15

OPTIMIZATION IN LARGE-SCALE PLANT
DESIGN AND OPERATIONS

151
15.2
15.3
154

Process Simulators and Optimization Codes00uetn 518
Optimization Using Equation-Based Process Simulators 525
Optimization Using Medular-Based Simulatorsceveeannn 537
SUMMALY +vuvveteieeentuiessssosasesnssessesasssssosssnsasnons 546
References ..oouvsverereeerenereerocassosenssasocnssessscnasnss 546
Supplementary Referencesccceveevennrirsccccccencccanns 548

515

516 PART III: Applications of Optimization

User
objectives
and specifications

A flowsheet Synthesis
Experimentation,
literature
Flowsheeting
* Solution of
material and |- — — —|-——— . PaFamt?ter
gg'lergy | estimation
ances I ¢ Data smoothing
* Phase I and
relations | iliati
* Sizing and | reconciliation
costing :
|
L Database
Optimization }+—
€ ——————— ——| Capital, utility,
Rate of manufacturing, Physical
return, and equipment property-
NPV cost i i
S estimating
Potential routines
optimal
flowsheet
FIGURE 15.1

Information flow in the design process.

As DISCUSSED IN Chapter 1, optimization of a large configuration of plant com-
ponents can involve several levels of detail ranging from the most minute features
of equipment design to the grand scale of international company operations. As an
example of the size of the optimization problems solved in practice, Lowery et al.
(1993) describe the optimization of a bisphenol-A plant via SQP involving 41,147
variables, 37,641 equations, 212 inequality constraints, and 289 plant measure-
ments to identify the most profitable operating conditions. Perkins (1998) reviews
the topic of plantwide optimization and its future.

An important global function of optimization is the synthesis of the optimal
plant configuration (flowsheet). By synthesis we mean the designation of the struc-
ture of the plant elements, such as the unit operations and equipment, that will meet
the designer’s goals. Figure 15.1 shows the relation of synthesis to design and oper-
ation. You check a flowsheet for equipment that can be eliminated or rearranged,
alternative separation methods, unnecessary feeds that can be eliminated, unwanted
or hazardous product or byproducts that can be deleted, heat integration that can be
improved, and so on. Even if no new technology is to be used, the problem is com-

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 517

binatorial in nature, and the number of alternatives increases substantially. For
example, Gunderson and Grossman (1990) in synthesizing a heat exchanger net-
work showed that for a net of five units below the pinch point (and three above),
126 different arrangements of exchangers exist. We have chosen not to discuss the
general problem of synthesis in this chapter, but instead we treat examples of opti-
mization applied to design of a specified configuration or flowsheet.

A major use of optimization is in the detailed design or retrofit of a plant for
which the flowsheet is already formulated. Goals are to enhance profitability;
reduce utility costs; select raw materials; size equipment; lay out piping; and analyze
reliability, flexibility, and safety, and so on. Often, as a result of various case stud-
ies, a base case is developed by creating a detailed process flowsheet containing the
major pieces of equipment. Then, process flow simulators are employed to achieve
improved designs. The design team improves the database by getting vendor data
and perhaps pilot plant data; simulates the base case design to find improvements
and barriers to feasibility; and develops networks of heat exchangers, turbines, and
compressors to satisfy the heating, cooling, and power requirements of the process.
Refer to any of the process design books such as Seider et al. (1999) for details con-
cerning the design process.

An even more widespread application of optimization is the determination of
the optimal operating conditions for an existing plant, such as selecting particular
feedstocks, temperatures, pressures, flow rates, and so on. Figure 15.2 traces the
information flow involved in determining the optimal plant operating conditions.
See Chapter 16 for a discussion of the optimization hierarchy in plant operations.
As indicated in the figure, optimization occurs at intermediate stages of the process
simulator as well as in the overall economic evaluation. The figure implies that
effectively meshing optimization algorithms with process simulators requires more
than just an optimization code and a process simulator containing the process
model. The software functions involved are

1. A supervisor or director to manage overall control of the software components.

2. Data processing conditioning, reconciliation, and validation of the data evolving
from the plant.

. Estimation of process parameters and unmeasured variables.

. Optimization of different kinds of problems.

. Simulation of plant models (equations, modules, or both) of varying degrees of
detail.

6. A database (historian) for process variables, costs and revenues, operating con-
ditions, disturbances, and so on.

. Communication links for data transfer and command signals.

. Reports and analysis capability for unit and plant performance, economic per-
formance, and hypothetical scenarios.

W

0

Although uncertainty exists in the results of all cases of the optimization of
plants because of the uncertainty in the values of the parameters in the process
models themselves, in the cost and revenue values in the objective function, and in
potential changes in the process inputs, we avoid such issues in this chapter and
focus solely on deterministic optimization.

518 PART III: Applications of Optimization

Plant Units

Set points Plant
for controllers measurements

Distributed control system

Values of controlled and Sampled
manipulated variables plant data
Plant Parameter Gross error
model and variable detection
(process estimation and data
simulation) reconciliation
Optimization Optimization Optimization
Database
Reports .
analysis Supply Scheduling
FIGURE 15.2

Information flow in developing the optimal operating conditions.

15.1 PROCESS SIMULATORS AND OPTIMIZATION CODES

Process simulators contain the model of the process and thus contain the bulk of the
constraints in an optimization problem. The equality constraints (“hard con-
straints”) include all the mathematical relations that constitute the material and
energy balances, the rate equations, the phase relations, the controls, connecting
variables, and methods of computing the physical properties used in any of the rela-
tions in the model. The inequality constraints (“soft constraints”) include material
flow limits; maximum heat exchanger areas; pressure, temperature, and concentra-
tion upper and lower bounds; environmental stipulations; vessel hold-ups; safety
constraints; and so on. A module is a model of an individual element in a flowsheet
(e.g., a reactor) that can be coded, analyzed, debugged, and interpreted by itself.
Examine Figure 15.3a and b.

Two extremes are encountered in process simulator software. At one extreme
the process model comprises a set of equations (and inequalities) so that the process
mode] equations form the constraints for optimization, exactly the same as described
in previous chapters in this book. This representation is known as an equation-

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 519

A Module
A subsystem
model containing
coded
Inlet information * Equations > Outlet information
* Variables * Inequalities * Variables
» Coefficients * Listed data « Coefficients
(stream and « Calls to database (stream and
energy flows energy flows
&y) Retention of &)
parameters, variables
for iteration
FIGURE 15.3a
A typical process module showing the necessary interconnections of
information.
V,v
VAP TITLE C5-C6 FLASH
PROPS2 1111
RETR N-PENTANE NC6
F,z T P T,P F1 BLOCK F1 IFLSH FEED LIQ VAP
BEE FEED = 1p1 su PARAMFI 1 120 13.23
MOLESFEED 1 0.5 0.5
TEMP FEED 130
Q LIQ PRESSFEED 73.5
END CASE
END JOB
L, x
Flash vessel Representation Module computer
flowsheet program
FIGURE 15.3b

A module that represents a flash unit. (Reproduced, with permission, from J. D. Seader,
W. D. Seider, and A. C. Pauls. Flowtran Simulation—An Introduction. Austin, TX:
CACHE, 1987.)

oriented process simulator. The equations can be solved in a sequential fashion anal-
ogous to the modular representation described in the next section, or simultaneously
by Newton’s method or by employing sparse matrix techniques to reduce the extent
of matrix manipulations (Gill et al., 1981). Two of the better known equation-based
codes are Aspen Custom Modeler (Aspen Technology 1998) and ASCEND (Wester-
berg 1998). Equation-based codes such as DMCC and RT-OPT (Aspen Technology),
and ROMEO (Simulation Sciences, 1999) dominate closed-loop, real-time opti-
mization applications (refer to Chapter 16). Section 15.2 covers meshing equation-
based process simulators with optimization algorithms.

520 PART III: Applications of Optimization

At the other extreme, the process can be represented on a flowsheet by a col-
lection of modules (a modular-based process simulator) in which the equations (and
other information) representing each subsystem or piece of equipment are coded so
that a module may be used in isolation from the rest of the flowsheet and hence is
portable from one flowsheet to another. Each module contains the equipment sizes,
the material and energy balance relations, the component flow rates, temperatures,
concentrations, pressures, and phase conditions. Examples of commercial codes are
ASPEN PLUS (Aspen Technology, 1998), HYSYS (Hyprotech, 1998), ChemCAD
(Chemstations, 1998), PRO/II 1998 (Simulation Sciences, 1998), and Batch Pro
and Enviro Pro Designer (Intelligen, 1999). Section 15.3 covers meshing modular-
based process simulators with optimization algorithms.

