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442 PART III: Applications of Optimization

SEPARATIONS ARE AN important phase in almost all chemical engineering
processes. Separations are needed because the chemical species from a single
source stream must be sent to multiple destinations with specified concentrations.
The sources usually are raw material inputs and reactor effluents; the destinations
are reactor inputs and product and waste streams. To achieve a desired species allo-
cation you must determine the best types and sequence of separators to be used,
evaluate the physical or chemical property differences to be exploited at each sep-
arator, fix the phases at each separator, and prescribe operating conditions for the
entire process. Optimization is involved both in the design of the equipment and in
the determination of the optimal operating conditions for the equipment.
A wide variety of separation processes exist (Meloan, 1999), including

Centrifugation Flotation
Chromatography Freeze drying
Dialysis Jon exchange
Distillation Membranes
Electrophoresis Osmosis
Extraction Zone melting
Filtration

Although each type of process is based on different physical principles, the mathe-
matical models used to represent a process are surprisingly similar. Usually the
equations are material or energy balances, either steady-state (most often) or
dynamic, corresponding to fundamental laws, and empirical equilibrium relations.
The equations may involve discrete or continuous variables depending on the sim-
plifying assumptions made. For example, for a staged-distillation column the typi-
cal assumptions might include one or more of the following:

1. The hold-up liquid on each plate is completely mixed.
2. A constant hold-up exists on each plate, in the reboiler, and in the condenser—
accumulator system.
3. The fluid dynamic response time is negligible.
4. The effects of pressure changes in various sections of the column on the phys-
ical properties of the system being distilled are negligible.
5. The saturated liquid and vapor enthalpies can be expressed as a linear func-
tion of compositions.
6. All fluid streams are single phase, and liquid entrainment and vapor hold up
are negligible.
7. The column operates adiabatically; heat lost to the atmosphere is negligible.
. The liguid and vapor compositions leaving a plate are a function only of the
compositions in the column and experimental plate efficiencies, and can be
described as a linear function of corrected compositions at various sections of
the column.
9. At a constant operating steam pressure, the heat transfer in the reboiler is a
function of composition.

(o]

Many of these assumptions are made to reduce the complexity of the mathematical
model for the distillation process. Some may have negligible adverse effects in a
specific process, whereas others could prove to be too restrictive.
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This chapter contains examples of optimization techniques applied to the design
and operation of two of the most common staged and continuous processes, namely,
distillation and extraction. We also illustrate the use of parameter estimation for fit-
ting a function to thermodynamic data.

EXAMPLE 12.1 OPTIMAL DESIGN AND OPERATION OF A
CONVENTIONAL STAGED-DISTILLATION COLUMN

Distillation is probably the most widely used separation process in industry. Various
classes of optimization problems for steady-state distillation are, in increasing order
of complexity,

1. Determine the optimal operating conditions for an existing column to achieve spe-
cific performance at minimum cost (or minimum energy usage) given the feed(s).
Usually, the manipulated (independent) variables are indirect heat inputs, cooling
stream inputs, and product flow rates. The number of degrees of freedom is most
likely equal to the number of product streams. Specific performance is measured
by specified component concentrations or fractional recoveries from the feed
(specifications leading to equality constraints) or minimum (or maximum) con-
centrations and recoveries (specifications leading to inequality constraints). In
principle, any of the specified quantities as well as costs can be calculated from the
values of the manipulated variables given the mathematical model (or computer
code) for the column. When posed as described earlier, the optimization problem
is a nonlinear programming problem often with implicit nested loops for calcula-
tion of physical properties. If the number of degrees of freedom is reduced to zero
by specifications placed on the controlled variables, the optimization problem
reduces to the classic problem of distillation design that requires just the solution
of a set of nonlinear equations.

