optimization Using a
Clustering Algorithm in a Genetic Search Framework” Comput Chem Eng 22:
1913-1925 (1998).

Haupt, R. L. Practical Genetic Algorithms. Wiley, New York (1998).

Jung, J. H.; C. H. Lee; and I-B. Lee. “A Genetic Algorithm for Scheduling of Multi-Product
Batch Processes.” Comput Chem Eng 22: 1725-1730 (1998).

Karr, C. L.; and L. M. Freeman. Industrial Applications of Genetic Algorithms. CRC Press,
Boca Raton, FL (1998).

Lohl, T.; C. Schulz; and S. Engell. “Sequencing of Batch Operations for Highly Coupled
Production Process: Genetic Algorithms Versus Mathematical Programming.” Comput
Chem Eng 22: S579-585 (1998).

Mitchell, M. An Introduction to Genetic Algorithms. The MIT Press, Cambridge, MA
(1998).

Pham, Q.T. “Dynamic Optimization of Chemical Engineering Processes by an Evolutionary
Method.” Comput Chem Eng 22: 1089-1097 (1998).

Sen, S.; S. Narasimhan; and K. Deb. “Sensor Network Design of Linear Processes Using
Genetic Algorithms.” Comput Chem Eng 22: 385-390 (1998).

Wang, K.; Lohl, T.; Stobbe, M.; and S. Engell. “A Genetic Algorithm for Online-scheduling
of a Multiproduct Polymer Batch Plant.” Comput Chem Eng 24: 393-400 (2000).
Zamora, J. M.; and I. E. Grossmann. “Continuous Global Optimization of Structured

Process Systems Models.” Comput Chem Eng 22: 1749-1770 (1998).

PART III
APPLICATIONS OF OPTIMIZATION

THIS SECTION OF the book is devoted to representative applications of the opti-
mization techniques presented in Chapters 4 through 10. Chapters 11 through 16
include the following major application areas:

Heat transfer and energy conservation (Chapter 11)
Separations (Chapter 12)

Fluid flow (Chapter 13)

Reactors (Chapter 14)

Large-scale plant design and operations (Chapter 15)
Integrated planning, scheduling, and control (Chapter 16)

A S

Each chapter presents several detailed studies illustrating the application of
various optimization techniques. The following matrix shows the classification of
the examples with respect to specific techniques. Truly optimal design of process
plants cannot be performed by considering each unit operation separately. Hence,
in Chapter 15 we discuss the optimization of large-scale plants, including those rep-
resented by flowsheet simulators.

We have not included any homework problems in Chapters 11 through 16. As
a general suggestion for classroom use, parameters or assumptions in each exam-
ple can be changed to develop a modified problem. By changing the numerical
method employed or the computer code one can achieve a variety of problems.

(9°p1) stsotpuAs

(A HORREY (FED) omiau (A
SuInpayos (1) Surpioy UOISSTUISURL} Ja3ueyoXa Sururueigoxd
yoreg ure10ig sen) 180l IoFaur paxI
(rS1) marew SvD) .
Suneisdp 1030831 (JAD @ NWWMMMMMM
(€°S1) uone[usip (€41) ToroB01 .Ezwﬁ
SARoE TORRIY ey ompen (17gT) uwmioo
(£°91) T0NUOD (z'S1) sseoo01d (Z¥1) 1030001 UOISSTWISURI) UOTIB[[USICT SurnurureiSoxd
101089y uoneIagIey BTUOWIUTY sen) -pageis JeSUITUON
(1on) (7' 11) wsAs
Surnpayos (1°p1) 13oRI1D I07e1Ud3 Surururergoxd
pue Suruueld [euLIay T, oqImi/eTiog Teaurp
(Ten (€cn
uorssaxduroo Bep 1A
JO I10M Jo uoIssoIgar uoneznundo
WINUITULA] TEQUIJUON] PaUTeNSUOdU)
(#'C1) wumnjod €1D
(£°€T) Iy uone[msIp Jo J03e10dRAD yoIess
Paq-paxIg onel XNy aSeisna TRUOISUSWIP-9U()
9n) atn
UONBI[IOU0ISI (T°€D) K19A0921 uonnjos
90uBR[Rq [RLISIBIA 1oyowrerp odig 1897 2ISBM [eonAreuy
91 ST 44 €1 aa I SPOYRIN
Jydey)

anbruyoa £q (sesayyuaxed ur s1 Joqumu djdurexa) suoneorjdde noyeziumdo Jo uonesgisser)

416

