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OPTIMIZATION OF FLUID flow systems encompasses a wide-ranging scope of prob-
lems. In water resources planning the objective is to decide what systems to
improve or build over a long time frame. In water distribution networks and sewage
systems, the time frame may be quite long, but the water and sewage flows have to
balance at the network nodes. In pipeline design for bulk carriers such as oil, gas,
and petroleum products, specifications on flow rates and pressures (including stor-
age) must be met by suitable operating strategies in the face of unusual demands.
Simpler optimization problems exist in which the process models represent flow
through a single pipe, flow in parallel pipes, compressors, heat exchangers, and so
on. Other flow optimization problems occur in chemical reactors, for which vari-
ous types of process models have been proposed for the flow behavior, including
well-mixed tanks, tanks with dead space and bypassing, plug flow vessels, disper-
sion models, and so on. This subject is treated in Chapter 14.

Optimization (and modeling) of fluid flow systems can be put into three gen-
eral classes of problems: (1) the modeling and optimization under steady-state con-
ditions, (2) the modeling and optimization under dynamic (unsteady-state) condi-
tions, and (3) stochastic modeling and optimization. All three classes of problems
are complicated for large systems. Under steady-state conditions, the principal dif-
ficulties in obtaining the optimum for a large system are the complexity of the topo-
logical structure, the nonlinearity of the objective function, the presence of a large
number of possibly nonlinear inequality constraints, and the large number of vari-
ables. We do not consider optimization of dynamic or stochastic processes in this
chapter. Instead, we focus on relatively simple steady-state fluid flow processes
using the following examples:

1. Optimal pipe diameter for an incompressible fluid (Example 13.1)
2. Minimum work of gas compression (Example 13.2)

3. Economic operation of a fixed-bed filter (Example 13.3)

4. Optimal design of a gas transmission line (Example 13.4)

EXAMPLE 13.1 OPTIMAL PIPE DIAMETER

Example 2.8 briefly discussed how to determine the optimal flow in a pipe. In this
example we consider how the trade-off between the energy costs for transport and the
investment charges for flow in a pipe determines the optimum diameter of a pipeline.
With a few simplifying assumptions, you can derive an analytical formula for the opti-
mal pipe diameter and the optimal velocity for an incompressible fluid with density p
and viscosity w. In developing this formula the investment charges for the pump itself
are ignored because they are small compared with the pump operating costs, although
these could be readily incorporated in the analysis if desired. The mass flow rate m of
the fluid and the distance L the pipeline is to traverse are presumed known, as are p
and w. The variables whose values are unknown are D (pipe diameter), Ap (fluid pres-
sure drop), and v (fluid velocity); the optimal values of the three variables are to be
determined so as to minimize total annual costs. Not all of the variables are inde-
pendent, as you will see.
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Total annual costs comprise the sum of the pipe investment charges and the oper-
ating costs for running the pump. Let C,,, be the annualized charges for the pipe and

C,p be the pump operating costs. We propose that

Cinv = CanL (a)
CymAp
= o ®)
oM
where n = an exponent from a cost correlation (assumed to be 1.3)

n = the pump efficiency
C, and C; = cost coefficients

C, includes the capitalization charge for the pipe per unit length, and C, corresponds
to the power cost ($/kWh) due to the pressure drop. The objective function becomes

ComAp
C=Cy +Cp,=CD"L+ 7’—" ()

Note that Equation (¢) has two variables: D and Ap. However, they are related
through a fluid flow correlation as follows (part of the process model):

_ 2foVL

Ap D

@)

where f is the friction factor. Two additional unspecified variables exist in Equa-
tion (d), namely v and f. Both m and f are related to v as follows:

2
m= <p7;D )v (3]

0.046.°2

D0.2v0.2 p0.2 (f )

f=0.046Re 02 =

Equation (e) is merely a definition of the mass flow rate. Equation (f) is a standard
correlation for the friction factor for turbulent flow. (Note that the correlation between
fand the Reynold’s number (Re) is also available as a graph, but use of data from a
graph requires trial-and-error calculations and rules out an analytical solution.)

To this point we isolated four variables: D, v, Ap, and f, and have introduced three
equality constraints—Equations (d), (¢), and (f)—leaving 1 degree of freedom (one
independent variable). To facilitate the solution of the optimization problem, we elim-
inate three of the four unknown variables (Ap, v, and f) from the objective function
using the three equality constraints, leaving D as the single independent variable.
Direct substitution yields the cost equation

C
C= C1D1'3L +0.142 ,:”_0_ mz.sI_Lo.zp—z.OD -481 (8
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Here, C,, is selected with units {($/year)/ [(b,)(ft¥s*]}. We can now differentiate C
with respect to D and set the resulting derivative to zero

dc C
-5 = 0= 13CD%L - 0.682ng° m*$02p=20p58 (k)

and solve for D°P;

Co
Cimg.