2. A more complex problem is to determine not only the values of the operating con-
ditions as outlined in item 1 but also the (minimum) number of stages required for
the separation. Because the stages are discrete (although in certain examples in this
book we have treated them as continuous variables), the problem outlined in item
1 becomes a nonlinear mixed-integer programming problem (see Chapter 9). In
this form of the design problem, the costs include both capital costs and operating
costs. Capital costs increase with the number of stages and internal column flow
rates, whereas operating costs decrease up to a certain point.

3. An even more difficult problem is to determine the number of stages and the opti-
mal locations for the feed(s) and side stream(s) withdrawal. Fortunately, the range
of candidates for stage locations for feed and withdrawals is usually small, and
from a practical viewpoint the objective function is usually not particularly sensi-
tive to a specific location within the appropriate range.

Optimization of distillation columns using mathematical programming, as
opposed to other methods, has been carried out using many techniques, including
search methods such as Hooke and Jeeves (Srygley and Holland, 1965), mixed-integer
nonlinear programming (MINLP) (Frey et al., 1997; and Bauer and Stichlmair, 1998),
genetic algorithms (Fraga and Matias, 1996), and successive quadratic programming
(SQP) (Schmid and Biegler, 1994), which is the technique we use in this example.
The review by Skogestad (1997) treats many of the various issues involved in the opti-
mization of distillation columns beyond those we illustrate here.
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FIGURE El12.1
Schematic of a staged distillation column.

Product

This example focuses on the design and optimization of a steady-state staged
column. Figure E12.1 shows a typical column and some of the notation we will use, and
Table E12.1A lists the other variables and parameters. Feed is denoted by superscript F.
Withdrawals take the subscripts of the withdrawal stage. Superscripts V for vapor and L
for liquid are used as needed to distinguish between phases. If we number the stages
from the bottom of the column (the reboiler) upward with k = 1, then V; = L, = 0, and
at the top of the column, or the condenser, V,, = L, ,; = 0. We first formulate the equal-
ity constraints, then the inequality constraints, and lastly the objective function.

The equality constraints. The process model comprises the equality con-
straints. For a conventional distillation column we have the following typical relations:
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TABLE E12.1A
Notation for distillation example

flow of feed into stage k, moles

liquid enthalpy (a function of p,, T}, and x,) on stage k
vapor enthalpy (a function of p, T}, and y,) on stage k
stage index number, k = 1,...,n.

equilibrium constant for component i for the mixture on stage & (a function of py, Ty, X, ¥i)
flow of liquid from stage k, moles

number of components, i = 1,...,m

pressure on stage k

heat transfer flow to stage k (positive when into stage)
temperature on stage k

flow of vapor from stage k, moles

withdrawal stream from stage &, moles

mole fraction of component i on stage k in the liquid phase
mole fraction of component i on stage & in the vapor phase

1. Total material balances (one for each stage k)
Fe+ Fl+ Vi + Ly, = Vi + L+ W + Wy (@)
(F, and W, are ordinarily not involved in most of the stages)
2. Component material balances (one for each component i for each stage k)
X FE + YRFY + yoiVier + Xpeilisr = YiaVie + XL + VWi + %, Wi
®
3. Energy balance (one for each stage)

O + KFe + He\Viey + hewilpsr = HVi + L + HW! + Wi (©)

4. Equilibrium relations for liquid and vapor at each stage (one for each stage)

Yik = KipXix (d
5. Relation between equilibrium constant and p, 7, x, y (one for each stage)
K = K{pi Ti-Xe:Yr) ()
6. Relation between enthalpies and p, T, x, y (one for each stage)
b = h(peTeXe) H
H, = HpiTe:Yi) 8

The preceding classic set of algebraic equations form a well-defined sparse struc-
ture that has been analyzed extensively. Innumerable techniques of solution have been
proposed for problems with O degrees of freedom, that is, the column operating or
design variables are completely specified.