In addition to the two extremes, combinations of equations and modules can be
used. Equations can be lumped into modules, and modules can be represented by
their basic equations or by polynomials that fit the input—output information.

Although, as explained in Chapter 9, many optimization problems can be nat-
urally formulated as mixed-integer programming problems, in this chapter we will
consider only steady-state nonlinear programming problems in which the variables
are continuous. In some cases it may be feasible to use binary variables (on—off) to
include or exclude specific stream flows, alternative flowsheet topography, or dif-
ferent parameters. In the economic evaluation of processes, in design, or in control,
usually only a few (5-50) variables are decision, or independent, variables amid a
multitude of dependent variables (hundreds or thousands). The number of depen-
dent variables in principle (but not necessarily in practice) is equivalent to the num-
ber of independent equality constraints plus the active inequality constraints in a
process. The number of independent (decision) variables comprises the remaining
set of variables whose values are unknown. Introduction into the model of a speci-
fication of the value of a variable, such as T = 400°C, is equivalent to the solution
of an independent equation and reduces the total number of variables whose values
are unknown by one.

In optimization using a process simulator to represent the model of the process,
the degrees of freedom are the number of decision variables (independent variables)
whose values are to be determined by the optimization, hence the results of an opti-
mization yield a fully determined set of variables, both independent and dependent.
Chapter 2 discussed the concept of the degrees of freedom. Example 15.1 demon-
strates the identification of the degrees of freedom in a small process.

EXAMPLE 15.1 CALCULATION OF THE DEGREES OF
FREEDOM

Figure E15.1 shows a simplified flowsheet for the conversion of N, and H, to ammo-
nia (NH;) when argon (A) is present in the feed. After the reaction of N, and H,

N, + 3H, —2NH,

the NH; is separated as a liquid from the gas phase. A purge gas stream prevents argon
build-up in the system. Fresh feed is introduced in the proper ratio of N, to H, with

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 521

F
50°C, 100 atm
0=0 Fresh feed, gas
NH H, Splitter
3 \ // \\\ A ,/ \\\ N2
Reactor N - T4 < 7 Purge gas H, p
IIII‘ix/er T S0C A
2
Separator 3
Qe
NH;
—50°C, Saturated liquid
100 atm
FIGURE E15.1

the accompanying argon of about 0.9 percent. Assume all of the units and the pipe
lines are adiabatic (Q = 0). The fraction conversion in the reactor is 25 percent.

The process has four separate subsystems for the degree-of-freedom analysis.
Redundant variables and redundant constraints are removed to obtain the net degrees
of freedom for the overall process. The 2 added to N, refers to the conditions of tem-
perature and pressure in a stream; + 1 represents the heat transfer Q.

In this example

N, is the number of variables

Ny, is the number of components (species) in a stream

N, is the number of independent constraints

N, is the degrees of freedom (number of decision variables)

The analysis of each subsystem is as follows.

Mixer:
N,=3(N,+2)+1=3(6)+1 = 19
N,:
Material balances (H,, N, A only) 3
Energy balance 1

522 PART III: Applications of Optimization

Specifications:
NH; concentration is zero
T, = —50°C
Tr = 50°C
Assume that pr = prixour = Dsprie = 100
0=0
Niz19—-13 =
Reactor:
N,=2(Ny, +2)+1=2(6) + 1
N,:

Material balances (H, N, A)
Energy balances
Specifications:
NH; entering = 0
0=0
Fraction conversion
Pin = Powt = 100 atm
Energy balance
Nsz13-10=

Separator:
N,=3N, +2)+1=36)+1 =
N,:
Material balances
Energy balance
Specifications:
Touw = —50°C
Pr=Dn< pNH, = 100
NH; concentration is 0 in
recycle gas

N,, H,, A are 0 in liquid NH;
Ngs19-13 =

Splitter:
N, = 3(Ny, +2) =3(6) =
N,:
Material balances
Specifications:
NH; concentration = 0
Compositions same 2(N,, — 1)
Stream temperatures same = —50°C
Stream pressures same = 100 atm
N;18 — 14 =

= LW = = W

= N = = =

W

W W O =

o 15

I [3

o [

TN

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 523

The total number of degrees of freedom is 19 less the redundant information,
which is as follows:
Redundant variables in interconnecting streams being eliminated:

Stream 1: (4 +2) = 6
Stream 2: (4 + 2) = 6
Stream 3: (4 +2) = 6
Stream4: (4 +2) = 6

24
Redundant constraints being eliminated:

Stream 1:

NH; concentration = 0 1

p = 100 atm 1
Stream 2:

p = 100 atm 1
Stream 3:

NH; concentration = 0 1

p = 100 atm 1

T = —-50°C 1
Stream 4:

NH; concentration = 0 1

= —=50°C 1

p = 100 atm 1

9

Overall the number of degrees of freedom should be
N;,=19-24+9=4

The redundant constraints and variables can be regarded as 24 + 9 = 33 addi-
tional equality constraints in the optimization problem.

In optimization using a modular process simulator, certain restrictions apply on
the choice of decision variables. For example, if the location of column feeds,
draws, and heat exchangers are selected as decision variables, the rate or heat duty
cannot also be selected. For an isothermal flash both the temperatures and pressure
may be optimized, but for an adiabatic flash, on the other hand, the temperature is
calculated in a module and only the pressure can be optimized. You also have to
take care that the decision (optimization) variables in one unit are not varied by
another unit. In some instances, you can make alternative specifications of the deci-
sion variables that result in the same optimal solution, but require substantially dif-
ferent computation time. For example, the simplest specification for a splitter
would be a molar rate or ratio. A specification of the weight rate of a component in
an exit flow stream from the splitter increases the computation time but yields the
same solution.

524 PART III: Applications of Optimization

Next, we need to clarify some of the jargon that you will find in the literature
and documentation associated with commercial codes that involve process simula-
tors. Two major types of optimization algorithms exist for nonlinear programming.

1. Feasible path algorithms. The equality constraints and active inequality con-
straints are satisfied at the end of every intermediate stage of the calculations.

2. Infeasible path algorithms. The equality constraints and active inequality
constraints are satisfied only at the stage on which the optimal solution is
reached.

Clearly option 1 incurs more computation time when process simulators are
involved, but an abnormal termination yields a feasible solution.

Another classification of optimization codes relates whether a full set of vari-
ables is used in the search:

1. Full vector. All the independent and dependent variables constitute the vector
of variables in the search.

2. Reduced vector. Only the independent variables are involved in the search;
the dependent variables are then determined from the constraints.

With respect to process simulators, we can identify three types, with hybrid
types often occurring:

1. Equation-based. Explained previously.

2. Sequential modular. Refers to the process simulator being based on modules,
and the modules solved in a sequential precedence order imposed by the flow-
sheet information flow.

3. Simultaneous modular. The process simulator is composed of modules, but
simplified, approximate, or partial representation of the modules enables
solution techniques used in equation-based methods to be employed.

Other jargon you will encounter:

1. Online. Optimization calculations are carried out by computers that process
plant data and transmit control signals.

2. Offline. Data is collected and used subsequently by separate computers for
optimization so that the results are not directly available.

3. Real time. The clock cycle for the collection and transfer of process data and
the optimization calculations is the same.

The kinds of optimization codes most often used together with process simu-
lators include

. Linear programming: LP (refer to Chapter 7).

. Sequential linear programming: SLP (refer to Chapter 8).

. Sequential quadratic programming: SQP (refer to Chapter 8).

. Generalized reduced gradient: GRG (refer to Chapter 8).

. Nonlinear programming: NLP—other than items 3 or 4 (refer to Chapter 8).
. Mixed-integer nonlinear programming: MINLP (refer to Chapter 9).

. Mixed-integer successive quadratic programming (refer to Chapter 9).

. Random search (refer to Chapter 10 or Section 6.1).

001N~ WN =

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 525

Commercial process simulators mainly use a form of SQP. To use LP, you must
balance the nonlinearity of the plant model (constraints) and the objective function
with the error in approximation of the plant by linear models. Infeasible path,
sequential modular SQP has proven particularly effective.

