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IN PRACTICE, EVERY chemical reaction carried out on a commercial scale involves
the transfer of reactants and products of reaction, and the absorption or evolution of
heat. Physical design of the reactor depends on the required structure and dimen-
sions of the reactor, which must take into account the temperature and pressure dis-
tribution and the rate of chemical reaction. In this chapter, after describing the meth-
ods of formulating optimization problems for reactors and the tools for their
solution, we will illustrate the techniques involved for several different processes.

Modeling chemical reactors

Optimization in the design and operation of a reactor focuses on formulating a
suitable objective function plus a mathematical description of the reactor; the latter
forms a set of constraints. Reactors in chemical engineering are usually, but not
always, represented by one or a combination of

1. Algebraic equations
2. Ordinary differential equations
3. Partial differential equations

One extreme of representation of reactor operation is complete mixing in a contin-
uous stirred tank reactor (CSTR); the other extreme is no mixing whatsoever (plug
flow). In between are various degrees of mixing within dispersion reactors. Single
ideal reactor types can be combined in various configurations to represent interme-
diate types of mixing as well as nonideal mixing and fluid bypassing.

Ideal reactors can be classified in various ways, but for our purposes the most
convenient method uses the mathematical description of the reactor, as listed in
Table 14.1. Each of the reactor types in Table 14.1 can be expressed in terms of inte-
gral equations, differential equations, or difference equations. Not all real reactors
can fit neatly into the classification in Table 14.1, however. The accuracy and preci-
sion of the mathematical description rest not only on the character of the mixing and
the heat and mass transfer coefficients in the reactor, but also on the validity and
analysis of the experimental data used to model the chemical reactions involved.

Other factors that must be considered in the modeling of reactors, factors that
influence the number of equations and their degree of nonlinearity but not their
form, are

1. The number and nature of the phases present in the reactor (gas, liquid, solid,
and combinations thereof)

2. The method of supplying and removing heat (adiabatic, heat exchange mecha-
nism, etc.)

3. The geometric configuration (empty cylinder, packed bed, sphere, etc.)

4. Reaction features (exothermic, endothermic, reversible, irreversible, number of
species, parallel, consecutive, chain, selectivity)

5. Stability

6. The catalyst characteristics

Some references for the modeling of chemical reactors include Fogler (1998), Fro-
ment and Bischoff (1990), Levenspiel (1998), Missen and colleagues, (1998), and
Schmidt (1997).
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TABLE 14.1
Classification of reactors

Reactor type Mathematical description
(continuous variables)

Batch [well-mixed (CSTR), closed system] Ordinary differential equations (unsteady state)
Algebraic equation (steady state)

Semibatch [well-mixed (CSTR), open system] Ordinary differential equations (unsteady state)
Algebraic equations (steady state)

CSTRs, individual or in series Ordinary differential equations (unsteady state)
Algebraic equations (steady state)

Plug flow reactor Partial differential equations in one spatial
variable (unsteady state)

Ordinary differential equations in the spatial
variable (steady state)

Dispersion reactor Partial differential equations (unsteady state
and steady state)

Ordinary differential equations in one spatial
variable (steady state)

Abbreviation: CSTR = continuous stirred tank reactor.

Objective functions for reactors

Various questions that lead directly to the formulation of an objective function
can be posed concerning reactors. Typical objective functions stated in terms of the
adjustable variables are

1. Maximize conversion (yield) per volume with respect to time.

2. Maximize production per batch.

3. Minimize production time for a fixed yield.

4. Minimize total production costs per average production costs with respect to
time per fraction conversion.

5. Maximize yield per number of moles of component per concentration with
respect to time or operating conditions.

6. Design the optimal temperature sequence with respect to time per reactor
length to obtain (a) a given fraction conversion, (b) a maximum rate of reac-
tion, or (c) the minimum residence time.

7. Adjust the temperature profile to specifications (via sum of squares) with

respect to the independent variables.

. Minimize volume of the reactor(s) with respect to certain concentration(s).

Change the temperature from 7} to T;in minimum time subject to heat transfer

rate constraints.

10. Maximize profit with respect to volume.

O 00
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11. Maximize profit with respect to fraction conversion to get optimal recycle.

12. Optimize profit per volume per yield with respect to boundary per initial con-
ditions in time.

13. Minimize consumption of energy with respect to operating conditions.

In some cases a variable can be independent and in others the same variable can
be dependent, but the usual independent variables are pressure, temperature, and
flow rate or concentration of a feed. We cannot provide examples for all of these
criteria, but have selected a few to show how they mesh with the optimization meth-
ods described in earlier chapters and mathematical models listed in Table 14.1.

In considering a reactor by itself, as we do in this chapter, keep in mind that a
reactor will no doubt be only one unit in a complete process, and that at least a sep-
arator must be included in any economic analysis. Figure 14.1 depicts the relation
between the yield or selectivity of a reactor and costs.

All of the various optimization techniques described in previous chapters can
be applied to one or more types of reactor models. The reactor model forms a set
of constraints so that most optimization problems involving reactors must accom-
modate steady-state algebraic equations or dynamic differential equations as well
as inequality constraints.

/
/
Cost of raw / Cost of the
materials reactor
3 Cost of
© \ energy used /
\ /
Cost of the
\ / separator
AN
L /\ e
S~ —
0 Yield or selectivity 1
FIGURE 14.1

Costs of energy and raw materials for a reactor as a function
of yield and selectivity [Adapted and modified from P.
LeGoff, “The Energetic and Economic Optimization of
Heterogeneous Reactors,” Chem Eng Sci 35: 2089 (1980)].
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EXAMPLE 14.1 OPTIMIZATION OF A THERMAL CRACKER
VIA LINEAR PROGRAMMING

Reactor systems that can be described by a “yield matrix” are potential candidates for
the application of linear programming. In these situations, each reactant is known to
produce a certain distribution of products. When multiple reactants are employed, it
is desirable to optimize the amounts of each reactant so that the products satisfy flow
and demand constraints. Linear programming has become widely adopted in sched-
uling production in olefin units and catalytic crackers. In this example, we illustrate
the use of linear programming to optimize the operation of a thermal cracker sketched
in Figure E14.1.

DNG Gas oil Propane Ethane

l l Recycle

(Ethane)
Thermal cracker r
Fuel (Propane)
Methane
Fuel oil

Ethylene Propylene Butadiene Gasoline

FIGURE E14.1
Flow diagram of thermal cracker.

Table E14.1A shows various feeds and the corresponding product distribution for
a thermal cracker that produces olefins. The possible feeds include ethane, propane,
debutanized natural gasoline (DNG), and gas oil, some of which may be fed simulta-
neously. Based on plant data, eight products are produced in varying proportions
according to the following matrix. The capacity to run gas feeds through the cracker
is 200,000 Ib/stream hour (total flow based on an average mixture). Ethane uses the
equivalent of 1.1 Ib of capacity per pound of ethane; propane 0.9 Ib; gas oil 0.9 ib/lb;
and DNG 1.0.