Our interest here in posing an optimization problem is to have one or more
degrees of freedom left after prespecifying the values of most of the independent vari-
ables. Frequently, values are given for the following parameters:
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(@) Number of stages

(b) Flow rate, composition, and enthalpy of the feed(s)

(c) Location of the feed(s) and side stream withdrawal(s)

(d) Flow rate of the side stream(s)

(e) Heat input rate to each stage except one

(f) Stage pressures (based on column detailed design specifications)

Reactive distillation involves additional degrees of freedom (Mujtaba and Macchietto,
1997). If the controllable parameters remaining to be specified, namely (1) one heat
input, and (2) the flow rate of the product (or the reflux ratio), are determined via opti-
mization, all of the values of V}, L, T, x;;, and y;, and the enthalpies can be calcu-
lated. More than 2 degrees of freedom can be introduced by eliminating some of the
prespecified parameters values.

7. Certain implicit equality constraints exist

Because of the way the model is specified, you must take into account the following
additional equations as constraints in the column model:

m

;x,-,k =1 (h)

m

;yi.k =1 )

The inequality constraints. Various kinds of inequality constraints exist, such
as requiring that all of the x;;, y;;, O, Fj» W,, and so on be positive, that upper and
lower bounds be imposed on some of the product stream concentrations, and specifi-
cation of the minimum recovery factors. A recovery factor for stage k is the ratio

xi,lef‘ + yi,kWIY

2_ (xi,kFlf + yi,kFIY)

The objective function. The main costs of operation are the heating and cool-
ing costs that are related to O, and Q,, respectively. We assume all the other values of
O, are zero. Q,, is determined from the energy balance, so that Q, is the independent
variable. The cost of operation per annum is assumed to be directly proportional to O,
because the maintenance and cooling costs are relatively small and the capital costs

per annum are already fixed. Consequently, the objective function is relatively simple:
Minimize: Q, )]

As posed here, the problem is a nonlinear programming one and involves nested
loops of calculations, the outer loop of which is Equation () subject to Equations (a)
through (i), and subject to the inequality constraints. If capital costs are to be included
in the objective function, refer to Frey and colleagues (1997).

Results for a specific problem with 5 degrees of freedom. For illustration,
we use the data of Sargent and Gaminibandara (1976) for the objective function ().
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The problem is to determine the location and individual amounts of the feeds given
the following information.

A column of four stages exists analogous to that shown in Figure E12.1 except
that more than one feed can exist (the reboiler is stage 1 and the condenser is stage 4).
Feed and product specifications are

Total feed = 100 1b mol/h liquid
hy = 4000 Btu/1b mol
x; = 0.05 (C;Hy)
xp = 0.15 (i-C;H o)
x; = 0.25 (n-C,Hyy)
x, = 0.20 (i-C5H 1)
x5 = 0.35 (n-CsHy,)
Top product = 10 Ib mol/h liquid
x5 < 007

The equality constraints are Equations (a)—(i) plus

S F, = 100 ®
k=1
The inequality constraints are (k = 1,...,4)
0:=0 O
2,=0 m)
%ix =0 )
Y =0 ©
F,=0 ®)
x5, = 0.07 @
This problem has 5 degrees of freedom, representing the five variables Q,, Fy, F,, Fs,

and F,.

Various rules of thumb and empirical correlations exist to assist in making initial
guesses for the values of the independent variables. All the values of the feeds here
can be assumed to be equal initially. If the reflux ratio is selected as an independent
variable, a value of 1 to 1.5 times the minimum reflux ratio is generally appropriate.

To solve the problem a sequential quadratic programming code was used in the outer
loop of calculations. Inner loops were used to evaluate the physical properties. Forward-
finite differences with a step size of & = 1077 were used as substitute for the derivatives.
Equilibrium data were taken from Holland (1963). The results shown in Table E12.1B
were essentially the same as those obtained by Sargent and Gaminibandara.
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TABLE E12.1B
Results of optimization

Variable Initial guess for the variable Optimal values for the variable

F| 25 23.7

F, 25 0

F, 25 0

F, 25 76.3

o 5.0 X 106 3.38 X 10°
X5 4 e 0.07

We can conclude that it is possible to use some of the cold feed as reflux in the
top stage without voiding the product composition specification. This outcome is not
an obvious choice for the problem specifications.