Finally, we should mention that in addition to solving an optimization problem
with the aid of a process simulator, you frequently need to find the sensitivity of the
variables and functions at the optimal solution to changes in fixed parameters, such
as thermodynamic, transport and kinetic coefficients, and changes in variables such
as feed rates, and in costs and prices used in the objective function. Fiacco in 1976
showed how to develop the sensitivity relations based on the Kuhn-Tucker condi-
tions (refer to Chapter 8). For optimization using equation-based simulators, the
sensitivity coefficients such as (9h,/0x;) and (dx;/0x;) can be obtained directly from
the equations in the process model. For optimization based on modular process
simulators, refer to Section 15.3. In general, sensitivity analysis relies on lineariza-
tion of functions, and the sensitivity coefficients may not be valid for large changes
in parameters or variables from the optimal solution.

15.2 OPTIMIZATION USING EQUATION-BASED PROCESS
SIMULATORS

In this section we consider general process simulator codes rather than specialized
codes that apply only to one plant. To mesh equation-based process simulators with
optimization codes, a number of special features not mentioned in Chapter 8 must
be implemented.

1. A method of formatting the equations and inequality constraints. Slack vari-
ables are used to transform the inequality constraints into equality constraints.

2. A possibility of using both continuous and discrete variables, the latter being
particularly necessary to accommodate changes in phase or changes from one
correlation to another.

3. The option of using alternative forms of a function depending on the value of
logical variables that identify the state of the process. Typical examples are the
shift in the relations used to calculate the friction factor from laminar to turbu-
lent flow, or the calculation of P — V — T relations as the phase changes from
gas to liquid. '

4. Efficient methods for solving equations in the physical property database
(which often require up to 80% of the computation time needed to solve a
plant optimization problem).

5. Efficient methods for solving large sets of linear equations, for example, the
linearized constraints, particularly involving sparce matrices.

6. A good method of selecting initial guesses for the solution of the algebraic
equations. Poor choices lead to unsatisfactory results. You want the initial
guesses to be as close to the optimal solution as possible so that the procedure
will converge, and converge rapidly. We recommend running the process sim-
ulator alone to develop one or more base cases that will serve feasible starting
points for the optimization.

526 PART III: Applications of Optimization

7. Provision for scaling of the variables and equations. By scaling variables we
mean introducing transformations that make all the variables have ranges of
the same order of magnitude. By scaling of equations we mean multiplying
each equation by a factor that causes the value of the deviation of each equa-
tion from zero to be of the same order of magnitude. User interaction and
analysis for a specific problem is one way to introduce scaling.

8. The code must carry out a structural analysis to determine if the model is well
posed, that is, can it detect any inconsistencies among the equations in the
model (Duff et al., 1989; Zaher, 1995)?

Figure 15.4 shows how the nonlinear optimization problem fits in with two
widely used optimization algorithms: the generalized reduced gradient (GRG) and
successive quadratic programming (SQP). The notation is in Table 15.1. Slack vari-
ables x, have been added to the inequality constraints g = 0 to convert them to
equality constraints. The formulation in Figure 15.4 assumes that the functions and
variables are continuous and differentiable (in practice, finite differences may be
used as substitutes for analytical derivatives). Although we will not discuss opti-
mization of dynamic processes in this chapter, in the NLP problem you can insert
differential equations as additional equality constraints. Refer to Ramirez (1994)
for details. In the execution of the optimization code, in some phases the specific
assignment of independent and dependent variables within the code may differ
from those you designate.

In formatting the inequalities g and equations 4, you will find that the so-called
open-equation representation is preferred to the closed-equation representation. One
of the simplest examples is a heat exchanger model (the closed-equation format):

Q=F CCpc(TC,out - TC,in)

0= FHCp,,(TH,in - TH,out)

(TH,in - TC,out) - (TH,out - TC,in)

n (TH,in - TC,out)
(TH,out - TC,in)

0=UA

where A = heat transfer area

C, = heat capacity

F = flow rate

O = heat transferred

T = temperature

U = heat transfer coefficient
H = hot

C = cold

If the temperatures, heat capacities, U, and A are known quantities, then you can
directly calculate @ and the F’s. On the other hand, if you know the stream flows,

“I°S1 S[QBL UI UOMRIOU 93§ ‘Uonnjos Joj swypriode JOS pue DO 1eotdA) pue werqord Surwuerdord resuruou oy,
ST HANDIA

n—m%ﬁw xpjewr uerssop orepdn) _T
2 g xmew uelssoy | T
.I_ 9OUIBIOAUOD 10] IS], _ ayewrxordde srepdn dais yoro 1B SJUTRI)SUOD
T T SurJsues yoreos surf
ayewrxoxdde jno e,
:o._mww su £ QA1199(qo se i ! D
Sjeutixoldde o O uonouny Aeuad \ﬁ
T 1oex9 Sursn yoreas aui| sorseqadns 10y JuarpeId
aoeds o3uer ur ayewrxordde o L1re) ayegnfuod 10 0.1 49
doys syemoe) _, UOTOAIIP YoIess aynduwio)
, LOARY T 90USZISAU0D J0J IS, _ dOLS _,
2oeds [nu ur _, T|_ Q0URFIZAUOD JOJ 1S, _
Kire
dOs o 2 szofidnnw o8uerdey pue _,
T UOTAIP YoIess 105 03 wx s%s w X _ JuarpeId paonper Anduro) _
goeds [[nu ur jurod Jusrino Je \—,
URISSOY] 981} urapqoad JOS dA[0S % xsdxs %x s1seq Jo s10108} (1]
T T IxsixsIx 10 aszoAur omdwo)
ooeds [[nu pue o3uex 1 1
OUI g UBISSOH JO son[ea Eo%mmm pue 0 = (d Sx Ox Ix)3 1
uonewrxoxdde 1aforg uonouny 2jndwo) (o1seqiodns) Juepuadop
0 = (d “Ix Ix)q 29 (v1seq) Juspusdopur
_, _, aTe SON[eA YOIYM SUNUISRQ
[dospoonpey || oS 1 _ 103 100lqng T
_, _, sonjeaA jusipeid pue
\v_ SIUIBIISUOD SZLIBAUL] _ uonouny anduwio))
T (d ‘p x) { :ozmumuy T
_ SI[QRLIBA J[OB]S PPY _ _ S3[qEHIEA YOS PPV _
_ Jutod [enrur je 1e)§ Tl _ yuiod [enuT I8 1e)S _T
> INHTdOdd 54O
dOs ONINVHD0¥d VANITNON

527

528 PART III: Applications of Optimization

TABLE 15.1
Notation for Figure 15.4

f Objective function

g Set of inequality constraints

h Set of equality constraints

P Vector of coefficients in the objective function and constraints
X Vector of independent (decision) variables

Xp Vector of dependent variables

Xg Vector of slack variables added to the inequality constraints

L Iower bound

U upper bound

inlet temperatures, C,’s, U, and A, then the solution for Q and the outlet tempera-
tures must be determined via iteration. This problem arises particularly for process
models in which one unit that is underspecified is connected with another unit that
is overspecified.

By using open-equation formats and infeasible path optimization algorithms,
the type of difficulty described above can be avoided. All the equations in the NLP
problem can be solved simultaneously, driving the residuals to zero. The open-
equation format for the heat exchanger is

R, =0 - FCCpC(TC,out - TC,in)
R,=0Q— FHCPH(TH,in - TH,out)

(TH,in - TC,out)

R;=Q0ln
} (TH,out - TC,in)

- UA[(TH,in - TC,out) - (TH,out - TC,in)]

where R, is a residual. Note that division by a logarithm has been eliminated.
Another advantage of the open-equation format is that simple connection equa-

tions can be used rather than eliminating variables and equations that are connected.

For example, the connections between two heat exchangers can be formulated as

Ry = Feouy = Fejn

Ry = Teou1 = Tein2

R3 = Fyouz = Fujn

Ry = Thou2 = Thn,
More variables are retained in this type of NLP problem formulation, but you can
take advantage of sparse matrix routines that factor the linear (and linearized) equa-
tions efficiently. Figure 15.5 illustrates the sparsity of the Hessian matrix used in

the QP subproblem that is part of the execution of an optimization of a plant involv-
ing five unit operations.