TABLE E14.1A
Yield structure: (wt. fraction)

Feed
Product Ethane Propane Gas oil DNG

Methane 0.07 0.25 0.10 0.15
Ethane 0.40 0.06 0.04 0.05
Ethylene 0.50 0.35 0.20 0.25
Propane — 0.10 0.01 0.01
Propylene 0.01 0.15 0.15 0.18
Butadiene 0.01 0.02 0.04 0.05
Gasoline 0.01 0.07 0.25 0.30

Fuel oil — — 0.21 0.01
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Downstream processing limits exist of 50,000 lb/stream hour on the ethylene and
20,000 1b/stream hour on the propylene. The fuel requirements to run the cracking
system for each feedstock type are as follows:

Feedstock type  Fuel requirement (Btu/lb)

Ethane 8364
Propane 5016
Gas oil 3900
DNG 4553

Methane and fuel oil produced by the cracker are recycled as fuel. All the ethane and
propane produced is recycled as feed. Heating values are as follows:

Recycled feed Heat produced (Btu/lb)

Natural gas 21,520
Methane 21,520
Fuel oil 18,000

Because of heat losses and the energy requirements for pyrolysis, the fixed fuel
requirement is 20.0 X 10° Btu/stream hour. The price structure on the feeds and prod-
ucts and fuel costs is:

Feeds Price (¢/1b)

Ethane 6.55

Propane 9.73

Gas oil 12.50

DNG 10.14
Products Price (¢/1b)
Methane 5.38 (fuel value)

Ethylene 17.75
Propylene 13.79
Butadiene 26.64
Gasoline 9.93
Fuel oil 4.50 (fuel value)

Assume an energy (fuel) cost of $2.50/10¢ Btu.
The procedure is to

1. Set up the objective function and constraints to maximize profit while operating
within furnace and downstream process equipment constraints. The variables to be
optimized are the amounts of the four feeds.

2. Solve using linear programming.

3. Examine the sensitivity of profits to increases in the ethylene production rate.

‘We define the following variables for the flow rates to and from the furnace (in 1b/h):
x; = fresh ethane feed

x, = fresh propane feed
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x3 = gas oil feed
x; = DNG feed
x5 = ethane recycle
X¢ = propane recycle
x; = fuel added
Assumptions used in formulating the objective function and constraints are

1. 20 X 109 Btu/h fixed fuel requirement (methane) to compensate for the heat loss.
2. All propane and ethane are recycled with the feed, and all methane and fuel oil are
recycled as fuel.

A basis of 1 hour is used, and all costs are calculated in cents per hour.
Objective function (profit). In words, the profit fis

f = Product value — Feed cost — Energy cost

Product value. The value for each product (in cents per pound) is as follows:
Ethylene:  17.75(0.5x, + 0.5x5 + 0.35x, + 0.35x¢ + 0.20x; + 0.25x,) (a)
Propylene:  13.79(0.01x; + 0.01x5 + 0.15x, + 0.15x4 + 0.15x; + 0.18x,) (b)
Butadiene: 26.64(0.01x; + 0.01xs + 0.02x, + 0.02x¢ + 0.04x; + 0.05x,) (c)
Gasoline:  9.93(0.01x, + 0.01xs + 0.07x, + 0.07x¢ + 0.25x; + 0.30x,) (d)

Total product sales = 9.39x, + 9.51x, + 9.17x; + 11.23x4 + 9.39x5 + 9.51x, (e)

Feed cost.

Feed cost (¢/h) = 6.55x; + 9.73x, + 12.50x; + 10.14x, )

Energy cost. The fixed heat loss of 20 X 10° Btu/h can be expressed in terms
of methane cost (5.38¢/lb) using a heating value of 21,520 Btu/Ib for methane. The
fixed heat loss represents a constant cost that is independent of the variables x;, hence
in optimization we can ignore this factor, but in evaluating the final costs this term
must be taken into account. The value for x; depends on the amount of fuel oil and
methane produced in the cracker (x; provides for any deficit in products recycled as
fuel).

We combine (¢) and (f) to get the objective function (¢/h)

J=2.84x; — 0.22x, — 3.33x; + 1.09x, + 9.39x5 + 9.51x, @
Constraints.
1. Cracker capacity of 200,000 1b/h
l.l(xl + x5) + 0.9(XZ + x6) + 0.9X3 + ]..OJC4 = 200,000 (h)

or

1.1x; + 0.9x, + 0.9x; + 1.0x, + 1.1xs + 0.9, = 200,000
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2. Ethylene processing limitation of 100,000 1b/h
0.5x; + 0.35x, + 0.25x; + 0.25x, + 0.5x5 + 0.35x5 = 100,000 (@)
3. Propylene processing limitation of 20,000 1b/h
0.01x, + 0.15x, + 0.15x; + 0.18x, + 0.01xs + 0.15x¢ =< 20,000 )
4. Ethane recycle
x5 = 0.4x; + 0.4x5 + 0.06x, + 0.06x4 + 0.04x; + 0.05x, (k)
Rearranging, () becomes
0.4x; + 0.06x, + 0.04x; + 0.05x, — 0.6x5 + 0.06x5 =0 )
5. Propane recycle
x5 = 0.1x, + 0.1x4 + 0.01x; + 0.01x, (m)
Rearranging Equation (m),
0.1x, + 0.01x; + 0.01x, — 0.9x, =0 (n)

6. Heat constraint
The total fuel heating value (THV) (in Btu/h) is given by

fuel methane from cracker

THV = 21,520x, + 21,520(0.07x; + 0.25x, + 0.10x; + 0.15x, — 0.07x5 + 0.25x,)

fuel oil from cracker

+ 18,000(0.21x; + 0.01x,)

= 1506.4x, + 5380x, + 5932x; + 3408x, + 1506.4xs + 5380xs + 21,520x,
)

The required fuel for cracking (Btu/h) is

ethane propane gas oil DNG
8364(x, + x5) + 5016(x, + xg) + 3900x; + 4553x,

— 8364x, + 5016x, + 3900x; + 4553x, + 8364xs + 5016x5 (p)

Therefore the sum of Equation (p) + 20,000,000 Btu/h is equal to the THV from
Equation (o), which gives the constraint

— 6857.6x, + 364x, + 2032x; — 1145x, — 6857.6x5 + 364x
+ 21,520x, = 20,000,000 (q)

Table E14.1B lists the optimal solution of this problem obtained using the Excel
Solven (case 1). Note that the maximum amount of ethylene is produced. As the eth-
ylene production constraint is relaxed, the objective function value increases. Once
the constraint is raised above 90,909 Ib/h, the objective function remains constant.
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TABLE E14.1B
Optimal flow rates for cracking furnace for
different restrictions on ethylene and
propylene production

Flow rate
(Ib/h)
Stream Case 1 Case 2
x, (ethane feed) 60,000 21,770
X, (propane feed) 0 0
x5 (gas oil feed) 0 0
%, (DNG feed) 0 107,600
X5 (ethane recycle) 40,000 23,600
X (propane recycle) 0 1,195
xy (fuel added) 32,800 21,090
Ethylene 50,000 50,000
Propylene 1,000 20,000
Butadiene 1,000 5,857
Gasoline 1,000 32,820
Methane (recycled to fuel) 7,000 19,610
Fuel oil 0 1,076
Objective function (¢/h) 369,560 298,590

Suppose the inequality constraints on ethylene and propylene production were
changed to equality constraints (ethylene = 50,000; propylene = 20,000). The opti-
mal solution for these conditions is shown as case 2 in Table E14.1B. This specifica-
tion forces the use of DNG as well as ethane.