0.164
Dopt = 0900< ) m04459M0.O33p—0.328 (l)

Note that L does not appear in the result.
Equation (7) permits a quick analysis of the optimum diameter as a function of a
variety of physical properties. From the exponents in Equation (i), the density and
mass flow rate seem to be fairly important in determining D, but the ratio of the cost
factors is less important. A doubling of m changes the optimum diameter by a factor
of 1.4, but a doubling of the density decreases D by a factor of 1.25. The viscosity
is also not too important. For very viscous fluids, larger diameters resulting in lower
velocities are indicated, whereas gases (low density) give smaller diameters and
higher velocities. The validity of Equation (i) for gases is questionable, because the
variation of gas velocity with pressure must be taken into account.
Using Equation (e)
4m
wpD?

v= o)
we can discover how the optimum velocity varies as a function of m, p, and u by sub-
stituting Equation (i) for D°P* into (j):

JOPt = C2m0.082M—0.066p—0.344 (k)

where C, is a consolidated constant. Consider the effect of p on the optimum veloc-
ity. Generally optimum velocities for liquids vary from 3 to 8 ft/s, whereas for gases
the range is from 30 to 60 ft/s. Although D is influenced noticeably by changes in
m, v°P' is very insensitive to changes in m.

Suppose a flow problem with the following specifications is posed:

m = 50 1b/s
p = 60 Ib/ft>
w = 6.72 X 107* 1b/(ft)(s)
n = 0.6 (60% pump efficiency)
Purchased cost of electricity = $0.05/kWh
8760 h/year of operation  (100% stream factor)
C, = $5.7 (D in ft); C;D" is an annualized cost
expressed as $/(ft)(year)
L = immaterial

The units in Equation (g) must be made consistent so that C is in dollars per year. For
$0.05/kWh, C, = $0.5938 {($/year)/[Ib, )(ft?)/s*)]}. Substitution of the values speci-
fied into Equation (i) gives D" = 0.473 ft = 5.7 in. The standard pipe schedule
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FIGURE E13.1
Investment, operating, and total costs for pipeline example
(L = 1f1t).

40 size closest to D" is 6 in. For this pipe size (ID = 6.065 in.) the optimum veloc-
ity is 4.2 ft/s. (A schedule 80 pipe has an ID of 5.7561 in.) Figure E13.1 shows the
respective contributions of operating and investment costs to the total value of C.

As the process model is made more accurate and complicated, you can lose the
possibility of obtaining an analytical solution of the optimization problem. For
example, if (1) the pressure losses through the pipe fittings and valves are included
in the model, (2) the pump investment costs are included as a separate term with a
cost exponent (7 ) that is not equal to 1.0, (3) elevation changes must be taken into
account, (4) contained solids are present in the flow, or (5) significant changes in
density occur, the optimum diameter will have to be calculated numerically.

EXAMPLE 13.2 MINIMUM WORK OF COMPRESSION

In this example we describe the calculation of the minimum work for ideal com-
pressible adiabatic flow using two different optimization techniques, (a) analytical,
and (b) numerical. Most real flows lie somewhere between adiabatic and isothermal
flow. For adiabatic flow, the case examined here, you cannot establish a priori the
relationship between pressure and density of the gas because the temperature is
unknown as a function of pressure or density, hence the relation between pressure and
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density is derived using the mechanical energy balance. If the gas is assumed to be
ideal, and k = C,/C, is assumed to be constant in the range of interest from p; to p,,
you can make use of the well-known relation

pV* = Constant (@)

in getting the theoretical work per mole (or mass) of gas compressed for a single-stage
compressor (McCabe and colleagues, 1993)

kRT (k—1)/k
)
k—1 P1

where T, is the inlet gas temperature and R the ideal gas constant ( plf/l = RT, ). For
a three-stage compressor with intercooling back to T; between stages as shown in Fig-
ure E13.2, the work of compression from p; to p, is

~  kRT (e=1)/k (k=1)/k =1k
A e
k_l pl pZ ps

We want to determine the optimal interstage pressures p, and p; to minimize W
keeping p, and p, fixed.