Figure 15.4 shows the Hessian matrix for two different types of SQP algo-
rithms for solving large-scale optimization problems. In the full-space SQP, all of

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 529

o

707

FIGURE 15.5
The Hessian matrix for the QP subproblem showing five
units and the sparsity of the matrix.

the variables, both independent and dependent, are solved for simultaneously in the
set of linear(ized) equations in the QP subproblem. The sparse structure of both B
and Ah can be taken advantage of in their solution. In the reduced-space SQP only
the sparse structure of Ah is used. For specific details of the execution of the
reduced SQP, refer to the summary in Biegler et al. (1997) and the references
therein, and to Schmid and Biegler (1994a).

As mentioned before, two contrasting classes of strategies exist for executing
the SQP algorithms:

1. Feasible path strategies.
2. Infeasible path strategies.

With feasible path strategies, as the name implies, on each iteration you satisfy the
equality and inequality constraints. The results of each iteration, therefore, provide
a candidate design or feasible set of operating conditions for the plant, that is, sub-
optimal. Infeasible path strategies, on the other hand, do not require exact solution
of the constraints on each iteration. Thus, if an infeasible path method fails, the
solution at termination may be of little value. Only at the optimal solution will you
satisfy the constraints.

To improve the formatting of the equations that represent a plant, many com-
mercial codes partition the equations into groups of irreducible sets of equations,
that is, those that have to be solved simultaneously. If a plant is represented by thou-
sands of equations, the overall time consumed in their solution via either a GRG or
SQP algorithm is reduced by partitioning and rearranging the order of the equations
with the result indicated in Figure 15.6. Organization of the set of equations into
irreducible sets can be carried out by the use of permutation matrices or by one of

530 PART III: Applications of Optimization

hy: x3x, —2x3°+4=0
Byt X3 +2x5s—8=0

hy: X x4x% —2x, —7=0
hy —2%; 4+ x5+ 5=0
hst x,x3x5 + X,x, —6=0

(a) The n independent equations
involving n variables (n = 5).

Xy X, X3 X4 X5
h, 1 1 1
h, 1 1
hy 1 1 1 1
h, 1 1
hs 1 1 1

(b) The occurrence matrix (the 1's represent the occurrence
of a variable in an equation).

X2 X5 X4 Xy X3
h, 1 1
no L JO®
hs 1 1 @
hy 1 1 1 1
h, 1 1 1

(c) The rearranged (partitioned) occurrence matrix with
groups of equations (sets I, II, and IIT) that have to be
solved simultaneously collected together in the
precedence order for solution.

FIGURE 15.6
Partitioning of sets of independent equations increases the
sparsity of the occurrence matrix.

the many algorithms found in Himmelblau (1973). Feedback of information, mate-
rials, or energy ties equations together in irreducible groups.

We next solve an example optimization problem for a plant represented by
equations and inequalities using the GRG method.

EXAMPLE 15.2 PROCESS OPTIMIZATION VIA GRG
(EQUATION-BASED SOFTWARE)

Figure E15.2 shows the flowsheet for the process. Feed (stream 1) is a vapor mixture
of ethane, propane, and butane (in the proportions shown in the figure) at 200°F and
500 psia. The product stream (stream 8) is a liquid at =—20°F having the same com-
position but a reduced pressure. The notation for this example is defined in
Table E15.2A.

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 531

1 Objective function. A simple objective function is used, namely, the mini-
mization of the instantaneous cost of the work done by the three recycle compressors:

(Hy — H3) (Hy; — Hs) (Hys — Hy)
0.65 5065 7065

Minimize: f= c'[p3 (a)

The value 0.65 is the efficiency factor.

14 @/T 13

Cooler
Compressor
12 11 7
Cooler
e Compressor 5
o=
Compressor
Cooler
10
Adiabatic Adiabatic Adiabatic
Mixer 3 flash flash flash
1 vessel vessel vessel
T = 200°F
p = 500 psig
M, = 250 mol/h

M, = 600 mol/h
M, = 150 mol/h ‘[‘[

4 6

FIGURE E15.2
Flow diagram of light hydrocarbon refrigeration process.

TABLE E15.2A
Notation for Example 15.2

NS R A

Rl
&

=
T

A constant denoting the cost of work per unit energy

Total molar flow rate of process stream j

Molar enthalpy of process stream j

Vapor-liquid equilibrium constant for component i

Liquid molar flow rate of process stream j

Pressure of process stream identified by subscript (p4 = ps, ps = s, and pg = p7)
Temperature of process stream identified by subscript (T, = T3, Tg = Ts, and Ty = T7)
Vapor molar flow rate of process stream j

Liquid molar flow rate of component i in process stream j [i = 1 (ethane), 2 (propane),
3 (n-butane)]

Vapor molar flow rate of component i in process stream j [i = 1 (ethane), 2 (propane),
3 (n-butane)]

532 PART III: Applications of Optimization

2 Inequality constraints. Three inequality constraints are involved: two relating
pressures and one product temperature specification.

ps—p3=0 (»-1)
pr—ps=0 -2)
T, +20=<0 (b-3)

In addition, all 34 values of T}, p;, ; ;, and y; ; have lower and upper bounds.

3 Equality constraints. The equality constraints (30 in all) are the linear and
nonlinear material and energy balances and the phase relations.

3.1 Mixer.

Material balances:

0.5(vii + Xia0 + Xyi2 + Xing = Yip = Xia)
max {1, (;; + Xip0 + X2 + Xiga + Yip + X;2)/2}

0, i=1..,3 (o

Energy balance:

0.05(F\H, + FyoH\o + Fi,H, + FuHyy — FoH)) -0 @
max {1, (FH; + FyoHyo + F,H,, + FiuH,4)/2}

The denominators in this example are simply scaling factors in the respective con-
straints evaluated using the values of the variables in the numerator; 1 or the other
term is picked, whichever is bigger. For example, the terms in the denominators of
Equations (c) and (d) representing the average of the mass and energy, respectively,
in and out, as well as the denominators of the following equations, are not needed for
the balances—they are scaling factors (as are the multipliers 0.05 or 0.5) that are
introduced to improve the conditioning of the matrices of partial derivatives of the
constraints. Without such scaling, the non-linear programming code may not reach the
optimal solution but instead terminate prematurely.

3.2 Adiabatic flash vessels.

Material balances:

0.5(yip + Xip — Yiz — Xia)

=0, i=1,..,3 (e)
max {1, (2 + xi2 + yis + x34)/2}
0.5 Xia — Yis — X;
Gu—ys xis) __ o oy f)
max {1, (x4 + yis + x,6)/2}
0.5(x;6 + yi7 — x;
g + iy = %ia) 0, i=1..,3 @)

max {1, (x;g + yi7 + x;5)/2} -

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 533

Energy balances: In the energy balances the multiplier 0.05 is used to assist in scaling.

005(F2H2 - F3H3 - F4H4) _
max {1, (F,H, + F;H, + F,H,)/2}

0.05(F,H, — FsHs — FéHs) 0
max {1, (F,H, + FsHs + FsHg)/2} B

O‘OS(FGHG - F7H7 - FgHs)

max {1, (FeH, + FyH, + FgHg)/2} 0

The values for the enthalpies of the streams in the database were based on the
Curl-Pitzer correlations (Green, 1997). The enthalpies are calculated from correla-
tions at zero pressure (functions of temperature and composition only) and then cor-
rected via the enthalpy deviation:

0 _
H=H- (H T H)Tc)

[

where HO is the stream molar enthalpy and the superscript 0 designates zero pressure,
and T, is the critical temperature. The enthalpy deviation term itself, AH/T, is a func-
tion of the mole weighted average of the three critical properties: temperature, pres-
sure, and compressibility.