EXAMPLE 14.2 OPTIMAL DESIGN OF AN AMMONIA REACTOR

This example based on the reactor described by Murase et al. (1970) shows one way
to mesh the numerical solution of the differential equations in the process model with
an optimization code. The reactor, illustrated in Figure E14.2a, is based on the Haber
process.

NZ + 3H2 S 2NH3

Figure E14.2b illustrates the suboptimal concentration and temperature profiles expe-
rienced. The temperature at which the reaction rate is a maximum decreases as the
conversion increases.

Assumptions made in developing the model are

1. The rate expression is valid.

2. Longitudinal heat and mass transfer can be ignored.

3. The gas temperature in the catalytic zone is also the catalyst particle temperature.

4. The heat capacities of the reacting gas and feed gas are constant.

5. The catalytic activity is uniform along the reactor and equal to unity.

6. The pressure drop across the reactor is negligible compared with the total pressure
in the system.

The notation and data to be used are listed in Table E14.2.
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TABLE E14.2
Notation and data

Independent and dependent variables

x Reactor length, m

Ny, Mole flow rate of N, per area catalyst, kg mol/(m?)(h)

T; Temperature of feed gas, K

T, Temperature of reacting gas, K

Parameters

Cyr Heat capacity of the feed gas = 0.707 kcal/(kg)(K)

Coe Heat capacity of reacting gas = 0.719 kcal/(kg)(K)

fC ) Objective function, $/year

f Catalyst activity = 1.0

AH Heat of reaction = —26,000 kcal/’kg mol N,

N Mass flow of component designed by subscript through catalyst zone, kg mol/(m?)(h)
N, Hours of operation per year = 8330

P Partial pressure of component designated by subscript, psi; reactor pressure is 286 psia
R Ideal gas constant, 1.987 kcal/(kg mol)(K)

Sy Surface area of catalyst tubes per unit length of reactor = 10 m

S, Cross-sectional area of catalyst zone = 0.78 m?

T, Reference temperature = 421°C (694 K)

U Overall heat transfer coefficient = 500 kcal/(h)(m2)(K)

w Total mass transfer flow rate = 26,400 kg/h

Objective function. The objective function for the reactor optimization is
based on the difference between the value of the product gas (heating value and ammo-
nia value) and the value of the feed gas (as a source of heat only) less the amortization
of reactor capital costs. Other operating costs are omitted. As shown in Murase et al.,
the final consolidation of the objective function terms (corrected here) is

FeNg, TpT,) = 11.9877 X 105 — 1.710 X 10*Ny, + 704.04T,

—699.3T; — [3.4566 X 107 + 2.101 X 10%]"*  (a)

Equality constraints. Only 1 degree of freedom exists in the problem because
there are three constraints; x is designated to be the independent variable.

Energy Balance, Feed Gas
dT Us,
—= - T,— T b
dx chf( s~ 1) ®
Energy Balance, Reacting Gas
dT, US (- AH)S (1.5)pN, Py, Pyu
L= (T, - T) + ——— ()| Ky - K, — | (©
dx  WCpy WC,, D, (1.5)pu,
where K, = 1.78954 X 10* exp (—20,800/RT,)

K, = 25714 X 10'6 exp (—47,400/RT,)
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Mass Balance, N,

dNNz - —flk (1'5)pN1sz Pny,
dx " P, 2(1-5)171{2

The boundary conditions are
Ty(x = L) = 421°C (694 K)
T,(x = 0) = 421°C (694 K)
Ny(x = 0) = 701.2 kg mol/(h)(m?)

For the reaction, in terms of Ny, the partial pressures are

286 | M,
P = 2R T oV, — Ny
286 I 3Ny, |
P = 20 1= 2(vg, - Ny
i 2(N1912 - NNz) T

Dnu, = 286 5
L1 = 2(Ny, — Ny,)

Inequality constraints.
0 = Ny, = 3220
400 = T; = 800

x=0

Feed gas composition (mole %).

N,:21.75; H,:62.25; NHj 5; CH,.4; Ar:4

491

(d)

(e)
€3]
©

Solution procedure. Because the differential equations must be solved numer-
ically, a two-stage flow of information is needed in the computer program used to
solve the problem. Examine Figure E14.2¢c. The code GRG2 (refer to Chapter 8) was
coupled with the differential equation solver LSODE, resulting in the following exit

conditions:
Initial guesses Optimal solution
Ny, 646 kg mol/(m?)(h) 625 kg mol/(m?)(h)
Mole fraction N, 20.06% 19.4%
T, 710 K 563 K
T, 650 K 478 K
10.0 m 2.58 m

X
Fx)

8.451 X 10° $/year

1.288 X 10° $/year
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Optimization code <— Initial guess for x
Data
Ty, Tg, Ny, X . . .
2 Differential equation solver {«——— Boundary conditions
FIGURE E14.2¢

Flow diagram for solution procedure, Example 14.2.

In all, 10 one-dimensional searches were carried out, and 54 objective function calls
and 111 gradient calls (numerical differences were used) were made by the code.

EXAMPLE 14.3 SOLUTION OF AN ALKYLATION PROCESS
BY SEQUENTIAL QUADRATIC PROGRAMMING

A long-standing problem (Sauer et al., 1964) is to determine the optimal operating
conditions for the simplified alkylation process shown in Figure E14.3. Sauer and col-
leagues solved this problem using a form of successive linear programming. We first
formulate the problem and then solve it by sequential quadratic programming. The
notation to be used is listed in Table E14.3A which includes the units, upper and lower
bounds, and the starting values for each x; (a nonfeasible point). All the bounds rep-
resent economic, physical, or performance constraints.