Analytical solution. We set up the necessary conditions using calculus and also
test to ensure that the extremum found is indeed a minimum.

oW _ _ _

'a? = 0 = RT,[(p,)"™*(p,)"* - (p3) &V, )1 20/4] d)
2

oW _ _ -

e 0 = RT,[(p2) 4 (ps) ¥ — (o) Vi(p3)' 9] (e)

The simultaneous solution of Equations (d) and (e) yields the desired results

pi=pwps and  pi=pps

so that the optimal values of p, and p; in terms of p; and p, are
pi = (pip)"? @)

ps = (pip)"? )



466

PART III: Applications of Optimization

With these conditions for pressure, the work for each stage is the same.
To check the sufﬁc1ency conditions, we examine the Hessian matrix of W (after
substituting p¥ and p¥) to see if it is positive-definite.

) k— [(p*)(l 5k)/3k][(p*) (1+k)/3k] [(p=i=)(l—4k)3k][(pzl{)—(l+2k)/3k]]
VW = RT1< A > ‘:[(p*)(l 4)/3k][(p4) (1+2k)/3k:' 2[(p={=)(1—3k)/3k:|[(pj)—(1+2k)/3k]

The two principal minors (the two diagonal elements) must be positive because p¥
and p} are both positive, and the determinant of VW

RTy(k—1)72, . . _ .
4[_](__] [(p{)(z 8k)/3k(pj) (2+4k)/3k] _

Tk —1)72 _
[R (k )] [(pvi-)Z—Sk)/:ik(p;l;) —(2+4k)/3k] >0

is also positive, hence V2W is positive-definite.

Numerical solution. Numerical methods of solution do not produce the gen-
eral solution given by Equations (f) and (g) but require that specific numerical values
be provided for the parameters and give specific results. Suppose that p, = 100 kPa
and p, = 1000 kPa. Let the gas be air so that k = 1.4. Then (k — 1)/k = 0.286. Appli-
cation of the BFGS algorithm to minimize W in Equation (¢) as a function of p, and
pj starting with p, = p, = 500 yields

py=121544 compared with p% = 215.44 from Equation (f)

= 464.17 compared with  p% = 464.16 from Equation (g)

EXAMPLE 13.3 ECONOMIC OPERATION OF A FIXED-BED
FILTER

Various rules of thumb exist for standard water filtration rates and cycle time before
backwashing. Higher filtration rates may appear to be economically justified, how-
ever, when the filter loading is within conventional limits. In this example, we exam-
ine the issues involved for constant-rate filtration for a dual-media bed. Dual- and
mixed-media beds result in increased production of water in a filter for two reasons.
First, the larger grains (say charcoal approximately 1-mm size) as a top layer help
reduce cake formation and deposition within the small (150-mm) top layer of the bed.
Second, the head loss in the region of significant filtration is reduced.

With respect to the objective function for a filter, the total annual cost of filtra-
tion f is assumed to be the sum of the annualized capital costs £, and the annual oper-
ating costs f,,. The annualized capital cost is related to the cross-sectional area of the
filter by the relation

f. = rbA? (@)

where r = the capital recovery factor involving the discount rate and economic life
of the filter
b = an empirical constant
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z = an empirical exponent
= the cross-sectional area of the filter

The cross-sectional area can be calculated by dividing the design flow rate by a quan-
tity that is equal to the number of filter runs per day times the net water production
per run per cross-sectional area:

q

A= TRI(V/0) + )V, - Vi) ©)

where g = the design flow rate in gal/day, L/day (dual units given here)

V, = the volume of water filtered per unit area of bed per filter run in gal/ft?,
L/m?

V, = the volume of filtered water used for backwash per unit area of bed in
gal/ft?; L/m?

Q = the filtration rate in gal/(min)(ft?); L/(min)(m?)

t, = the filter down time for backwash, min

1440 = the number of minutes/day

For a constant filtration rate, the length of the filter run is given by z, = V,/Q.

The water production per filter run V; is based on a relation proposed by Letter-
man (1980) that assumes minimal surface cake formation by the time filtration is
stopped because of head loss:

KD »
0 E lognAH
BCyn 51 "kDQ

V= ©
where K, = a constant related to the density of the deposit within the bed
D the overall depth of the bed, ft.
B = the overall fraction of the influent suspended solids removed during the
entire filter run
C, = suspended solids concentration in the filter influent
n = the number of layers i = 1, . . ., n into which the filter is divided for
use of Equation (c)
AH = the terminal pressure (head) loss for the bed, ft.
k, = a function of the geometric mean grain diameter d,; in layer i. For
rounded grams, the Kozeny—Carmen equation can be used to estimate k;:
k;=0.081 d, ", 2 where d ; is in millimeters. :