3.3 Energy balances for compressors. For isentropic compression

0.05[T, — (T, + 459.69)(500.0/P5)°2® — 459.69]

max{l, (T; + Ty)/2} =0 @
0.05[T,; — (Ts + 459.69)(500.0/P5)*2 — 459.69] o 0
max{1, (Ts + Ty)/2} /
0.05[Ty; — (T, + 459.69)(500.0/P;)°*® — 459.69] 0 ®

max{1, (T; + Ty3)/2}

3.4 Phase equilibria relations. Evaluation of the K values for phase equilibria
was based on the relation

YiVi
K, =— [
s @

where y; = activity coefficient in the liquid phase of component i evaluated from
Hildebrand and Scott (Green, 1997)
v; = fugacity coefficient of component i in the liquid phase evaluated from
Chao-Seader (Green, 1997)
¢; = fugacity coefficient of component i in the vapor phase evaluated from
Redlich-Kwong (Green, 1997)

534 PART III: Applications of Optimization

Based on the notation of Table E15.2a, in stream j

_ Yij-1/Y; m)
! x,-,j/Lj
To assist in scaling, Equation () is rearranged as follows:
Vi
x,;K; I + X = Yo T Xy
J
_ (xi,j + yi,j—-l)Lj
TR L
or
b - (% + Yij-0L 0
i KV, + L;
and divided by
(x5 + yi,j—l)Lj}
o e T
and multiplied by the factor 0.01:
0.01{x;5 — [(rig + yi)Lo/(KiV2 + L)1} 0 i=1 3 @
max{l, x;p + [(xiz + yi2)Lo/(KiV2 + L)1} T

0.01{xs — [(ig + yia)Lo/(KiVs + LT} o "
max{l,xm + [(xi’4 + yi,S)L4/(K,'V3 + L4)]} > seess

0.01{x;6 — [(x;6 + ¥i5)Le/(K;V5 + Lg) I}
max{l, x;6 + [(xis + yi5)Le/(KiVs + Lg)]}

=0, i=1,...,3 (p)

0.01{x;5 — [(x;3 + yi7)Ls/(K;V7 + Lg) 1}
max{l, x;g + [(x;s + ¥i7)Le/(K;V7 + L)}

=0, i=1,..,3 @)

In summary, the problem consists of 34 bounded variables (both upper bound and
lower bounds) associated with the process, 12 linear equality constraints, 18 nonlin-
ear equality constraints, and 3 linear inequality constraints.

4 Solution of the problem. It was not possible to use analytical derivatives in
the nonlinear programming code because the energy balance equality constraints

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 535

and the process stream phase equilibria constraints involve the stream molar
enthalpy H; and the phase equilibrium constant K;, respectively. H; was calculated
at zero pressure and then corrected using the Watson acentric factor (Green, 1997).
The correction for nonideality was based on correlated experimental data that can-
not be differentiated analytically. The component phase equilibrium constant K
was calculated via the Redlich—-Kwong equation of state; the vapor phase mixture
compressibility factor z¥ was determined as the largest of the three real roots from
the virial equation:

-7+ Cz+C, =0

where C; and C, are functions of the critical properties of the mixture. An analytical
derivative of the vapor phase mixture compressibility with respect to the stream vari-
ables cannot be determined explicitly, and therefore, the derivative of the component
phase equilibrium constant K;; cannot be determined analytically.

As a consequence, the gradient of the objective function and the Jacobian matrix
of the constraints in the nonlinear programming problem cannot be determined ana-
lytically. Finite difference substitutes as discussed in Section 8.10 had to be used. To
be conservative, substitutes for derivatives were computed as suggested by Curtis and
Reid (1974). They estimated the ratio w; of the truncation error to the roundoff error
in the central difference formula

o _flxtd) - fx— d)

ox; 2d;

where dj is the step size, as follows:

= (@/2)[fx + d) — 2f(x) + flx — d))]

M =

where p is the magnitude of the error incurred in the storage of a number in the computer.
The Curtis-Reid method updates d; on each calculation of a partial derivative from the

relation
[
dFl = (dF)mi {1000, ——}
/ (d;)min max{u;1}

where u¥ is the target value of the error ratio. To ensure that the truncation error cal-
culation was not dominated by round-off error, Curtis and Reid suggested a value for
w# of 100 with an acceptable range of 10 to 1000.

The solution listed in Table E15.2B was obtained from several nonfeasible start-
ing points, one of which is shown in Table E15.2C, by the generalized reduced gradi-
ent method.

536 PART III: Applications of Optimization
TABLE E15.2B
Final solution of light hydrocarbon refrigeration process
Molar flow rates
F/1000 H/1000 Liquid/100 Vapor/100
1b mol o . Btu
Stream (h) T (°F) p (psia) (lb mol) CH;, CH; nCH,, CH; CH; »nCH,
1 1.00 200 500 6.90 0.00 0.00 0.00 250 6.00 1.50
2 297 115 500 2.07 10.6 9.15 1.66 5.63 2.46 0.221
3 1.29 80.6 306 4.69 0.00 0.00 0.00 9.04 3.58 0.259
4 1.68 80.6 306 0.0651 7.19 8.03 1.62 0.00 0.00 0.00
5 0412 33.7 143 4.48 0.00 0.00 0.00 2.86 1.89 0.0749
6 1.27 33.7 143 ~-1.36 4.34 6.84 1.55 0.00 0.00 0.00
7 0.272 —20.0 511 4.09 0.00 0.00 0.00 1.84 0.843 0.0451
8 1.00 —20.0 511 —2.85 2.50 6.00 1.50 0.00 0.00 0.00
9 1.29 136 500 4.72 0.00 0.00 0.00 9.04 3.58 0.259
10 1.29 50.0 500 —0.373 9.04 3.58 0.259 0.00 000 0.00
11 0.412 174 500 6.06 0.00 0.00 0.00 2.86 1.19 0.0749
12 0.412 50.0 500 —0.386 2.86 1.19 0.0749 0.00 0.00 0.00
13 0.272 234 500 7.32 0.00 0.00 0.00 1.84 0.843 0.0451
14 0.272 50.0 500 —0.415 1.84 0.843 0.0451 0.00 000 0.00
TABLE E15.2C
Starting point 1 of light hydrocarbon refrigeration optimization
Molar flow rates
F/100 H/100 Liquid/1000 Vapor/100
| 1 Bt
Stream < b mo) T CF) p (psia) (lb n;lm) CH, CH, nCH, CH, CH, nCH,
1 1.00 200 500 6.90 0.00 0.00 0.00 2.50 6.00 1.50
2 3.50 103 500 1.79 148 0952 0.167 6.85 1.95 0.149
3 1.47 68.3 300 4.46 0.00 0.00 0.00 1.14 3.12 0.208
4 2.02 68.3 300 —0.156 1.03 0.834 0.161 000 0.00 0.00
5 0.372 34.3 175 4.33 0.00 0.00 0.00 2.88 0.793 0.0471
6 1.65 343 175 —1.16 0.741 0.755 0.156 000 0.00 0.00
7 0.652 —8.17 150 3.46 0.00 0.00 0.00 491 1.55 0.0607
8 1.00 —81.7 150 —4.18 0.250 0.600 0.150 000 0.00 0.00
9 1.47 125 500 4.70 0.00 0.00 0.00 114 312 0.208
10 1.47 50.0 500 —0.260 1.14 0312 0.0208 0.00 0.00 0.00
11 10.372 150 500 5.49 0.00 0.00 0.00 2.88 0.793 0.0471
12 0.372 50.0 500 -0.259 2.88 0.793 0.0471 0.00 0.00 0.00
13 0.652 303 500 8.55 0.00 0.00 0.00 491 1.55 0.0607
14 0.652 500 500 —0.290 0491 0.155 0.0607 0.00 0.00 0.00

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 537
15.3 OPTIMIZATION USING MODULAR-BASED SIMULATORS

Over the past 40 years an enormous amount of time and considerable expense have
been devoted to the development of modular-based process simulator codes. Fig-
ure 15.7 shows typical icons of modules found in a steady-state process simulator,
and Figure 15.3 showed the details of one such module. In current practice, opti-
mization meshed with modularly organized simulators prevails because (1) mod-
ules are easy to construct and understand, (2) addition and deletion of modules to
and from a flowsheet is easily accomplished via a graphical interface without
changing the solution strategy, (3) modules are easier to program and debug than
sets of equations, and diagnostics for them easier to analyze, and (4) modules
already exist and work, whereas equation blocks for equipment have not been
prevalent. It seems appropriate, then, to mesh process models in the form of mod-
ules with optimization algorithms so that computer codes do not require wholesale
rewriting.

