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114 PART II: Optimization Theory and Methods

TO UNDERSTAND THE strategy of optimization procedures, certain basic concepts
must be described. In this chapter we examine the properties of objective functions
and constraints to establish a basis for analyzing optimization problems. We iden-
tify those features that are desirable (and also undesirable) in the formulation of an
optimization problem. Both qualitative and quantitative characteristics of functions
are described. In addition, we present the necessary and sufficient conditions to
guarantee that a supposed extremum is indeed a minimum or a maximum.

4.1 CONTINUITY OF FUNCTIONS

In carrying out analytical or numerical optimization you will find it preferable and
more convenient to work with continuous functions of one or more variables than
with functions containing discontinuities. Functions having continuous derivatives
are also preferred. Case A in Figure 4.1 shows a discontinuous function. Is case B
also discontinuous?

We define the property of continuity as follows. A function of a single variable
x is continuous at a point x; if

f(xp) exists

lim f(x) exists

X=>Xg

lim f(x) = f(xo)

X=Xy

If fix) is continuous at every point in region R, then f(x) is said to be continuous
throughout R. For case B in Figure 4.1, the function of x has a “kink” in it, but f(x)
does satisfy the property of continuity. However, f'(x) = df(x)/dx does not. There-
fore, the function in case B is continuous but not continuously differentiable.

SfCxy) fx2)

Xy X2

Case A Case B

FIGURE 4.1
Functions with discontinuities in the function or derivatives.
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EXAMPLE 4.1 ANALYSIS OF FUNCTIONS FOR CONTINUITY

Are the following functions continuous? (a) f{ix) = 1/x; (b) f (x) = In x. In each case
specify the range of x for which f{x) and f'(x) are continuous.

Solution

(a) fix) = 1/x is continuous except at x = 0; f(0) is not defined. f'(x) = —1/x? is con-
tinuous except at x = 0.

(b) fix) = In x is continuous for x > 0. For x = 0, In (x) is not defined. As to f'(x) =
1/x, see (a).

A discontinuity in a function may or may not cause difficulty in optimization.
In case A in Figure 4.1, the maximum occurs reasonably far from the discontinuity
which may or may not be encountered in the search for the optimum. In case B, if
a method of optimization that does not use derivatives is employed, then the “kink”
in f(x) is probably unimportant, but methods employing derivatives might fail,
because the derivative becomes undefined at the discontinuity and has different
signs on each side of it. Hence a search technique approaches the optimum, but then
oscillates about it rather than converges to it.

Objective functions that allow only discrete values of the independent vari-
able(s) occur frequently in process design because the process variables assume
only specific values rather than continuous ones. Examples are the cost per unit
diameter of pipe, the cost per unit area for heat exchanger surface, or the insulation
cost considered in Example 1.1. For a pipe, we might represent the installed cost as
a function of the pipe diameter as shown in Figure 4.2 [see also Noltie (1978)]. For

Cost Py

Commercially available
pipe diameters

FIGURE 4.2
Installed pipe cost as a function of diameter.
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Cost

Diameter

FIGURE 4.3
Piecewise linear approximation to cost function.

most purposes such a cost function can be approximated as a continuous function
because of the relatively small differences in available pipe diameters. You can then
disregard the discrete nature of the function and optimize the cost as if the diame-
ter were a continuous variable. For example, extend the function of Figure 4.2 to a
continuous range of diameters by interpolation. If linear interpolation is used, then
the extended function usually has discontinuous derivatives at each of the original
diameters, as shown in Figure 4.3. As mentioned earlier, this step can cause prob-
lems for derivative-based optimizers. A remedy is to interpolate with quadratic or
cubic functions chosen so that their first derivatives are continuous at the break
points. Such functions are called splines (Bartela et al., 1987). Once the optimum
value of the diameter is obtained for the continuous function, the discretely valued
diameter nearest to the optimum that is commercially available can be selected. A
suboptimal value for installed cost results, but such a solution should be adequate
for engineering purposes because of the narrow intervals between discrete values of
the diameter.

EXAMPLE 4.2 OPTIMIZATION INVOLVING AN INTEGER-
VALUED VARIABLE

Consider a catalytic regeneration cycle in which there is a simple trade-off between
costs incurred during regeneration and the increased revenues due to the regenerated
catalyst. Let x; be the number of days during which the catalyst is used in the reactor
and x, be the number of days for regeneration. The reactor start-up crew is only avail-
able in the morning shift, so x; + x, must be an integer.