Typical values are n = 1, dg = 1 mm, AH = 10 ft, D = 3 ft, and (KP/BCO) = 700.
The backwash flow rate is calculated from

() y
9 = V-, q (d)

We assume the backwash water is not recycled.
We next summarize the annual operating costs of the filter because they are equal
to the energy costs for pumping

fo= qb[1.146 X 10'%,;(%)} (&)

where f, = dollars per year
h = the backwash pumping head in feet of water
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Cp = the cost of electricity in dollars per kilowatt-hour
m = the pump efficiency
1.146 X 1073 = the conversion factor

Let us now carry out a numerical calculation based on the following values for
the filter parameters

h = 110 ft of water (33.5 m)

n=0.8
_$870  $6715
z=0.86
r = 0.134 (12.5% for 20 years) (year ')
C; = 0.03/kWh

Substitution of these values into Equations (@) and () together with Equations
(b) and (d) yields the total cost function

f (y%) - “6[1440/[<vf/ggoiqm<vf— v>]

v,
+473 % 103[Vf_fvb - 1]:1 )

If the values of g, 1,, and V, are specified, and Equation (c) is ignored, the total annual
cost can be determined as a function of the water production V; per bed area and the
filtration rate Q.

Figure E13.3 shows f versus V}, the water filtered per run, for g (in 10° units) = 10
Mgal/day (3.79 X 10 ML/day), #, = 10 min, and V,, = 200 gal/fi? (8.15 X 10% L/m?)

At unconstrained minimum f = $26,460

20
B \ 1= $30,000/year
G J
- F\'&S’[I. . \ fﬁ $4 ,000/)’63.1‘

N
NN ~ojy | 7= $50000year
it e
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g

FIGURE E13.3
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with Q gal/(min)(ft?) as a parameter. The unconstrained solution is at the upper
bounds on Q and V;. Notice the flatness of fas V; increases.

Equation (c) would be used in the design of the filter, hence Equation (¢) imposes
a constraint that must be taken into account. The optimal solution becomes V; = 940
gal/ft? and Q = 14.2 gal/(min)(ft?) with Equation (c) included in the problem (see Fig-
ure E13.3). A rule of thumb is 2 gal/(min)(ftz) (Letterman, 1980), as compared with
the optimal value of Q.

EXAMPLE 13.4 OPTIMAL DESIGN OF A GAS TRANSMISSION
NETWORK

A gas-gathering and transmission system consists of sources of gas, arcs composed of
pipeline segments, compressor stations, and delivery sites. The design or expansion of
a gas pipeline transmission system involves capital expenditures as well as the continu-
ing cost of operation and maintenance. Many factors have to be considered, including

1. The maximum number of compressor stations that would ever be required during a
specified time horizon

2. The optimal locations of these compressor stations

3. The initial construction dates of the stations

4. The optimal solution for the expansion for the compressor stations

5. The optimal diameter sizes of the main pipes for each arc of the network

6. The minimum recommended thickness of the main pipes

7. The optimal diameter sizes, thicknesses, and lengths of any required parallel pipe
loops on each arc of the network

8. The timing of constructions of the parallel pipe loops

9. The operating pressures of the compressors and the gas in the pipelines

In this example we describe the solution of a simplified problem so that the var-
ious factors involved are clear. Suppose that a gas pipeline is to be designed so that it
transports a prespecified quantity of gas per time from point A to other points. Both
the initial state (pressure, temperature, composition) at A and final states of the gas are
known. We need to determine.

1. The number of compressor stations

2. The lengths of pipeline segments between compressor stations
3. The diameters of the pipeline segments

4. The suction and discharge pressures at each station.

The criterion for the design will be the minimum total cost of operation per year
including capital, operation, and maintenance costs. Note that the problem considered
here does not fix the number of compressor stations, the pipeline lengths, the diame-
ters of pipe between stations, the location of branching points, nor limit the configu-
ration (branches) of the system so that the design problem has to be formulated as a
nonlinear integer programming problem. Figure El13.4a illustrates a simplified
pipeline that we use in defining and solving the problem.