MIXER SPLIT VALVE FDRUM FURNC EXCHR
I
b | | —O-
i
. . Heat
Mixer Splitter Valve Flash drum Furnace exchanger
COMPR TURBN PPUMP ABSOR XTRCT STRIP
|
. Process .
Compressor Turbine pump Absorber Extractor Stripper
DISTF CXCOL RSIMP REQUL RPLUG RCSTR
Distillation Complex Simple Equilibrium | Plug flow C.S. tank
column column reactor reactor reactor reactor
FIGURE 15.7

Typical process modules used in sequential modular-based flowsheeting codes with
their subroutine names.

538 PART III: Applications of Optimization
However, certain difficulties arise in doing this:

1. The input and output variables in a computer module are fixed so that you
cannot arbitrarily introduce an output and generate an input, as can be done
with an equation-based code.

2. When the modules are connected to one another as represented in a flowsheet,
a long train of units may become coupled together for calculations. Thus, a
set of modules may require a fixed precedence order of solution so that con-
vergence of the calculations may be slower than in equation-based codes.

3. The modules require some effort to generate reasonably accurate derivatives
or their substitutes, especially if a module contains tables, functions with
discrete variables, discontinuities, and so on. Perturbation of the input to a
module is the primary way in which a finite-difference substitutes for deriv-
atives can be generated.

4. To specify a parameter in a module as a design variable, you need to feed back
information around the module and adjust the parameter so that design speci-
fications are met. This arrangement creates a loop exactly the same as a feed-
back of material or energy creates a recycle loop. Examine Figure 15.8. If the
values of many design variables are to be determined, you might end up with
several nested loops of calculations (which do, however, enhance stability).

5. Conditions imposed on a process (or a set of ",..ations for that matter) may
cause the unit physical states to move from a two-phase to a single-phase
operation, or the reverse. As the code shifts from one module to another to
represent the process properly, a severe discontinuity occurs in the objective
function surface (and perhaps a constraint surface). Derivatives or their sub-
stitutes may not change smoothly, and physical property values may jump
about.

In Section 15.1 we mentioned that two basic approaches for modular-based
process simulators exist:

1. Sequential modular methods.
2. Simultaneous modular methods.

‘We next consider both methods.

S

—> Mixer Reactor Separator Cooler [——>

FIGURE 15.8
Modules in which recycling occurs; information (material) from the cooler module is fed
back to the reactor, causing a loop.

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 539
15.3.1 Sequential Modular Methods

Two procedures are needed to implement efficient computations using sequential
calculations in modular-based process simulators: one is precedence ordering and
the other is fearing. Precedence ordering was briefly touched on at the end of Sec-
tion 15.2 in connection with the partitioning and ordering of equations. The same
concept applies to modules connected by loops of information flow. Partitioning the
modules in a flowsheet into minimum-size subsets of modules that must be solved
simultaneously can be executed by many methods. As with solving sets of equa-
tions, to reduce the computational effort you want to obtain the smallest block of
modules that constitutes a loop in which the individual modules are tied together
by the information flow of outputs and inputs. Between blocks, the information
flow occurs serially.

How can you find all of the blocks connected together by information flows?
A simple algorithm to isolate blocks is to trace a path of the flow of information
(material usually, but possibly energy or a signal) from one module to the next
through the module output streams. The tracing continues until either (1) a module
in the path is encountered again, in which case all the modules in the path up to the
repeated module form a group together that is collapsed and treated as a single
module in subsequent tracing, or (2) a module or group with no output is encoun-
tered, in which case the module or group of modules can be deleted from the block
diagram. As a simple example, examine the block diagram in Figure 15.9, which
can be partitioned by the following steps.

Start with an arbitrary unit, say 4, and start tracing the path of information flow
in any selected sequence; call this path I:

Start tracing: 4->5>5—>6—>4 collapse as one set (456)
Continue tracing: (456) -2 —4 collapse as one set (4562)
Continue tracing: (4562) > 1 —2 collapse as one set (45621)

Continue tracing: (45621) -7 —>8—7 collapse as one set (78)
Continue tracing: (45621) — (78) —9 terminate tracing (no output)
The precedence order for path I is as follows:
(45621) —(78) =9

To complete the search and add more modules to the precedence order, start on
path II:

Start tracing: 10 -3—>2 terminate with 2 as 2 is in path 1
The precedence order for path II is
(10) —(3) — (45621)

All of the modules from the block diagram have been included in the tracing, and
no more paths have to be searched. The procedure identifies all the nested and
outer loops. The overall precedence order is (10) — (3) — (45621) — (78) — (9).

540 PART III: Applications of Optimization

9
8
7

N |

1 2 4 5 6

3

10

FIGURE 15.9

Block diagram to be partitioned.

Computer techniques to partition complex sets of modules besides the one described
earlier can be found in Montagna and Iribarren (1988) and in Mah (1990). Simple
sets can be partitioned by inspection.

From a computational viewpoint, the presence of recycle streams is one of the
impediments in the sequential solution of a flowsheeting problem. Without recycle
streams, the flow of information would proceed in a forward direction, and the cal-
culational sequence for the modules could easily be determined from the precedence
order analysis outlined earlier. With recycle streams present, large groups of mod-
ules have to be solved simultaneously, defeating the concept of a sequential solution
module by module. For example, in Figure 15.8, you cannot make a material bal-
ance on the reactor without knowing the information in stream S6, but you have to
carry out the computations for the cooler module first to evaluate S6, which in turn
depends on the separator module, which in tarn depends on the reactor module. Par-
titioning identifies those collections of modules that have to be solved simultane-
ously (termed maximal cyclical subsystems, loops, or irreducible nets).

To execute a sequential solution for a set of modules, you have to tear certain
streams. Tearing in connection with modular flowsheeting involves decoupling the
interconnections between the modules so that sequential information flow can take
place. Tearing is required because of the loops of information created by recycle

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 541

r———% Vapor, |4
P

T

Feed, F, z_ggl_am

P1

T, .
L—————> Liquid, L
1 2%

FIGURE 15.10
Vapor-liquid separator.

streams. What you do in tearing is to provide initial guesses for values of some of
the unknowns (the tear variables), usually but not necessarily the recycle streams,
and then calculate the values of the tear variables from the modules. These calcu-
lated values form new guesses, and so on, until the differences between the esti-
mated and calculated values are sufficiently small. Nesting of the computations
determines which tear streams are to be converged simultaneously and in which
order collections of tear of tear streams are to be converged.

Physical insight and experience in numerical analysis are important in select-
ing which variables to tear. For example, Figure 15.10 illustrates an equilibrium
vapor-liquid separator for which the combined material and equilibrium equations
give the relation

c Zj(l - IZ]) _
21 — (V/F) + VK/F

j=1

where z; is the mole fraction of species j out of C components in the feed stream,
K, = y;/x; is the vapor-liquid equilibrium coefficient, a function of temperature,
and the stream flow rates are noted in the figure. For narrow-boiling systems, you
can guess V/F, Vi and X and use the preceding summation to calculate K] and
hence the temperature. This scheme works well because T lies within a narrow
range. For wide-boiling materials, the scheme does not converge well. It is better to
solve the preceding summation for V/F by guessing 7, y, and x, because V/F lies
within a narrow range even for large changes in 7. Usually, the convergence rou-
tines for the code constitute a separator module whose variables are connected to
the other modules via the tear variables. Examine Figure 15.11.

542 PART III: Applications of Optimization

Convergence
Guessed block Calculated
S10 values 7 values
I
S4 Ss Sg
3 —>
S1 So S S S
1 2 > 4 s 1y s
So Guessed o Calculated
values ‘l 1 values
Loi
Convergence
block

FIGURE 15.11

A computational sequence for modular flowsheeting. Initial values of both recycles
are guessed, then the modules are solved in the order 1, 2, 3, 4, 5, and 6. Calculated
values for recycle streams S9 and S10 are compared with guessed values in a
convergence block, and unless the difference is less than some prescribed tolerance,
another iteration takes place with the calculated values, or estimates based on them,
forming the new initial guessed values of the recycle streams.

If the objective in selecting streams to tear is to minimize the number of the
tear variables (Pho and Lapidus, 1973) subject to the constraint that each loop be
broken at least once, this problem is an integer programming problem known as the
covering set problem. Refer to Biegler et al. (1997) and Section 8.4.