EXAMPLE 12.2 OPTIMIZATION OF FLOW RATES IN A
LIQUID-LIQUID EXTRACTION COLUMN

Liquid-liquid extraction is carried out either (1) in a series of well-mixed vessels or
stages (well-mixed tanks or in plate column), or (2) in a continuous process, such as a
spray column, packed column, or rotating disk column. If the process model is to be
represented with integer variables, as in a staged process, MILNP (Glanz and
Stichlmair, 1997) or one of the methods described in Chapters 9 and 10 can be
employed. This example focuses on optimization in which the model is composed of
two first-order, steady-state differential equations (a plug flow model). A similar treat-
ment can be applied to an axial dispersion model.

Figure E12.2a illustrates a typical steady-state continuous column. The model
and the objective function are formulated as follows.

The process model. Under certain conditions, the plug flow model for an
extraction process has an analytical solution. Under other conditions, numerical solu-
tions of the equations must be used. As a practical matter, specifying the model so that
an analytical solution exists means assuming that the concentrations are expressed on
a solute-free mole basis, that the equilibrium relation between Y and X is a straight
line Y* = mX + B (i.e., not necessarily through the origin), and that the operating line
is straight, that is, the phases are insoluble. Then the model is

ax
% - Nox(X - Y) = O (a)
ay

where F' = extraction factor (mvy/vy)
m = distribution coefficient
Ngx = number of transfer units
vy, vy = superficial velocity in raffinate, extract phase, respectively
X = dimensionless raffinate phase concentration
Y = dimensionless extract phase concentration
Z = dimensionless contactor length
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FIGURE El2.2a
Extraction column schematic for Example 12.2. (The internal
rotating disks are not shown.)

Figure E12.2a shows the boundary conditions X, and ¥,;. Given values for m, Ny,
and the length of the column, a solution for Y, in terms of vy and vy can be obtained;
X, is related to Y, and F via a material balance: X; = 1 — (¥/F). Hartland and Meck-
lenburgh (1975) list the solutions for the plug flow model (and also the axial disper-
sion model) for a linear equilibrium relationship, in terms of F:

Ll eplNoy(t = F)])
O 1 - Fexp[Nox(1 — F)]

(©)

In practice, N,y is calculated from experimental data by least squares or from an
explicit relation for the plug flow model.

1 - Xl < Xl )
Nox = 1 d
ox <X1+Yo—1)n1-Yo @
Jackson and Agnew (1980) summarized a number of correlations for Ny such as
vy \ 024
NOX = 481<——> (8)
Yy

The value of m = 1.5.
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Inequality constraints. Implicit constraints exist because of the use of dimen-
sionless variables

X=X=X
=Y=1Y, N
Constraints on vy and vy are upper and lower bounds such as
0.05 < vy <025
0.05 < vy < 0.30 (8
and the flooding constraint
vy + vy = 0.20 (1)

Objective function. The objective function is to maximize the total extraction
rate for constant disk rotation speed subject to the inequality and equality constraints:

Maximize: f = vy¥, 0]

Results of the optimization. Figure E12.2b illustrates contours of the objective
function for the plug flow model; the objective function (i) was optimized by the GRG

0.25

b, = 0.05 ]
; L
2 0.25
0.18
v, 0.125; ;

2/ ’ \Q\
£ O O2
0.10
- 4 v, =005 3
Ly 0.06 N\ ]
v+, =020 3

0.0 Eeenn bbbl dee S, 3
0.0 0.125 0.25

vx

FIGURE E12.2b

Contours (the heavy lines) for the objective function of extraction
process. Points 1, 2, 3, and 4 indicate the progress of the reduced-
gradient method toward the optimum (point 4).
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(generalized reduced-gradient) method. For small values of v, (< 0.01), the contours
drop off quite rapidly. The starting point (point 1)

v, = 0.03
v, = 0.10

is infeasible. Points 2, 3, and 4 in Figure E12.2b show the change as the vector of
independent variables moves toward the optimum. Point 2 indicates the first feasible
values of v, and v, (0.08, 0.10), point 3 indicates where the flooding constraint (h) is
active, and point 4 is the constrained optimum (0.15, 0.05). The value of the objective
function at point 4 is 0.225.