Before presenting the details of the design problem, we need to distinguish
between two related problem, one being of a higher degree of difficulty than the other.
If the capital costs of the compressors are a linear function of horsepower as shown
in line A in Figure E13.4b, the transmission line problem can be solved as a nonlin-
ear programming problem by one of the methods discussed in Chapter 8. On the other
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Pipeline configuration with three branches.

hand, if the capital costs are a linear function of horsepower with a fixed capital out-
lay for zero horsepower as indicated by line B in Figure E13.4b, a condition that more
properly reflects the real world, then the design problem becomes more difficult to
solve and must be solved by a branch-and-bound algorithm combined with a nonlin-
ear programming algorithm as discussed later on. The reason why the branch-and-
bound method is avoided for the case involving line A is best examined after the math-
ematical formulation of the objective function (cost function) has been completed. We
split the discussion of the transmission line problem into five parts: (1) the pipeline
configuration, (2) the variables, (3) the objective function and costs, (4) the inequal-
ity constraints, and (5) the equality constraints.

The pipeline configuration. Figure E13.4a shows the configuration of the
pipeline we are using in this example and the notation employed for the numbering sys-
tem for the compressor stations and the pipeline segments. Each compressor station is
represented by a node and each pipeline segment by an arc. N1, N2, and N3 represent
the maximum number of possible stations in each of the three branches. Pressure
increases at a compressor and decreases along the pipeline segment. The transmission
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Capital and operating costs of compressors.

system is presumed to be horizontal. Although a simple example has been selected to
illustrate a transmission system, a much more complicated network can be accommo-
dated that includes various branches and loops at the cost of additional computation
time. For a given pipeline configuration each node and each arc are labeled separately.
In total there are

n total compressors [n = >, (N;)]

n — 1 suction pressures (the initial entering pressure is known)
n discharge pressures
n + 1 pipeline segment lengths and diameters (note there are two segments
issuing at the branch)

The variables. Each pipeline segment has associated with it five variables: (1) the
flow rate Q; (2) the inlet pressure p, (discharge pressure from the upstream compressor);
(3) the outlet pressure p, (suction pressure of the downstream compressor), (4) the pipe
diameter D, and (5) the pipeline segment length L. Inasmuch as the mass flow rate is
fixed, and each compressor is assumed to have gas consumed for operation of one-half
of one percent of the gas transmitted, only the last four variables need to be determined
for each segment.

The objective function. Because the problem is posed as a minimum cost
problem, the objective function is the sum of the yearly operating and maintenance
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costs of the compressors plus the sum of the discounted (over 10 years) capital costs
of the pipeline segments and compressors. Each compressor is assumed to be adia-
batic with an inlet temperature equal to that of the surroundings. A long pipeline seg-
ment is assumed so that by the time gas reaches the next compressor it returns to the
ambient temperature. The annualized capital costs for each pipeline segment depend
on pipe diameter and length, but are assumed to be $870/(in.)(mile)(year). The rate of
work of one compressor is

2(k~1)/k
W = (0.08531)Q %Tl[ (%) - 1] @

5

where k = C,/C, for gas at suction conditions (assumed to be 1.26)
z = compressibility factor of gas at suction conditions (z ranges from 0.88
to 0.92)
Ds = suction pressure, psi
Dy = discharge pressure, psi
T, = suction temperature, °R (assumed 520°R)
Q = flow rate into the compressor, MMCFD (million cubic feet per day)
W = rate of work, horsepower.

Operation and maintenance charges per year can be related directly to horse-
power and are estimated to be between 8.00 and 14.0 $/(hp)(year), hence the total
operating costs are assumed to be a linear function of compressor horsepower.

Figure E13.4b shows two different forms for the annualized capital cost of the com-
pressors. Line A indicates the cost is a linear function of horsepower [$70.00/ (hp)(year)]
with the line passing through the origin, whereas line B assumes a linear function of
horsepower with a fixed initial capital outlay [$70.00/(hp)(year) + $10,000] to take into
account installation costs, foundation, and so on. For line 4, the objective function in dol-
lars per year for the example problem is

n k D 4, 2k—=1)/k
f= ,~=21(C° + Cc)Qi(0.08531)T1<—k - 1){(}—];‘_) - 1}

m

+ > C.L;D, )
Jj=1

where n = number of compressors in the system
m = number of pipeline segments in the system (= n + 1)
C, = yearly operating cost $/(hp)(year)
C, = compressor capital cost $/(hp)(year)
C, = pipe capital cost $/(in)(mile)(year)
L; = length of pipeline segment j, mile
D; = diameter of pipeline segment j, in.