Although it would logically be quite straightforward to nest the process simu-
lator within the optimization code, and iteratively first satisfy the constraints repre-
sented by the simulator by running the simulator, and then applying the optimiza-
tion code, this procedure is not particularly efficient. The preferred strategy is to
insert into the nonlinear optimization problem format, Figure 15.4, the equations
corresponding to the convergence blocks in Figure 15.11, namely

E(X, P) =0= xg"ﬁ-l) - ?(xh Xp» Xg‘c)v p)

where 1:1 = set of equations involving the tear variables.
f = set of functions that compute the values of the tear variables for the
next iteration (k + 1) as the output of a module using the values of tear
variables from the previous iteration k.
Xr = vector of tear variables.
P = equipment parameter vector

in lieu of using the convergence blocks in the process simulator to determine the
values of the tear variables. This procedure saves many iterations through nested
loops in the process simulator.

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 543

With the preceding implementation, the optimization problem can be solved
either via a GRG algorithm or SQP algorithm. Each evaluation of the constraints
and objective function requires a full pass through the process simulator. Additional
passes are needed to develop the gradients with respect to X (including the tear vari-
ables). Then, the search direction can be obtained as indicated in Figure 15.4 by
solving the following QP subproblem.

Minimize: V'f(x;, Xp, Xz, p)s + 3 s"Bs
s
Subject to: h(x;, Xp, X1, p) + V' h(x,, Xp, X7, p)s = 0
h(x;, Xp, X5, p) + V7h(x,, Xp, X, p)s = 0
8(Xp, Xp, X7, X5,) T V'&(Xp, Xp, X7, X5, P)s = 0

After determining the search direction s, an approximate line search is carried out
to get the values of x; and x for the next iteration.

Of the various versions of the SQP algorithm, the infeasible path reduced
SQP has been the most widely used in commercial process simulators. One tech-
nique favored by programmers (Lang and Biegler, 1987) is to make just one pass
through the process flowsheet simulator before adjusting the values of the deci-
sion and tear variables rather than spending considerable computation time satis-
fying the constraints involved in loops. This procedure has some merit because
the value of the variables determined by a fairly precise solution of the loops on
one iteration of the optimization program will probably no longer be satisfactory
on a subsequent iteration.

15.3.2 Simultaneous Modular Methods

One of the earlier approaches to emulating equation-based optimization using
process simulators was to develop by least squares polynomial functions (quadratic
being the simplest) to approximate the input—output relations for a module, and for
the phase relations (Mahelec et al., 1979; Biegler, 1985; Chen and Stadtherr, 1984;
Parker and Hughes (1981); Schmid and Biegler, 1994a). Then, the equations could
be used as constraints in an optimization code. Some disadvantages of such an
approximation strategy are that (1) adequate approximation of the module may not
be possible with simple relations, and (2) the optimum of the approximate model
may not lie near the optimum of the rigorous model as ascertained via a more rig-
orous solution. Nevertheless, such modeling schemes avoid some of the difficulties
encountered in closure and convergence of the recycle loops each time the process
simulator is called. You obtain the speed and flexibility of the equation-based mode
while using as models equations representing the modules.

Use of the reduced space SQP mentioned in Section 15.1 has facilitated the
implementation of simultaneous modular optimization. The modeling equations rep-
resenting the individual modules are not explicitly made part of the optimization
problem. Instead, the equations are solved by taking successive steps using Newton’s

544 PART III: Applications of Optimization

TABLE 15.2
Comparison of the results of equation-based
and simultaneous modular-based optimization
for two connected distillation columns

Number of variables:

Decision 4
Outputs, inputs, and so on 47
Internal 114
Number of equality constraints:
Simultaneous modular strategy® 47
Equation-based strategy 161
Number of iterations (CPU time in seconds)
Simultaneous modular, SQP 4(34)
Equation-based, SQP 4(3.3)

Abbreviations: CPU = central processing unit; SQP =
successive quadratic programming.
*Method of Schmid and Biegler (1994b)

method for the individual modules. In addition, as proposed by Schmid and Biegler
(1994b), a line search is employed that does not require that the Lagrange multipliers
associated with the equality constraints be calculated explicitly, an important saving
in the case of code modifications. Derivatives are presumed calculated analytically or
by finite-difference methods as described in Section 15.3.3. As an example, Table
15.2 lists the results of Schmid and Biegler for the optimization of a hydrodealk-
ylation process (1994b). Comparison of a simultaneous modular strategy with an
equation-oriented strategy indicates that both yield equivalent results.

15.3.3 Calculation of Derivatives

Effective computer codes for the optimization of plants using process simulators
require accurate values for first-order partial derivatives. In equation-based codes,
getting analytical derivatives is straightforward, but may be complicated and sub-
ject to error. Analytic differentiation ameliorates error but yields results that may
involve excessive computation time. Finite-difference substitutes for analytical
derivatives are simple for the user to implement, but also can involve excessive
computation time.

For modular-based process simulators, the determination of derivatives is not
so straightforward. One way to get partial derivations of the module function(s) is by
perturbation of the inputs of the modules in sequence to calculate finite-difference
substitutes for derivatives for the torn variables. To calculate the Jacobian via this
strategy, you have to simulate each module (C + 2) n; + ny + 1 times in sequence,
where C is the number of chemical species, n; is the number of torn streams, and
ny is the number of residual degrees of freedom. The procedure is as follows. Start
with a tear stream. Back up along the calculation loop until an unperturbed inde-
pendent variable x;; in a module is encountered. Perturb the independent variable,

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 545

and calculate the resulting dependent and tear variables in that module and all
downstream modules in the calculation loop. (Dependent variables upstream are
not affected.) Evaluate the finite-difference approximations for the gradients of £, g,
h, and h with respect to each x; ; by using a forward-difference formula in which
the values of x,, are those from the perturbed calculations and the values of x;,
except X; ; are perturbed values.

One at a time, perturb the elements of the tear variable x;,. Calculate the
dependent variables, and evaluate the tear equations. Calculate the gradients of £, g,
h, and h with respect to each Xr; by a forward difference equation in which the x,,
are the perturbed values and x; are the unperturbed values.

Another way to calculate the partial derivatives is possible. Figure 15.12 rep-
resents a typical module. If a module is simulated individually rather than in
sequence after each unknown input variable is perturbed by a small amount, to cal-
culate the Jacobian matrix, (C + 2)n,; + ny; + 1 simulations will be required for
the ith module, where n,; = number of interconnecting streams to module i and n;
= number of unspecified equipment parameters for module i. This method of cal-
culation of the Jacobian matrix is usually referred to as full-block perturbation.

Wolbert et al. in 1991 proposed a method of obtaining accurate analytical
first-order partial derivatives for use in modular-based optimization. Wolbert
(1994) showed how to implement the method. They represented a module by a set
of algebraic equations comprising the mass balances, energy balance, and phase
relations:

bi(u, %) = 0 (15.1)

where &, (u,, X,) = set of functions representing the behavior of the kth module,
i.e., the model for module &
u, = vector of inputs to the kth module
x, = vector of outputs from the kth module

Ii Il
—_—] —
X;; Module i Y
—_—] >

FIGURE 15.12

A typical module showing the input stream vectors X,
output stream vectors Y., specified equipment parameter
vector p;, unspecified equipment parameter vector q;, and
the retention (dependent) variable vector r;.

546 PART III: Applications of Optimization

The analytical derivatives (3 ¢;,/9 x,) and (8 ¢,/ u), and the sensitivity coeffi-
cients (9 x;,/d u,) can be obtained directly from Equation (15.1).

As to the automatic generation of exact derivatives in existing modular-based
process simulator codes directly from the code itself, refer to Griewank and Corliss
(1991) or Bischof et al. (1992).

EXAMPLE 15.3 EXTRACTIVE DISTILLATION DESIGN

This example shows the application of optimization of a process using HYSYS soft-
ware. Refer to the website, www.mhhe.com/edgar, associated with this book.

EXAMPLE 154 MAXIMIZING OPERATING MARGIN

This example shows the application of optimijzation of a process using Aspen soft-
ware. Refer to the website, www.mhhe.com/edgar, associated with this book.

154 SUMMARY

Commercial process simulators have added optimization capabilities the specific
details of which are naturally proprietary, but the general features of these codes are
described in this chapter. Very large scale optimization problems of considerable
economic value can be treated as shown by the examples presented earlier, and in
the future improvements in power, robustness, speed of execution, and user-friendly
interfaces of computers and software can be expected to expand the scope of opti-
mization of large scale problems.