The objective function was defined in terms of alkylate product, or output value
minus feed and recycle costs; operating costs were not reflected in the function. The
total profit per day, to be maximized, is

f(x) = Cixyxy — Cyx; — Cyxp — Cuxy — Coxs (@)

where C; = alkylate product value ($0.063/octane-barrel)
C, = olefin feed cost ($5.04/barrel)
C, = isobutane recycle costs ($0.035/barrel)
C, = acid addition cost ($10.00/per thousand pounds)
C; = isobutane makeup cost ($3.36/barrel)

To form the process model, regression analysis was carried out. The alkylate
yield x, was a function of the olefin feed x, and the external isobutane-to-olefin ratio
xg. The relationship determined by nonlinear regression holding the reactor tempera-
tures between 80-90°F and the reactor acid strength by weight percent at 85-93 was

%y = x,(1.12 + 0.13167x; — 0.00667x2) ()

The isobutane makeup x; was determined by a volumetric reactor balance. The
alkylate yield x, equals the olefin feed x; plus the isobutane makeup x; less shrinkage.
The volumetric shrinkage can be expressed as 0.22 volume per volume of alkylate
yield so that

X4 = X + X5 — 022X4
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Isobutane recycle
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X2 Hydrocarbon
product Fractionator
Isobutane make-up
5
Reactor
Olefin feed
1
N Fresh acid Spent acid Alkylate product
3 ——> < >
FIGURE E14.3
Alkylation flowsheet.
TABLE E14.3A
Lower * Upper Starting
Symbol Variable bound bound value
X Olefin feed (barrels per day) 0 2,000 1,745
X, Isobutane recycle (barrels per day) 0 16,000 12,000
X3 Acid addition rate (thousands of pounds per day) 0 120 110
X4 Alkylate yield (barrels per day) 0 5,000 3,048
Xs Isobutane makeup (barrels per day) 0 2,000 1,974
Xg Acid strength (weight percent) 85 93 89.2
Xy Motor octane number 90 95 92.8
Xg External isobutane-to-olefin ratio 3 12 8
Xg Acid dilution factor 0.01 4 3.6
Xi0 F-4 performance number 145 162 145
*Instead of 0, 1076 was used.
or
X5 = 1.22.7(:4 - X (C)

The acid strength by weight percent xg could be derived from an equation that
expressed the acid addition rate x; as a function of the alkylate yield x,, the acid dilu-
tion factor x,, and the acid strength by weight percent x, (the addition acid was

assumed to have acid strength of 98%)

Xy X
1000x; = 98—
— Xg

or

_ 98,000x;
%6 T axs + 1000x;

@)
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The motor octane number x, was a function of the external isobutane-to-olefin
ratio xg and the acid strength by weight percent x, (for the same reactor temperatures
and acid strengths as for the alkylate yield x,)

x; = 86.35 + 1.098x; — 0.038xZ + 0.325(xs — 89) (e)

The external isobutane-to-olefin ratio x; was equal to the sum of the isobutane
recycle x, and the isobutane makeup x; divided by the olefin feed x;

Xy T X5

)]

Xg
X1

The acid dilution factor x, could be expressed as a linear function of the F-4 per-
formance number x,,
X9 = 35.82 — 0.222xy (&)

The last dependent varjable is the F-4 performance number x;;,, which was
expressed as a linear function of the motor octane number x;

X0 = —133 + 3X7 (h)

The preceding relationships give the dependent variables in terms of the inde-
pendent variables and the other dependent variables.

Equations (c), (d), and (f) were used as equality constraints. The other relations
were modified to form two inequality constraints each, so as to take account of the
uncertainty that existed in their formulation. The 4, and d, values listed in Table
E14.3B allow for deviations from the expected values of the associated variables.

Thus, the model has eight inequality constraints in addition to the three equality
constraints and the upper and lower bounds on all of the variables.

[x,(1.12 + 0.13167x5 — 0.00667x3)] — dy x4 = 0 0)
~[x,(1.12 + 0.13167x5 — 0.00667x3)] + dyx4 = 0 ()
[86.35 + 1.098xg — 0.038xF + 0.325(xs — 89)] — dy,x; = 0 (k)
—[86.35 + 1.098x3 — 0.038x¢ + 0.325(x5 — 89)] + d7,x; =0 0
[35.82 — 0.222x,9] = do,xg =0 (m)
—[35.82 — 0.222x5] + dox9 = 0 n)
[~133 + 3x;] — dyp,x10= 0 (0)
—[=133 + 3x;] + dygx10=0  (p)

To solve the alkylation process problem, the code NPSOL, a successive quadratic
programming code in MATLAB, was employed.
The values of the objective function found were

F(x°) = 872.3 initial guess
Flx*) = 1768.75



CHAPTER 14: Chemical Reactor Design and Operation 495

TABLE E14.3B
Deviation parameter Value

d,, 99/100
dy, 100799
d, 99/100
dy, 100/99
dy, 9/10
dy. 10/9
dyg, 99/100
dyo, 100/99

TABLE 14.3C

Variable Optimal value Variable Optimal value

X 1698.1 Xg 90.115

X, 15819 x; 95.000%

X3 54.107 Xg 10.493

Xy 3031.2 Xy 1.5618

X5 2000.0%* X19 153.54
*At bound.

TABLE E14.3D

Constraint Value at x* Constraint Value at x*
1(G) 0.33 7(0) 60.9
2(7) 0.18 X 10~ 3(p) 1.91
3(k) —0.22 X 10712 9c) 0.29 X 10-10
4y 573 10(d) 0.45 X 10~12
5(m) 0 11(f) —-0.57 X 10~13
6(n) 0.45 X 10712

Tables E14.3C and E14.3D list values of the variables at x* (rounded to five signifi-
cant figures) and the constraints, respectively, at the optimal solution.
Note that the value of the isobutane makeup x5 is at its upper bound.

EXAMPLE 144 PREDICTING PROTEIN FOLDING

Although the field of molecular modeling is relatively new, it is expanding rapidly with
advances in computational power. The appeal of molecular modeling lies in the wealth
of potential theoretical developments and practical applications in drug design, food
chemistry, genome analysis, and biomedical engineering. A particularly challenging
problem involves the prediction of protein folding that can be treated as a global and
combinatorial optimization problem. Proteins are three-dimensional structures whose
configuration in principal can be predicted from information about a particular amino
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FIGURE El4.4a
Conformation of N-acetyl-N'-methyl-alanineamide
(Courtesy of C. A. Floudas).

acid sequence along with the environmental conditions. Naturally occurring proteins
are composed of 20 different amino acid compounds with different side chains and a
backbone of repeating units connected by peptide bonds. Covalent bond angles and
interatomic forces cause the chain to form and twist in a unique way in three dimen-
sions for each protein. Figure E14.4a illustrates a computer-generated model of the
protein N-acetyl-N'-methyl-alanineamide.

Once the folded sequence is known, the biological and chemical properties of the
protein can be predicted. In the development of drugs, for example, the intended target
in the human body is a particular protein of known structure whose behavior can be
altered (for the better) when a drug molecule binds to a receptor site on the target mol-
ecule.

In spite of the complexity of the protein-folding problem, prediction of folding
rests on a simple thermodynamic concept: The folded configuration can be identified
by minimizing the global free energy of the molecule. Two main components exist,
namely the unsolvated potential energy and the solvation energy, the sum of which
must be minimized.