EXAMPLE 12.3 FITTING VAPOR-LIQUID EQUILIBRIUM DATA
VIA NONLINEAR REGRESSION

Valid physical property relationships form an important feature of a process model. To
validate a model, representative data must fit by some type of correlation using an
optimization technique. Nonlinear regression instead of linear regression may be
involved in the fitting. We illustrate the procedure in this example.

Separation systems include in their mathematical models various vapor-liquid
equilibrium (VLE) correlations that are specific to the binary or multicomponent sys-
tem of interest. Such correlations are usually obtained by fitting VLE data by least
squares. The nature of the data can depend on the level of sophistication of the exper-
imental work. In some cases it is only feasible to measure the total pressure of a sys-
tem as a function of the liquid phase mole fraction (no vapor phase mole fraction data
are available).

Vapor-liquid equilibria data are often correlated using two adjustable parameters
per binary mixture. In many cases, multicomponent vapor-liquid equilibria can be pre-
dicted using only binary parameters. For low pressures, the equilibrium constraint is

xyp=yp (=12) (@

where p = the total pressure
pi = the saturation pressure of component i
x; = the liquid phase mole fraction of component i
7v; = the activity coefficient
y; = the vapor phase mole fraction

The van Laar model for a binary mixture is

v, = A [ Azixy r (b)
& 2 Apx) + Azixy
and
Apxy r
Iny, = Ay| ———————
72 21[Auxl + Azx, ©

where A;, and A,, are binary constants that are adjusted by optimization to fit the cal-
culated data for x;. To use total pressure measurements we write

D=y Ty C)]
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TABLE E12.3
Experimental VLE data for the system
(1) Water. (2) 1,4 dioxane at 20°C.

Experimental data Predicted values
X, pexpt(mmHg) pcalc p ycalc

0.00 28.10 28.10 0.00 0.0

0.10 34.40 34.20 -0.20 0.2508
0.20 36.70 36.95 0.25 0.3245
0.30 36.90 36.97 0.07 0.3493
0.40 36.80 36.75 -0.05 0.3576
0.50 36.70 36.64 -0.06 0.3625
0.60 36.50 36.56 0.06 0.3725
0.70 3540 35.36 -0.04 0.3965
0.80 32.90 32.84 -0.06 0.4503
0.90 27.70 27.72 0.02 0.5781
1.00 17.50 17.50 0.00 1.0

a, P mmHg

Antoine constants: log p™ = a; —

T+ a, T.°C
a, a, as Range
(1) Water 8.07131 1730.630  233.426  (1-100°C)

(2) 1,4 dioxane 7.43155 1554.679 . 240.337 (20-105°C)
Note: Data reported by Hororka et al. (1936).

1.00

0.80 /

0.60 /

0.40

0.20 /

/

0.00 0.20 0.40 0.60 0.80 1.00
X—>

FIGURE E12.3
Experimental vapor-liquid equilibrium data, Example 12.3.
[Source: Gmehling et al. (1981).]
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or, using Equations (a)—(c)

p =X CXPI:A (L)z]p%‘ + x eXp{A (&)2]1)5& (e)
! P\ Apx; + A, ' 2 M\ Apx; + Ayt 2

The saturation pressures can be predicted at a given temperature using the Antoine
equation. For a given temperature and a binary system (x, = 1 — x;)

p= p(xlsAlzaAﬂ) o))

so that the two binary coefficients may be determined from experimental values of
p versus x; by nonlinear least squares estimation (regression), that is, by minimizing
the objective function

f= Z(pﬁm — piP)? 8

where 7 is the number of data points.