We assume that the reactor feed flow rate g (kg/day) is constant as is the cost of
the feed C; ($/kg), the value of the product C, ($/kg), and the regeneration cost C,
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($/regeneration cycle). We further assume that the catalyst deteriorates gradually
according to the linear relation

d =10 — kx,

where 1.0 represents the weight fraction conversion of feed at the start of the operat-
ing cycle, and k is the deterioration factor in units of weight fraction per day. Define
an objective function and find the optimal value of x;.

Solution. For one complete cycle of operation and regeneration, the objective func-
tion for the total profit per day comprises

Profit

Day

= Product value — Feed cost

— (Regeneration cost per cycle) - (Cycles per day)

or in the defined notation

qcledavg — qCx; — Gy
flx) = (@

X, T x

where dy, = 1.0 — (kx,/2).

The maximum daily profit for an entire cycle is obtained by maximizing Equa-
tion (a) with respect to x,. As a first trial, we allow x; to be a continuous variable.
When the first derivative of Equation (a) is set equal to zero and the resulting equa-
tion solved for x,, the optimum is

2 Clxl C3>}1/2
Pt = —x, + (X3 + | - —= 4+ —
e cm e () -2 2

Suppose x, = 2, k; = 0.02, g = 1000, C,=1.0, C; = 0.4, and C; = 1000. Then x,°"*
= 12.97 (rounded to 13 days if x; is an integer). ‘

Clearly, treating x, as a continuous variable may be improper if x; is 1, 2, 3, and
so on, but is probably satisfactory if x; is 15, 16, 17, and so on. You might specify x;
in terms of shifts of 4-8 h instead of days to obtain finer subdivisions of time.

In real life, other problems involving discrete variables may not be so
nicely posed. For example, if cost is a function of the number of discrete pieces of
equipment, such as compressors, the optimization procedure cannot ignore the inte-
ger character of the cost function because usually only a small number of pieces of
equipment are involved. You cannot install 1.54 compressors, and rounding off to 1
or 2 compressors may be quite unsatisfactory. This subject will be discussed in
more detail in Chapter 9.
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4.2 NLP PROBLEM STATEMENT

A general form for a nonlinear program (NLP) is
Minimize:  f(x)

Subject to:  a; = g{(x) = b; i=1,...,m “4.1)
and L=xi=uy j=1,...,n
In this problem statement, x is a vector of n decision variables (x;, . . ., x,), f

is the objective function, and the g; are constraint functions. The a; and b, are spec-
ified lower and upper bounds on the constraint functions with a; = b, and [, u; are
lower and upper bounds on the variables with [; = u,. If a; = b;, the ith constraint
is an equality constraint. If the upper and lower limits on g; correspond to @, = —o0
and b; = o0, the constraint is unbounded. Similar comments apply to the variable
bounds, with lj = i corresponding to a variable X; whose value is fixed, and lj =
—oo and u; = +oo specifying a free variable.

Problem 4.1 is nonlinear if one or more of the functions f; g, . . . , g,, are non-
linear. It is unconstrained if there are no constraint functions g; and no bounds on
the x;, and it is bound-constrained if only the x; are bounded. In linearly constrained
problems all constraint functions g; are linear, and the objective fis nonlinear. There
are special NLP algorithms and software for unconstrained and bound-constrained
problems, and we describe these in Chapters 6 and 8. Methods and software for
solving constrained NLPs use many ideas from the unconstrained case. Most mod-
ern software can handle nonlinear constraints, and is especially efficient on linearly
constrained problems. A linearly constrained problem with a quadratic objective is
called a quadratic program (QP). Special methods exist for solving QPs, and these
are often faster than general purpose optimization procedures.

A vector x is feasible if it satisfies all the constraints. The set of all feasible
points is called the feasible region F. If F is empty, the problem is infeasible, and
if feasible points exist at which the objective fis arbitrarily large in a max problem
or arbitrarily small in a min problem, the problem is unbounded. A point (vector)
x* is termed a local extremum (minimum) if

fx*) = flx) (4.2)

for all x in a small neighborhood (region) N in F around x* with x distinct from x*.
Despite the fact that x* is a local extremum, other extrema may exist outside the
neighboorhood N meaning that the NLP problem may have more that one local
minimum if the entire space of x is examined. Another important concept relates to
the idea of a global extremum, the unique solution of the NLP problem. A global
minimum occurs if Equation (4.2) holds for all x € F. Analogous concepts exist for
local maxima and the global maximum. Most (but not all) algorithms for solving
NLP problems locate a local extremum from a given starting point.