E= E‘l‘otal = EUnsol + ESol (a)

This criterion requires a search through a nonconvex multidimensional conformation
space that contains an immense number of minima. Optimization techniques that have
been applied to the problem include Monte Carlo methods, simulated annealing,
genetic methods, and stochastic search, among others. For reviews of the application
of various optimization methods refer to Pardalos et al. (1996), Vasquez et al. (1994),
or Schlick et al. (1999).

The example considered here involves the use of a branch-and-bound global opti-
mization algorithm known as aBB (Adjiman et al., 1998) as carried out by Klepeis et
al. (1998) who calculated the minimum energy for a number of peptides. To simplify
an inherently very complicated optimization problem, particularly in view of the lim-
ited data known about solvation parameters, they formulated the energy minimization
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problem using the dihedral angles (assuming the covalent bond lengths and bond
angles fixed at their equilibrium values) as the optimization variables as follows:

Minimize: E(¢;, ¢ o, X5, 67, 6

®)
Subject to:
—T=¢; =<, i=1,..., Npe
—am=Yy;=m, i=1,..., Ny
—mT=w,=m, i=1,..., Npe
—m=xk=m, i=1,..., Nge
k=1,..,K
—r=¢¥=7, i=1,..,Jy
—r=¢f=m j=1,...,Jc

where E represents the total of the potential energy function and the free energy of
solvation. Ey . is

q:9;
Egpnt = >, — (Electrostatic contribution-ES)
(@HeEs Ty
Al" Ci'
+ D Fm—— (Nonbonded contribution-NB)
@eNB Ty Ty
A B

o m (Hydrogen bonded contribution-HB)
@eHBTy Ty

+ > (%k) (1 + cos nby) (Torsional contribution-TOR)
keTOR

i=3
+ 2 100 2 (ry — 13)* (Cystine loop-closing contribution-CL)
leCL =1

E;J . . . .
+ E 5 (1 — cosnyxy) (Cystine torsional contribution-CT)
1eCT

+ 2 E, (Proline internal contribution-PRO)
pePRO

where: A; = nonbonded parameter specific to the atomic pair
Aj; = hydrogen-bonded parameter specific to the atomic pair
s = hydrogen-bonded parameter specific to the atomic pair
C; = nonbonded parameter specific to the atomic pair
E,,; = parameter corresponding to torsional barrier energy for a dihedral
angle 6,
E,, = parameter corresponding to torsional barrier energy for a dihedral
angle x; involved in cystine loop closing
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E, = fixed internal energy for each proline residue in the protein
F;; = coefficient equal to 0.5 for one to four interactions and equal to 1.0
for one to five and higher interactions
i = index denoting the sequence of amino acid residues in the peptide
chain
J = index denoting the dihedral angles of the amino acid end group
J¢ = number of carbolic end groups
Jy = number of dihedral angles of the end group
k = index denoting the dihedral angles of the side chains for the ith amino
acid residue
K = number of angles on the side chains
Nres = number of amino acid residues
n, = symmetry type for 6,
n; = symmetry type for y;
q; = dipole parameter for atom i
g; = dipole parameter for atom j
ry = the interatomic distance in the atomic pair ij
ry = actual interatomic distance
r;, = required interatomic distance
0, ;, w; = dihedral angles along the backbone of the peptide chain
Xx§ = side chain dihedral angle
0jc = dihedral angles of the carboxy end groups
GjN = dihedral angles of the amino end groups

i

1

To reduce undesirable perturbations in the minimization, and for other reasons
explained in Klepeis et al., the first term on the right-hand side of Equation (a) was
minimized before adding the contribution from the second term. The specific details
and parameters of problem (b) can be found in Klepeis et al.

Klepeis et al. extended the BB optimization algorithm to guarantee convergence
to the global optimum of a nonlinear problem with twice differentiable functions.
Without such a guarantee, the outcome depends too heavily on the allocated initial
conditions for the molecular configuration. The ¢BB optimization algorithm brackets
the global minimum solution by developing converging lower and upper bounds.
These bounds are refined by successively partitioning the region for search. Upper
bounds on the global minimum are obtained by local minimizations of the original
energy function E. Lower bounds L are obtained by minimizing convex lower-
bounding functions that are constructed by adding to E the sum of separable quadratic
terms such as

Nres

Zalﬁ,z(lfff =)W =)

for each angle (6 terms are added).

The « represent nonnegative parameters that must be greater than or equal to the
negative one-half of the minimum eigenvalue of the Hessian of E over the defined
domain. These parameters can be estimated by the solution of an optimization prob-
lem or by using the concept of the measure of a matrix (Maranas and Floudas, 1994),
The net result is to make L convex. A useful property of L is that the maximum sep-
aration between L and E is bounded and is proportional to « and to the square of the
diagonal of the successive box constraints, so that convergence to a global optimum
occurs.
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At any stage, once solutions for the upper and lower bounds have been estab-
lished, the next step is to modify the bounding problems for the next iteration. This is
accomplished by successively partitioning the initial domain into smaller subdomains.
The default partitioning strategy used in the algorithm involves successive subdivision
of the original hyper-rectangle by halving on the midpoint of the longest side (bisec-
tion). A nonincreasing sequence for the upper bound is found by solving the noncon-
vex problem E locally and selecting it to be the minimum over all the previously
recorded upper bounds.

Initially Klepeis et al. allowed the dihedral angles to vary over the entire [—r, 7]
domain. It was found, however, that the problem required intensive computational
effort (Androulakis et al., 1997). A reduction of the domain space was therefore pro-
posed by setting limits based on the actual distributions of the dihedral angles. Obvi-
ously, for the algorithm to be successful, these reductions could not exclude the region
of the global minimum conformation.

The computational requirement of the BB algorithm depends on the number of
variables on which branching occurs. The most important variables are those variables
that substantially influence the nonconvexity of the surface and the location of the global
minimum. In the protein-folding problem, the backbone dihedral angles (¢ and ) are
the most influential variables. Therefore, in very large problems, to further reduce the
dimensions of the problem, only these variables were involved in the optimization.

Figure E14.4b shows the results of the application of the optimization strategy to
solvated N-acetyl-N’'-methyl-alanineamide. Level sets of the deviations of the total
energy from the global minimum are shown as solid and dashed lines at 1, 2, 5, and

150

H 100

450

CL2 . ) 9/
- o, 1l | 1
-150 -100 -50 0 50 100 150

o)

FIGURE E14.4b

Surface of the objective function obtained in determining
the structure of N-acetyl-N'-methyl-alanineamide; *is the
minimum, and the level sets denote deviations from the
minimum (in kcal/mol).
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9 kcal/mol, respectively; *designates the global minimum. Klepeis et al. list the vari-
ous components of the total energy as a function of the amino residues for the protein.
Only qualitative comparisons can be made with actual proteins because of the lack of
experimental data.