In the book, Vapor-Liquid Equilibrium Data Collection, Gmehling and col-
leagues (1981), nonlinear regression has been applied to develop several different
vapor-liquid equilibria relations suitable for correlating numerous data systems. As
an example, p versus x; data for the system water (1) and 1,4 dioxane (2) at 20.00°C
are listed in Table E12.3. The Antoine equation coefficients for each component are
also shown in Table E12.3. A,, and A,; were calculated by Gmehling and colleaques
using the Nelder—Mead simplex method (see Section 6.1.4) to be 2.0656 and 1.6993,
respectively. The vapor phase mole fractions, total pressure, and the deviation
between predicted and experimental values of the total p

Apj = pjg:alc - quxpt
are listed in Table E12.3 for increments of x; = 0.10. The mean Ap is 0.09 mmHg for

pressures ranging from 17.5 to 28.10 mmHg. Figure E12.3 shows the predicted y, ver-
sus x; data; note that the model predicts an azeotrope at x; = y; = 0.35.

EXAMPLE 124 DETERMINATION OF THE OPTIMAL REFLUX
RATIO FOR A STAGED-DISTILLATION COLUMN

Once a distillation column is in operation, the number of trays is fixed and very few
degrees of freedom can be manipulated to minimize operating costs. The reflux ratio
frequently is used to control the steady-state operating point. Figure E12.4a shows
typical variable cost patterns as a function of the reflux ratio. The optimization of
reflux ratio is particularly attractive for columns that operate with

. High reflux ratio

. High differential product values (between overhead and bottoms)
. High utility costs

. Low relative volatility

. Feed light key far from 50 percent

AW
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FIGURE El12.4a
Variable cost trade-offs for a distillation column.

In this example we illustrate the application of a one-dimensional search technique
from Chapter 5 to a problem posed by Martin and coworkers (1981) of obtaining the
optimal reflux ratio in a distillation column.

Martin and coworkers described an application of optimization to an existing
tower separating propane and propylene. The lighter component (propylene) is more
valuable than propane. For example, propylene and propane in the overhead product
were both valued at $0.20/1b (a small amount of propane was allowable in the over-
head), but propane in the bottoms was worth $0.12/1b and propylene $0.09/1b. The
overhead stream had to be at least 95 percent propylene. Based on the data in Table
E12.4A, we will determine the optimum reflux ratio for this column using derivations
provided by McAvoy (personal communication, 1985). He employed correlations for
column performance (operating equations) developed by Eduljee (1975).

Equality constraints. The Eduljee correlation involves two parameters: R, the
minimum reflux ratio, and N,,, the equivalent number of stages to accomplish the sep-
aration at total reflux. His operating equations relate N, a, X, X, and X (see Table
E12.4A for notation) all of which have known values except X as listed in Table
E12.4A. Once R is specified, you can find X, by sequential solution of the three fol-
lowing equations.
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TABLE E12.4A
Notation and values for the propane—propylene splitter
Symbol Description Value
B Bottoms flow rate
C Reboiler heat cost $3.00/10° Btu
C, Condenser cooling cost $0.00/10° Btu
Cy Value of propylene in bottoms
Cp Value of propane in bottoms
Cr Cost per pound of propylene
Cr Cost per pound of propane
Cp Value of propylene in overhead
D Value of propane in overhead
D Distillate flow rate
F Feed rate 1,200,000 1b/day
L Liquid flow rate function of R (mol/day)
N Number of equilibrium stages 94
N, Minimum equilibrium stages function of reflux ratio, R
Oc Condenser load requirement Q= AV
Or Reboiler heat requirement Or = AV
‘ R Reflux ratio (To be optimized)
' R, Minimum reflux ratio 11.17
‘| U Heavy key differential value —$0.08/1b
Vv Vapor flow rate function of R (mol/day)
w Light key differential value $0.11/1b
Xz Bottom light key mole fraction (To be optimized)
Xy Overhead light key mole fraction 0.95
Xr Feed light key mole fraction 0.70
o Relative volatility 1.105
A Latent heat 130 Btw/Ib (avg. mixture)
First, calculate R,
1 X 1 —-X
R, = 7{_1) _ a(—D). (@
(@ = 1)L Xp (1-Xp)
Substitute the value of R,, in Equation (b) to find N,,
‘ () ol - () b
! — ] =075|1 -\ ———
} N+1 R+1 ®
|
* Lastly, compute X from
In{[Xp/(1 — Xp)]-[(1 — X5)/Xs]}
N, = (©

Ina

Equations (a)—(c) comprise equality constraints relating X, and R.
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4 Q.
L D, X,
F, X
—_——>
B X,

FIGURE E12.4b
Distillation column flow chart.