1l

You can now see why for line A a branch-and-bound technique is not required
to solve the design problem. Because of the way the objective function is formu-
lated, if the ratio (p,/p,) = 1, the term involving compressor i vanishes from the
first summation in the objective function. This outcome is equivalent to the dele-
tion of compressor i in the execution of a branch-and-bound strategy. (Of course
the pipeline segments joined at node i may be of different diameters.) But when
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line B represents the compressor costs, the fixed incremental cost for each com-
pressor in the system at zero horsepower (Cy) is nof multiplied by the term in the
square brackets of Equation (b). Instead, C is added in the sum of the costs
whether or not compressor i is in the system, and a nonlinear programming tech-
nique cannot be used alone. Hence, if line B applies, a different solution procedure
is required.

The inequality constraints. The operation of each compressor is constrained
so that the discharge pressure is greater than or equal to the suction pressure

Pa.
<1, i=1,2,..,m ©
Ps,

and the compression ratio does not exceed some prespecified maximum limit K

Da.
;ﬂzK,.,i=1,2,...,n @

In addition, upper and lower bounds are placed on each of the four variables

pi" < ps = pi~ (e
Pyt = p, = P f)
L < L=< L™ ®
Df" < D, < D ")

The equality constraints. Two classes of equality constraints exist for the
transmission system. First, the length of the system is fixed. With two branches, there
are two constraints

Nl-1 N1+N2
— %
> L+ > L=Lj
= j=m
N1—-1 IN+N2+N3+1
— ES -
>SL+ > =L )
j=1 j=N1+N2+1

where L} represents the length of a branch. Second, the flow equation, the Weymouth
relation (GPSA handbook, 1972), must hold in each pipeline segment

2 2712
Pa s
0= sm;ﬂ[T}

J

0

where Qj = a fixed number
p, = the discharge pressure at the entrance of the segment
p, = the suction pressure at the exit of the segment

To avoid problems in taking square roots, Equation (j) is squared to yield

(871)*D}P(p3 — p}) — L;@Q} = 0 &)
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Solution strategy. As mentioned previously, if the capital costs in the problem
are described by line A in Figure E13.4b, then the problem can be solved directly by
a nonlinear programming algorithm. If the capital costs are represented by line B in
Figure E13.4b, then nonlinear programming in conjunction with branch-and-bound
enumeration must be used to accommodate the integer variable of a compressor being
in place or not.

As explained in Chapter 9, a branch-and-bound enumeration is nothing more
than a search organized so that certain portions of the possible solution set are deleted
from consideration. A tree is formed of nodes and branches (arcs). Each branch in the
tree represents an added or modified inequality constraint to the problem defined for
the prior node. Each node of the tree itself represents a nonlinear optimization prob-
lem without integer variables.

With respect to the example we are considering, in Figure E13.4c, node 1 in the
tree represents the original problem as posed by Equations (b)-(k), that is the prob-
lem in which the capital costs are represented by line A in Figure E13.4b. When the
problem at node 1 is solved, it provides a lower bound on the solution of the prob-
lem involving the cost function represented by line B in Figure E13.4b. Note that line
A always lies below line B. (If the problem at node 1 using line A had no feasible
solution, the more complex problem involving line B also would have no feasible
solution.) Although the solution of the problem at node 1 is feasible, the solution
may not be feasible for the problem defined by line B because line B involves an ini-
tial fixed capital cost at zero horsepower.

After solving the problem at node 1, a decision is made to partition on one of the
three integer variables; N1, N2, or N3. The partition variable is determined by the fol-
lowing heuristic rule.

(a) Initial problem

Problem defined
by Equations (&) to (k)

Constraints:
O0<Nl<4
0<N2<3
0<N3<3

(b) First branching

Decision: 0 < N2 <2 N2=3

New problem New problem

Constraints: Constraints:
0<Ni<4 0<Nlg4
0<N2<2 o P < N2=3
0<N3<3 .~ AN i N0 <N3<3
FIGURE E13.4c¢

Partial tree and branches for the example design problem.
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The smallest average compression ratio of all the branches in the transmission
system is calculated by adding all the compression ratios in each branch and
dividing by the number of compressors in the branch. The number of com-
pressors in the branch that has smallest ratio becomes the partition variable.

Based on this rule, the partition variable was calculated to be N2.

After selection of the partition variable, the next step is to determine how the
variable should be partitioned. It was decided to check each compressor in the branch
of the transmission line associated with the partition variable, and if any compressor
operated at less than 10 percent of capacity, it was assumed the compressor was not
necessary in the line. (If all operate at greater than 10 percent capacity, the compres-
sor with the smallest compression ratio was deleted.) For example, with N2 selected
as the partition variable, and one of the three possible compressors in branch 2 of the
gas transmission network operating at less than 10 percent of capacity, the first parti-
tion would lead to the tree shown in Figure E13.4c; N2 would either be 3 or would be
0 < N2 = 2. Thus at each node in the tree, the upper or lower bound on the number
of compressors in each branch of the pipeline is readjusted to be tighter.