REFERENCES

Aspen Technology, Inc. Aspen Plus, Aspen Custom Modeler, Dynaplus, Split, Advent,
Adsim. Cambridge, MA (1993).

Biegler, L. T. “Improved Infeasible Path Optimization for Sequential Modular Simulators—I:
The Interface.” Comput Chem Eng 9: 245-256 (1985).

Biegler, L. T.; I. E. Grossmann; and A. W. Westerburg. Systematic Methods of Chemical
Process Design. Prentice-Hall, Upper Saddle River, NJ (1997).

Bischof, C.; A. Carle; G. Corliss; A. Griewank; et al. ADIFOR Generating Derivative Codes
Jor Fortran Programs. Preprint MCS-P263-0991, Argonne National Lab. (1992).

ChemCAD. Chemstations. Houston, TX (1998).

Chen, H. S.; and M. A. Stadtherr. “A Simultaneous-Modular Approach to Process Flow-
sheeting and Optimization: I. Theory and Implementation.”” AICRE J 30: 1843-1856
(1984).

CHAPTER 15: Optimization in Large-Scale Plant Design and Operations 547

Curtis, A. R.; and J. K. Reid. “The Choice of Step Lengths When Using Differences to
Approximate Jacobian Matrices.” J Inst Math Its Appl 13: 121-140 (1974).

Duff, I. S.; A. M. Erisman; and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
Univ. Press, New York (1989).

Fiacco, A. V. “Sensitivity Analysis of Nonlinear Programming Using Penalty Function
Methods.” Math Program 10: 287-311 (1976).

Gill, P. E.; W. Murray; and M. H. Wright. Practical Optimization. Academic Press, New
York (1981).

Green, D. W., ed. Perry’s Chemical Engineering Handbook. Section 4, 7th edition.
McGraw-Hill, New York (1997).

Griewank, A.; and G. F. Corliss, eds. Automatic Diffentiation of Algorithms: Theory, Imple-
mentation and Application. SIAM, Philadelphia (1991).

Gunderson, T.; and 1. E. Grossmann. “Improved Optimization Strategies for Automated
Heat Exchanger Network Synthesis Through Physical Insights.” Comput Chem Eng 14:
925-944 (1990).

Himmelblau, D. M., ed. Decomposition of Large Scale Problems. North-Holland Publ.,
Amsterdam (1973).

Hyprotech Ltd. HYSYM, HYSYS, HYCON. Calgary, Alberta (1998).

Intelligen, Inc. Documentation for EnviroPro Designer and BatchPro Designer. Scotch
Plains, NJ (1999).

Lang, Y. D.; and L. T. Biegler. “A Unified Algorithm for Flowsheet Optimization.” Comput
Chem Eng 11: 143-158 (1987).

Lowery, R. P.; B. McConville; F. H. Yocum; and S. R. Hendon. Closed-Loop Real Time Opti-
mization of Two Bisphenol-A Plants. Paper presented at the National AIChE Meeting,
Houston, TX, Mar. 28-Apr. 1, 1993.

Mah, R. H. S. Chemical Process Structures and Information Flows Butterworths (1990).

Mahalec, V.; H. Kluzik; and L. B. Evans. Simultaneous Modular Algorithm for Steady State
Flowsheet Simulation and Design. Paper presented at the 12th European Symposium
on Computers in Chemical Engineering. Montreaux, Switzerland (1979).

Montagna, J. M.; and O. A. Iribarren. “Optimal Computation Sequence in the Simulation of
Chemical Plants.” Comput Chem Eng 12: 12-14 (1988).

Parker, A. P.; and R. R. Hughes. “Approximate Programming in Chemical Processes—1.”
Comput Chem Eng 5: 123-133 (1981).

Perkins, J. D. “Plantwide Optimization—Opportunities and Challenge.” In Foundations of
Computer-aided Process Operations. J. E. Pekny; G. E. Blau, eds. American Institute
of Chemical Engineering. New York (1998), pp. 15-26.

Pho, T. K.; and L. Lapidus. “An Optimum Tearing Algorithm for Recycle Streams.” AIChE
J19: 1170-1181 (1973).

Ramirez, W. F. Process Control and Identification. Academic Press, New York (1994).

Schmid, C.; and L. T. Biegler. “Quadratic Programming Algorithms for Reduced Hessian
SQP” Comput Chem Eng 18: 817-832 (1994a).

Schmid, C.; and L. T. Biegler. “A Simultaneous Approach for Flowsheet Optimization with
Existing Modeling Procedures.” Trans Inst Chem Eng T2A: May (1994b).

Seider, W. D.; J. D. Seader; and D. R. Lewin. Process Design Principles. Wiley, New York
(1999).

Simulation Sciences, Inc. Documentation for ROMEO (Rigorous On-line Modeling with
Equation-based Optimization. Brea, CA (1999).

Simulation Sciences, Inc. PRO/II, Provision, Protiss, Hextran. Brea, CA (1998).

Westerberg, A. Advanced System for Computations in Engineering Design. Report No.
ICES 06-239-98, Institute for Complex Engineered Systems, Carnegie-Mellon Univer-
sity (1998).

548 PART III: Applications of Optimization

Wolbert, D.; X. Joulia; B. Koehret; and L. T. Biegler. “Flowsheet Optimization and Optimal
* Sensitivity Analysis Using Analytical Derivatives.” Comput Chem Eng 18: 1083-1095
(1994).
Wolbert, D.; X. Joulia; B. Koehret; and M. Pons. “Analyse de Sensibilitie pour I'Optimisa-
tion des Procedes Chimique.” 3 d Congres de Genie des Procedes, Compiegne, France.
Rec Prog Genie Proc 5: 415-420 (1991).
Zaher, 1. I. Condition Modeling. Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh PA
(1995).

SUPPLEMENTARY REFERENCES

Alkaya, D.; S. Vasantharajan; and L. T. Biegler. “Generalization of a Tailored Approach for
Process Optimization.” Ind Eng Chem Res 39 (6): 1731-1742 (2000).

Balakrishna, S.; and L. T. Biegler. “A Unified Approach for the Simultaneous Synthesis of
Reaction, Energy and Separation Systems.” Ind Eng Chem Res 32: 1372-1382 (1993).

Chen, H. S.; and M. A. Stadtherr. “A Simultaneous Modular Approach to Process Flow-
sheeting and Optimization.” AICKE J 31: 1843-1856 (1985).

Diwekar, U. M.; I. E. Grossmann; and E. S. Rubin. “MINLP Process Synthesizer for a
Sequential Modular Simulator.” Ind Eng Chem Res 31: 313-322 (1992).

Grossmann, I. E.; and M. M. Daichendt. “New Trends in Optimization-Based Approaches
to Process Synthesis.” Comput Chem Eng 20: 665683 (1996).

Kisala, T. P.; R. A. Trevino-Lozano; J. F. Boston; H. I. Britt; et al. “Sequential Modular and
Simultaneous Modular Strategies for Process Flowsheet Optimization.” Comput Chem
Eng 11: 567-579 (1987).

Kokossis, A. C.; and C. A. Floudas. “Optimization of Complex Reactor Networks—II. Non-
isothermal Operation.” Chem Engr Sci 49 (7): 1037-1051 (1994).

Kravanja, Z.; and I. E. Grossmann. “Prosyn: An MINLP Process Synthesizer”” Comput
Chem Engr 14: 1363-1378 (1990).

Lang, Y. D.; and L. T. Biegler. “A Unified Algorithm for Flowsheet Optimization.” Comput
Chem Eng 11: 143-158 (1987).

Pistikopoulos, E. N.; and L. E. Grossmann. “Optimal Retrofit Design for Improving Process
Flexibility in Nonlinear Systems—I. Fixed Degree of Flexibility.” Comput Chem Eng
13: 1003-1016 (1989).

Quesada, I.; and I. E. Grossmann. “Global Optimization of Bilinear Process Networks with
Multicomponent Streams.” Comput Chem Eng 19: 1219-1242 (1995).

Raman, R.; and I. E. Grossmann. “Symbolic Integration of Logic in Mixed Integer Linear
Programming Techniques for Process Synthesis.” Comput Chem Eng 17: 909-928
(1993).

Turkay, M.; and I. E. Grossmann. “Logic-Based MINLP Algorithms for the Optimal Syn-
thesis of Process Networks.” Comput Chem Eng 20: 959-978 (1996).