EXAMPLE 14.5 OPTIMIZATION OF LOW-PRESSURE
CHEMICAL VAPOR DEPOSITION REACTOR FOR THE
DEPOSITION OF THIN FILMS

The manufacture of microelectronic devices involves the sequencing of processes
involving thin film deposition, patterning, and doping, only the first of which is dis-
cussed here. The formation of the films is performed by a variety of techniques,
including physical and chemical processes. One of the most versatile of these meth-
ods is chemical vapor deposition (CVD), which involves reacting gases flowing over
a wafer to form the desired film. Energy for the reaction is provided by heat or from
a plasma. CVD requires the diffusion of gaseous reactants to the hot substrate (wafer),
adsorption, reaction, desorption, and diffusion of the gaseous products back into the
bulk gas. The net result of the process is formation of a film on the substrate. One
common configuration used for CVD stacks the wafers in a tube such as that shown
in Figure E14.5a, with heating provided by furnace elements (Middleman and
Hochberg, 1993). The low-pressure chemical vapor deposition (LPCVD) reactor
allows a large number of wafers to be processed in one batch, yielding good film
thickness and composition uniformity.

The LPCVD reactor shown in Figure E14.5a operates at pressures of 0.1-1 torr.
The close stacking of the wafers allows for a large throughput while taking advantage
of the fact that at these low pressures gas diffusivities are high. This arrangement
allows good transport of gases into the region between the wafers (the interwafer
region) and hence good radial uniformity of deposition. The flow in the region
between the wafer edges and the reactor wall (the annular region) is laminar at typi-
cal LPCVD conditions. The reactor walls as well as the wafers are hot so that radial
temperature gradients are small. The nonuniformity of growth rates in the radial direc-
tion is thus minimized.

Pressure gage
Quartz tube 5 Furnace elements  Back door

Front door 70\ | ][ ][ ][ ][ 1

Reactant gas
injectors

. 150 Wafers in boat
O-ring O-ring

FIGURE El4.5a
A typical multiwafer hot-wall low-pressure chemical vapor deposition reactor.
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In most microelectronics fabrication factories (“fabs”), LPCVD of polycrys-
talline silicon (poly-Si) is carried out by the decomposition silane

SiH,(g) — Si(s) + 2Hy(g)
The gas-solid reaction rate is modeled by the nonlinear expression

_ klpSiHA
1+ k2p%-l/22 + ksps,

(@)

where R = the reaction rate
p = the partial pressure
k,, k,, k5 = rate constants

The rate expression is based on adsorption—desorption equilibrium at the substrate
surface with an additional term (k,py,) representing H, gas inhibition. The rate con-
stants can be estimated by regression of R with the two partial pressures using exper-
imental data (Roenigk and Jensen, 1985).

Model equations. Fundamental process models are very useful in optimizing
the design and operation of LPCVD systems. A fundamental model of an LPCVD
reactor similar to Figure E14.5a was presented by Jensen and Graves (1983) and
included the following simplifying assumptions:

1. The reactor shown in Figure E14.5a, has no radial temperature gradients because its
walls and substrate are heated and slow reaction rates imply small heats of reaction.

2. The axial temperature gradient is fixed by the furnace settings because the gas
heat-up lengths are small and most heat transfer occurs by radiation at LPCVD
conditions.

3. There is no axial variation of gas-phase composition in the interwafer region
between any two consecutive wafers because the interwafer spacing is small.

4 There is no radial variation of gas-phase composition in the annular region because the
annular region is small, and because there is rapid diffusion at LPCVD conditions.

5. The gas phase is in steady state, because CVD growth processes are slow com-
pared to gas phase dynamics.

These five assumptions were used by Jensen and Graves (1983) and were also
employed in the design study of Setalvad and colleagues (1989). Define N, and N, as
the molar respective fluxes of silane in the r and z directions, A as the interwafer spac-
ing, and x, as the mole fraction of silane in the gas phase. The mass transport equations
in the r and z directions that describe the diffusion of silane consist of two coupled par-
tial differential equations. In Setalvad and colleagues (1989), the partial differential
equations in the r and z directions were converted to ordinary differential equations by
assuming the axial transport (V,) only occurred in the annular region, whereas the
radial transport (NV,) only occurred in the interwafer region (see Figure E14.5b). The
LPCVD model thus is as follows.

Interwafer Region

A d
7;01\’,1) = — 2R (®)
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Interwafer region Annular region
Radial
Reactants Ax1a1
z L

FIGURE E14.5b
LPCVD reactor geometry with interwafer and annular regions.

with boundary condition:

=
dr

=0 and xl(r\;) = (I":,') (C)

r=0

where r,, = the wafer radius, and
+,— refers to an infinitesimal distance in postive/negative r direction

Annular Region

2

A"'I

szl 2R [
i e | KA

(@)

where r, = the tube radius
a = the area of the wafer holder plus wafers relative to the reactor tube area

The fluxes are related to the mole fraction through Fick’s law (c is total concen-
tration of gas, and D is the diffusivity of the silane in the gas phase):

N, = 0™ ©
= cD— e

n dr
dxl

N, =D} o

Boundary conditions for the annular region are given at the inlet (z = 0) and the tube

exit (z = L):
dx,
N,, = VoCoX;p and —— =0 @
=0 dz |;=L

where vycpx;, represents the product of gas velocity, total concentration, and mole
fraction silane at the inlet.
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The effectiveness factor 7 is defined as

ZJ er(r)dr
0

n= ()

r2R

1

7 is the ratio of the average rate of deposition on a wafer to that at its edge, so it is a
measure of the uniformity of deposition. The rate R at r,, varies in the z direction,
hence 7 is a function of axial distance z. The effectiveness factor represents the radial
uniformity of deposition. When surface reaction is rate-controlling, n = 1, and when
n < 1, diffusion resistance comes into play.

Optimization of the reactor. The nonlinear ordinary differential equations
and boundary conditions in the model can be put in dimensionless form and converted
to algebraic equations using orthogonal collocation (Finlayson, 1980). Setalvad and
coworkers (1989) used these algebraic equations as constraints in formulating a non-
linear programming problem to study the effects of temperature, flow parameters,
reactor geometry, and wafer size on the LPCVD process, particularly the uniformity
of silicon deposition. Strategies were devised to determine the potential improve-
ments in the system performance by using optimum temperature staging and reactant
injection schemes. Figure E14.5c shows the inputs and performance measures for the
reactor that can be optimized to maximize the film growth rate (production rate), sub-
ject to constraints on radial film uniformity (on each wafer), as well as axial unifor-
mity (wafer-to-wafer).