The nonlinear problem at node 2 is the same as at node 1, with two exceptions.
First, the maximum number of compressors permitted in branch 2 of the transmis-
sion line is now two. Second, the objective function is changed. From the lower
bounds, we know the minimum number of compressors in each branch of the
pipeline. For the lower bound, the costs related to line B in Figure E13.4b apply; for
compressors in excess of the lower bound and up to the upper bound, the costs are
represented by line A.

As the decision tree descends, the solution at each node becomes more and more
constrained, until node r is reached, in which the upper bound and the lower bound
for the number of compressors in each pipeline branch are the same. The solution at
node r is feasible for the general problem but not necessarily optimal. Nevertheless,
the important point is that the solution at node  is an upper bound on the solution of
the general problem.

As the search continues through the rest of the tree, if the value of the objective func-
tion at a node is greater than that of the best feasible solution found to that stage in the
search, then it is not necessary to continue down that branch of the tree. The objective
function of any solution subsequently found in the branch is larger than the solution
already found. Thus, we can fathom the node, that is, terminate the search down that
branch of the tree.

The next step is to backtrack up the tree and continue searching through other
branches until all nodes in the tree have been fathomed. Another reason to fathom a
particular node occurs when no feasible solution exists to the nonlinear problem at
node r; then all subsequent nodes below node r are also infeasible.

At the end of the search, the best solution found is the solution to the general
problem.

Computational results. Figure E13.4d and Table E13.4A show the solution to
the example design problem outlined in Figure E13.4a using the cost relation of line
A in Figure E13.4b. The maximum number of compressors in branches 1, 2, and 3
were set at 4, 3, and 3, respectively. The input pressure was fixed at 500 psi at a flow
rate of 600 MMCFD, and the two output pressures were set at 600 psi and 300 psi,
respectively, for branches 2 and 3. The total length of branches 1 plus 2 was con-
strained to be 175 miles, whereas the total length of branches 1 plus 3 was constrained
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175 miles
Branch 2
600 psia
Branch 1
500 psia
600 MMCFD
300 psia
200 miles
(a) Initial configuration (arcs are numbered sequentially)
500 psia 2.0 51.3 3 113.7 8.0

600 psia

600 MMCFD
6.0
4 270 300 psia

(b) Optimal configuration with optimal pipeline lengths
(in miles) shown on the arcs

FIGURE E13.4d
Initial gas transmission system and final optimal system using the costs of line A,
Figure E13.4b.

at 200 miles. The upper bound on the diameter of the pipeline segments in branch 1
was set at 36 inches, the upper bound on the diameters of the pipeline segments in
branches 2 and 3 at 18 in., and the lower bound on the diameters of all pipeline seg-
ments at 4 in. A lower bound of 2 miles was placed on each pipeline segment to ensure
that the natural gas was at ambient conditions when it entered a subsequent compres-
sor in the pipeline.

Figure E13.4d compares the optimal gas transmission network with the original
network. From a nonfeasible starting configuration with 10-mile-long pipeline seg-
ments, the nonlinear optimization algorithm reduced the objective function from the
first feasible state of 1.399 X 107 dollars/year to 7.289 X 106 dollars/year, a savings
of close to $7 million. Of the ten possible compressor stations, only four remained in
the final optimal network. Table E13.4a lists the final state of the network. Note that
because the suction and discharge pressures for the pipeline segments in branch 2 are
identical, compressors 4, 5, 6, and 7 do not exist in the optimal configuration, nor do
9 and 10 in branch 3.

The same problem represented by Figure E13.4a was solved again but using the
costs represented by line B instead of line A in Figure E13.4b. Figure E13.4e and
Table E13.4B present the results of the computations. It is interesting to note that
compressor 3 remains in the final configuration but with a compression ratio of 1, that
is, compressor 3 is not doing any work. This means that it is cheaper to have two
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TABLE E13.4A
Values of operating variables for the optimal network configuration
using the costs of line A, Figure E13.4b