Once Xp is calculated, the overall material balance for the column shown in Fig-
ure E12.4b can be computed. The pertinent equations are (the units are moles)

F=D+B
X.F = XpD + X;B

(d)
(e)

Equations (d) and (e) contain two unknowns: D and B, which can be determined once
F, Xy, X5, and X}, are specified. In addition, if the assumption of constant molal over-
flow is made, then the liquid L and vapor flows V are

L=RD
V=(R+1)D

)
(®

Objective function. Next we develop expressions for the income and operat-
ing costs. The operating profit fis given by

f = Propylene sales + Propane sales — Utility costs — Raw material costs )

f=(CpXpD + CpXpB) + [Cp(1 = Xp)D + Cy(1 — Xp)B]

— [CiQr + CQc] — [CpXpF + C(1 — Xp)F] @)

The brackets [ ] indicate the correspondence between the words in Equation (h)

and the symbols in Equation (7). Qp is the reboiler heat requirement and Q. is the

cooling load.

Equation (i) can be rearranged by substituting for DX}, in the propylene sales

and for BX}, in the propane sales using Equation (e) and defining —W = C; — C)
and —U = Cj, — Cj as follows
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TABLE E12.4B
Iterations in quadratic interpolation test problem
Interpolated
Left bracket Center point Right bracket values
.7 Iteration x f x f x f x f
1 16.00 3967.13 18.00 3922.14 20.00 4256.45 17.24 3872.22
2 18.00 3922.14 17.24 3872.22 16.00 3967.13 17.16 3870.79
3 17.24 387222  17.16  3870.79 16.00  3967.13 17.09  3870.21
4 17.16 3870.79 17.09 3870.21 16.00 3967.13 17.06 3870.18
5 17.09 3870.21 17.06 3870.18 16.00 3967.13 17.06 3870.17
Final solution
x = 17.06
f=13870.17
TABLE E12.4C
| Sensitivity study at the reflux ratio
optimum
1 Reflux ratio Xz Costs
I [029) (mol fraction) ($/day)
i 17.07 0.0432 3870
18.77* 0.0303 4024
15.36" 0.0683 4159
*Indicates 1/.07 = 10%
f= CpXpF + Cy(1 — Xp)F — CpXpF — CH{1 — Xp)F
— CQr — C,Qc — WXB — U(l - XD)D ¢

Note that the first four terms of f are fixed values, hence these terms can be deleted
from the expression for f in the optimization. In addition, it is reasonable to assume
Or = O = AV. Lastly, the right-hand side of Equation (j) can be multiplied by —1

to give the final form of the objective function (to be minimized):
fi = (Cy + C)AV + WXpB + U(1 — Xp)D

Note: A must be converted to Btu/mol, and the costs to $/mol.

)

Solution. Based on the data in Table E12.4A we minimized f; with respect to
' R using a quadratic interpolation one-dimensional search (see Chapter 5). The value
of R,, from Equation (a) was 11.338. The initial bracket was 12 = R = 20, and R =
16, 18, and 20 were selected for the initial three points. The convergence tolerance on

i the optimum required that f; should not change by more than 0.01 from one iteration

to the next.

The iterative program incorporating the quadratic interpolation search yielded
the results in Table E12.4B. The optimum reflux ratio was 17.06 and the cost, f;, was
$3870/day. Table E12.4C shows the variation in f; for =10 percent change in R. The

profit function changes $100/day or more.
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