The growth rate is quite sensitive to the axial temperature profile. An axial tem-
perature profile that increases along the reactor because it improves the deposition
uniformity is commonly used in industry. The temperature of each successive zone in
the furnace (defined by the furnace elements in Figure E14.5a) can be adjusted by
voltage applied to variac heaters. The zone temperatures are assumed constant within

eachzone, 7;,j = 1,...,n,, where n,, is the number of temperature zones to be used,

Process inputs Performance

measures
Moultiwafer LPCVD Process

Temperature zone

setpoints .
Film growth rate
Reactant flow
setpoints ]
P Process states Axial film
Pressure setpoint K uniformity
/ —> Radial film
uniformity

Wafer spacing —}

FIGURE E14.5¢
Multiwafer LPCVD reactor process inputs and outputs.
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typically three to five. The optimization procedure was initiated with all 7; values
equal to 880 K. The objective function to be maximized in this case was

AT) = J [G(T, 2)Pd zﬁ [G(T,2) ®

G, is determined by averaging the growth rate given by Equation (a) over the wafer sur-
face which is then integrated over the axial direction to compute f(T). G is measured
in A/mm T is the set of temperatures, and z; (i = 1, N) are locations along the reactor
at which the model is solved to obtain the rates G,. f(T) is a uniformly weighted sum
of the deposition rates over the entire reactor (N = number of increments) obtained via
the LPCVD model, thus representing the throughput of the reactor.

The objective function is maximized subject to the following inequality constraints:

1. The maximum allowable axial variation in growth rate is 5% of the maximum rate,

_ max(G;) — min(G;)
- max(G;)

= 0.05 ()

2. At no point should the radial variation in growth rate be greater than 5%; in terms
of effectiveness factors,

7, =095 i=1,..,n, &)
3. The temperature in each zone is restricted to
880K =T,=8%K, i=1,...,n, )

This last constraint is imposed so that the grain size and other temperature-dependent
material properties of the grown film and also its step coverage do not show excessive
variations.

The nonlinear programming problem based on objective function (f), model
equations (b)—(g), and inequality constraints ( j)—(J) was solved using the generalized
reduced gradient method presented in Chapter 8. See Setalvad and coworkers (1989)
for details on the parameter values used in the optimization calculations, the results of
which are presented here.

In Figure E14.5d the performance of the reactor with operation with each of three
temperature zones at their optimal values can be compared with the isothermal case
(T, = 880 K). The optimization routine increased the temperature of zone 3 the most,
followed by zone 2 (see Figure E14.5¢). The optimization strategy increased the value
of f(T) while decreasing the maximum axial growth rate variation. The temperatures
were increased from the initial value (880 K) until the axial rate variation () between
the beginning and the end of zone 3 reached the 5% limit. Reactant depletion causes
the sharp drop-off in rate within the zone. This effect of reactant depletion increases
noticeably from zone 1 to zone 3 (Figure E14.5d). The temperature in zone 2 could be
decreased so that less reactant is consumed in this zone and more is available for zone
3. However, the resulting lower rates in zone 2 cause the axial rate variation between
the end of this zone and the beginning of zone 3 to exceed the 5% limit.



CHAPTER 14: Chemical Reactor Design and Operation 505

120
115+
g
§ 110+
e With temperature
s 105 staging
'§ Without temperature
g 100 - staging
95
Zone 1 Zone 2 Zone 3
90 L | | |
0.0 02 04 0.6 0.8 1.0
Normalized reactor position
@
0.99
Without
5 temperature
2 oos| staging
2 With
§ temperature
§ staging
E 097 -
Zone 1 Zone 2 Zone 3
0.96 | [ | |
0.0 0.2 04 0.6 0.8 1.0
Normalized reactor position
()
FIGURE E14.5d
Reactor performance with and without optimized temperature
staging.

Optimum reactant injection. An alternative to using temperature staging is to
provide a sudden increase in the partial pressure of SiH,, using the reactant gas injec-
tors shown in Figure E14.5a, so that additional reactant is fed into the reactor at dif-
ferent points along its length. Sudden increases in growth rate at the injection points
result without the disadvantage of excessive rate drop-off due to reactant depletion, as
seen for the case of temperature staging. For modeling purposes the original reactor
with two reactant injection ports can be considered to consist of three smaller reactors
or subreactors. Predicting the performance of the reactor then involves consecutively
solving the modeling equations for each of the subreactors; see Setalvad and cowork-
ers (1989) for more details.
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FIGURE E14.5¢

The optimum temperature profile for three stages.

The optimization problem for the case of sudden injection of SiH, involves as
independent variables the total gas flow velocities:

Vois i= 1,-..,ninj
based on the total amount of gas injected, and
Xiis i - 1,...,ninj

the mole fractions of the reactant silane in each injection stream. Here n;;, is the num-
ber of injection points. Two intermediate injection points were considered, giving four
independent variables to be adjusted (two velocities and two mole fractions). This for-
mulation was thought to be a reasonable balance between improved reactor perform-
ance and the resulting greater design complexity.

The objective function to be maximized was essentially the same as before

except that the rate G was now a function of v,; and x;, instead of T, that is,
L N
f(Vo’ Xl) = J [(Vo, X Z) E G; (Vo, X 2 1 AZJ (m)
o =
The uniformity inequality constraints [Equations ( j)—(I)] were again included in the

problem. Additionally, the bounds on the variables were

00=x,=10, i=1,...,ny ()
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Reactor performance with optimum staged injection.
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The optimum reactor growth rate and effectiveness factor are shown in Figure

E14.5f. As expected, the optimization code adjusted v, first because the deposition
was more sensitive to flow velocities. After v, reached its upper bound, x,, increased
until the axial uniformity constraint was reached, that is, the difference in growth rate
between the end of the first zone and the beginning of the second was equal to 5% of
the inlet value (see Figure E14.5f) according to constraint ( j). However, for injection
point 2, the rates did not change by 5% between the injection points. Maximizing
overall growth rate was more easily solved by increasing x;,. The effectiveness fac-
tors (Figure E14.5f), unlike those in the previous temperature profile optimization
(Figure E14.5d) stayed nearly constant along the axial direction.
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Setalvad and coworkers (1989) also evaluated nonuniform interwafer spacing in
the reactor to improve deposition uniformity and increase the reactor throughput.
Optimal interwafer spacings were smaller toward the reactant inlet to take advantage
of the larger reactant concentration in this region, and larger at the end of the reactor
where reactant depletion and hydrogen production inhibited the polysilicon deposi-
tion. This scheme exhibited decreased sensitivity of the process to gas flow rate vari-
ations when compared with the uniformly spaced wafer case.

A subsequent study by Badgwell and colleagues (1992) used a more detailed
deposition model that was verified on industrial-scale LPCVD equipment. Badgwell
and colleagues showed a sharp decrease in deposition uniformities for a wafer to reac-
tor diameter ratio of about 0.5. This outcome suggested that it may not be wise to use
existing reactors for larger wafer sizes. Furthermore, the reactor tubes that would then
be necessary may have to be inordinately large and, in view of the low pressures, inor-
dinately thick to be economical.

EXAMPLE 14.6 REACTION SYNTHESIS VIA MINLP

Process synthesis involves intelligent decision making to select a process design
whose configuration and operating states are optimal in some sense. The development
of mixed-integer nonlinear programming (MINLP) algorithms has greatly expanded
the scope of quantitative synthesis because we can now treat synthesis problems
involving both continuous and discrete variables. In this example, we demonstrate the
use of MINLP in the synthesis of a hydrodealkylation (HDA) process (Douglas, 1988)
as carried out by Phimister and colleagues (1999).