Discharge Suction Pipe Flow
Pipeline pressure pressure  diameter  Length rate
segment (psi) (psi) (in.) (mile) (MMCEFD)
1 719.1 715.4 35.0 2.0 597.0
2 1000.0 889.3 324 51.3 594.0
3 1000.0 735.8 324 113.7 591.0
4 735.7 703.8 18.0 2.0 294.0
5 703.8 670.6 18.0 2.0 292.6
6 670.6 636.1 18.0 2.0 291.1
7 636.1 600.0 18.0 2.0 289.7
8 735.8 703.8 18.0 2.0 294.0
9 685.2 859.1 18.0 2.0 292.6
10 859.1 8325 18.0 2.0 291.1
11 832.5 300.0 18.0 27.0 289.7
Capital
Compressor Compression cost
station ratio ($/year)
1 1.44 70.00
2 1.40 70.00
3 1.00 70.00
4 1.00 70.00
5 1.00 70.00
6 1.00 70.00
7 1.00 70.00
8 1.26 70.00
9 1.00 70.00
10 1.00 70.00
500 psia 499 () 1229 3y 72 600 psia
600 MMCFD
20
%2 300 psia

FIGURE E134e
Optimal configuration using the costs of line B in Figure E13.4b.

pipeline segments in branch 1 and two compressors each operating at about one-half
capacity, plus a penalty of $10,000, than to have one pipeline segment and one com-
pressor operating at full capacity. Compressor 3 doing no work represents just a
branch in the line plus a cost penalty.
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TABLE E13.4B
Values of operating variables for the optimal network configuration
using the costs of line B, Figure E13.4b

Discharge Suction Pipe Flow
Pipeline pressure pressure diameter Length rate
segment (psi) (psi) (in.) (mile) (MMCFD)
1 954.5 8372 32.3 49.9 597.0
2 1000.0 699.7 323 122.9 594.0
3 699.7 600.0 152 22 295.5
4 699.7 665.7 18.0 2.0 295.5
5 952.2 300.0 16.9 25.2 294.0
Capital
Compressor Compression cost
station ratio ($/year)
1 1.91 69.50
2 1.19 69.50
3 1.00 69.50
4 1.43 69.50
REFERENCES

Gas Processor Suppliers Association. Engineering Data Book. 1972.

Letterman, R. D. “Economic Analysis of Granular Bed Filtration” Trans Am Soc Civil
Engrs 106: 279 (1980).

McCabe, W. L.; J. C. Smith; and P. Harriott. Unir Operations of Chemical Engineering, 5th
ed. McGraw-Hill, New York (1993).

SUPPLEMENTARY REFERENCES

Bejan, A. “Maximum Power from Fluid Flow.” Int J Heat Mass Transfer 39: 1175-1181
(1996).

Carroll, J. A.; and R. N. Horne. “Multivariate Optimization of Production Systems.” J Petrol
Tech 44: 782789 (July, 1992).

Currie, J. C.; J. F. Novotrak; B. T. Ashdee; and C. J. Kennedy. “Optimize Reservoir Man-
agement: Mixed Linear Programming.” J Petrol Tech 1351-1355 (December, 1997).

Heinemann, R. F,; and S. L. Lyons. “Next Generation Reservoir Optimization.”” World Oil
219: 47-50 (1998).

Nishikiori, N.; R. A. Redner; and D. R. Doty. “An Improved Method for Gas Lift Allocation
Optimization.” J Energy Resour Tech 117: 87-92 (1995).



CHAPTER 13: Fluid Flow Systems 479

Pan, Y.; and R. N. Horne. “Multivariate Optimization of Field Development Scheduling and
Well-Placement Design.” J Petrol Tech 83-86 (December, 1998).

Ramirez, W. F. Application of Optimal Control to Enhanced Oil Recovery. Elsevier, Ams-
terdam (1998).

Sung, W.; D. Huh; and J. Lee. “Optimization of Pipeline Networks with a Hybrid MCSTCD
Networking Model.” SPE Prod Fac 13(3): 213-219 (1998).



14

CHEMICAL REACTOR DESIGN
AND OPERATION

Example
14.1 Optimization of a Thermal Cracker Via Linear Programming ........... 484
14.2 Optimal Design of an Ammonia Reactor ............cevevuvnnerenens 488
14.3 Solution of an Alkylation Process by Sequential Quadratic
Programming . .....oueuuiineetioeanssereonaneseoeearanananaenos 492
14.4 Predicting Protein Folding ........coveeirrniiieernnennnneneennnns 495
14.5 Optimization of Low-Pressure Chemical Vapor Deposition Reactor for the
Deposition of Thin Films .. .....cviiiiiriiiinnnennnninneeeennnes 500
14.6 Reaction Synthesis VIa MINLP .. ...vttuireeeneruneernnnesseanseas 508
References .....ovvviiiiiiiiiiiiniiiieinneeinniecnnsennnssonnns 513
Supplementary References .......coveuveeeeeeennnreeeearennnnnenens 514

480