The fundamental decisions in the synthesis of a multistep process that involves
individual reactor units connected in serial and parallel configurations as well as recy-
cle pertain to how the units will be connected. In addition, however, we must consider
(for a steady-state process)

1. What the feeds and their quantities should be.

2. What reaction paths to avoid.

3. What products should be made and in what quantity.
4. What the flow rates should be.

5. What variables affect the products.

6. How to maintain flexibility.

7. Safety issues.

‘We consider only factors 1 through 4 in what follows. Phimister and colleagues
decomposed the strategy of reactor process design so that a mathematical statement
of the synthesis problem could be formulated in terms of an objective function and
constraints. At the initial stage of the decision making, the designer is presumed to
have limited information about possible reaction paths as reflected in kinetic models,
costs of raw materials, selling prices of products, and the desired plant production.
The MINLP problem formulation in this example includes (1) binary decision vari-
ables designating whether or not a connection exists between reactors, (2) specifica-
tion of continuous variables corresponding to flow rates, and (3) prespecification of the
extent of conversion of a reactant.

From the topographical viewpoint illustrated in Figure E14.6a the process com-
prises a set of reactor—separator sections that connect a set of component feeds (spec-
ified as source nodes) to component products (specified as destination nodes). Each
section is a prescribed sequence of reactors and associated separation units, and sev-
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FIGURE El4.6a
Schematic of reactor—separation process.

eral sections may be interconnected, although for simplicity in presentation, we show
only one such section in this example. The details of the design of the reactors and
separators constituting a section are determined after the MILNP problem is solved.
A source node defines the site from which a component is supplied, and a destination
node defines the site at which a component is required in the process. In the initial
topography (see Figure E14.6a) for the process, all of the components in the nodes are
connected via directed paths, except that usually no feedback exists from a process
component destination to a process component source. By use of binary variables in
the constraints (as we will show later), a set of paths can be eliminated from the
MINLP problem formulation, thus simplifying the topography. Various connections
may be required, such as a particular feed from an external source node to a section,
and various connections may be deleted, such as a bypass path from a process source
to a process destination or a recycle path for'a section.
The notation used in this example for the connections is as follows:

D = the set of destination nodes {1, 2, . . ., ¢} including reactor-separator
sections (recycle) or flows exiting the overall process

e = the process exit stream

f = the process feed stream

n = the number of components

N = the total number of plant reactor—separator sections

Q = the set of components, i = 1,2, .. .n

S = the set of source nodes {f, 1,2, ..., N}

X = fraction conversion of toluene

Y;jx = @ binary variable (0, 1) in which the subscript i designates the chemical

component, j denotes the source node, and k denotes the destination node

¢ = selectivity of toluene converted to benzene
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As examples of the notation for the binary variables, ycy, ;» = lmeans that methane
in the feed stream goes to the reactor-separator section labeled No. 2, yy, ¢, = 0
means that hydrogen in the feed stream does not go directly to the exit stream, and
Yco,,1 means that carbon monoxide is recycled in the reactor-separator section
labeled No. 1.

Stream flow rates F that exit are designated with the same set of subscript indices,
i, j, and k, that have the same meaning as that used for the binary variables. Negative
flow rates are not allowed (F; k= 0). Constraints such as

Fiio—Uypp=0
where U is the largest flow rate allowed between two sites, place an upper bound on
a flow rate.

The reaction(s) in a reactor—separator section is accounted for by an equality con-
straint(s) such as for the case of A— B in section 1

;FA,l,k = (1 - X) ZFAJ,I
J

;FB,I,I(= ZFB,f,|+XEFA,j.I’ jES,kED
J J

where X is the fraction conversion of A to B.
In the HDA process represented in Figure E14.6.b (Douglas (1988), the reac-
tions are

CHy + H, — CH, + CH,
Toluene  Hydrogen Benzene  Methane

CHy < CpH, + H,

Benzene Diphenyl = Hydrogen
Feed | Product
Toluene (T) [ [ [ [ T T T
Hyd H > H H H
yarogen (H) Reactor—Separator
Benzene (B) B section for B S B
hydroalkylation [ [
Methane (M) M M [ M
Dyphenyl (D) D D D
FIGURE E14.6b

Component flow diagram.
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From Figure E14.6b you can see that five components exist for the one reactor—
separator section, and 20 binary variables and stream flows (continuous variables)
occur in the initial model. Let us summarize the model proposed by Phimister and col-
leagues. Other details are in Douglas. '

Constraints Involving Binary Variables
Bypass prohibited:

Zyi,f,e=0’ ZEQ (a)

Only toluene and hydrogen are feeds:

YeHasl T Yot + Yeu, 1 = 0 ®)
Yc,Hef1 = 1 (©)
Ya =1 @)
Only benzene, methane, and diphenyl leave the process
Yoo Le = 1 (e)
Yeu, 1,e = 1 N
Vet e = 1 (o

No toluene exits the process to a destination
Eycﬂ{s,fae =0 (h)
j

For the reactor—separator section, all source nodes must have a destination

>yvie=1l, keD, Vi @
k

Constraints Representing the Model

Douglas (1988, Appendix B) fit the selectivity of the data ¢ versus X given in the 1967
AIChE Student Contest Problem to get

v = Moles benzene formed - 0.0036 0
Moles toluene converted (1 — x)154

X=0.97 ®)

020=¢y =10 0

Process Specifications

Production of benzene
80,000 metric ton per year (8000 = hour operation)
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Molar feed

Hydrogen 5 mol
Toluene 1 mol

(m)

Objective Function

The objective function is to maximize profits, namely, products sold minus raw mate-
rial costs. No capital or investment cost are involved in this example.

To prevent internal flow rates having zero shadow costs at the solution and there-
fore to avoid a multiplicity of solutions, a penalty of 0.05 times the price is incurred
for each ton transported between a source and a destination.

Prices and Costs for Components

Component Price/cost ($/ton)

Toluene 200
Hydrogen 100
Benzene 500
Methane 100
Diphenyl 20

Phimister and colleagues obtained the optimal configuration and associated
flow rates shown in Figure E14.6¢ using GAMS. The optimal value of the conver-
sion was 0.697, and the selectivity ¢ was 0.977, yielding a value of the objective
function of $18.65 million/year. Refer to Phimister and colleagues (1999) for a prob-
lem corresponding to a more complex plant involving four reactor—separator units
and ten components.

Feed 56,997 Product
1311972 |
Toluene | 131,192 | T T
128,205 I—L> H
Hydrogen H Reactor-Separator ‘ Benzene
B section for B | 128,205
hydroalkylation | Methane
M M | 131,192
D D [ 1,493 Dyphenyl
(Units are kmoles per hour)
FIGURE El4.6¢

Optimal configuration and stream flows.
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