NLP geometry
A typical feasible region for a problem with two variables and the constraints
x; = 0, g(x) =0, i= 1,2, j=12

=
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1

% g1x)=0

&x =0

N "

FIGURE 44
Feasible region (region not shaded and its boundaries).

is shown as the unshaded region in Figure 4.4. Its boundaries are the straight and
curved lines x; = O and g,(x) = Ofori =1,2,j =1, 2.
As another example, consider the problem

Minimize f = (x; — 3)% + (x, — 4)*

subject to the linear constraints

x =0

x, = 0

5—x —x%=20
25 +x —x =0

This problem is shown in Figure 4.5. The feasible region is defined by linear
constraints with a finite number of corner points. The objective function, being non-
linear, has contours (the concentric circles, level sets) of constant value that are not
parallel lines, as would occur if it were linear. The minimum value of f corresponds
to the contour of lowest value having at least one point in common with the feasi-
ble region, that is, at x;* = 2, x,* = 3. This is not an extreme point of the feasible
set, although it is a boundary point. For linear programs the minimum is always at
an extreme point, as shown in Chapter 7.

Furthermore, if the objective function of the previous problem is changed to

h=( - 2)2 + (x — 2)2
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S

-2.5 +x1-x2=0

=7

37

[}
5\6 X

()
7
N
w
N

FIGURE 4.5
The minimum occurs on the boundary of the constraint set.

as depicted in Figure 4.6, the minimum is now at x; = 2, x, = 2, which is not a
boundary point of the feasible region, but is the unconstrained minimum of the non-
linear function and satisfies all the constraints.

Neither of the problems illustrated in Figures 4.5 and 4.6 had more than one
optimum. It is easy, however, to construct nonlinear programs in which local
optima occur. For example, if the objective function f; had two minima and at least
one was interior to the feasible region, then the constrained problem would have
two local minima. Contours of such a function are shown in Figure 4.7. Note that
the minimum at the boundary point x; = 3, x, = 2 is the global minimum at f = 3;
the feasible local minimum in the interior of the constraints is at f = 4.

Although the examples thus far have involved linear constraints, the chief non-
linearity of an optimization problem often appears in the constraints. The feasible
region then has curved boundaries. A problem with nonlinear constraints may have
local optima, even if the objective function has only one unconstrained optimum.
Consider a problem with a quadratic objective function and the feasible region
shown in Figure 4.8. The problem has local optima at the two points a and b
because no point of the feasible region in the immediate vicinity of either point
yields a smaller value of f.
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FIGURE 4.6
The minimum occurs in the interior of the constraint set.

In summary, the optimum of a nonlinear programming problem is, in general,
not at an extreme point of the feasible region and may not even be on the boundary.
Also, the problem may have local optima distinct from the global optimum. These
properties are direct consequences of nonlinearity. A class of nonlinear problems can
be defined, however, that are guaranteed to be free of distinct local optima. They are
called convex programming problems and are considered in the following section.

4.3 CONVEXITY AND ITS APPLICATIONS

The concept of convexity is useful both in the theory and applications of optimiza-
tion. We first define a convex set, then a convex function, and lastly look at the role
played by convexity in optimization.

Convex set

A set of points (or a region) is defined as a convex set in n-dimensional space
if, for all pairs of points x; and x, in the set, the straight-line segment joining them
is also entirely in the set. Figure 4.9 illustrates the concept in two dimensions.
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FIGURE 4.7
Local optima due to objective function.

A mathematical statement of a convex set is

For every pair of points x; and X, in a convex set, the point x given by a lin-
ear combination of the two points

x=yx+(l—7y)x, 0=y=1

is also in the set. The convex region may be closed (bounded) by a set of functions,
such as the sets A and B in Figure 4.9 or may be open (unbounded) as in Figures
4.10 and 4.12. Also, the intersection of any number of convex set is a convex set.

Convex function

Next, let us examine the matter of a convex function. The concept of a convex
function is illustrated in Figure 4.10 for a function of one variable. Also shown is a
concave function, the negative of a convex function. (If f(x) is convex, —f(x) is
concave.) A function f(x) defined on a convex set F is said to be a convex func-
tion if the following relation holds

Slvx + (1 = v)%] = yf(xq) + (1 — y)f(x,)
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FIGURE 4.8
Local optima due to feasible region.

where v is a scaler with the range 0 < y =< 1. If only the inequality sign holds, the
function is said to be not only convex but strictly convex. [If f(x) is strictly con-
vex, —f(x) is strictly concave.] Figure 4.10 illustrates both a strictly convex and a
strictly concave function. A convex function cannot have any value larger than the
values of the function obtained by linear interpolation between x, and x, (the cord
between x, and x, shown in the top figure in Figure 4.10). Linear functions are both
convex and concave, but not strictly convex or concave, respectively. An important
result of convexity is

If f(x) is convex, then the set
R = {x|f(x) = &}

is convex for all scalers k.

The result is illustrated in Figure 4.11 in which a convex quadratic function is cut
by the plane f(x) = k. The convex set R projected on to the X;—x, plane com-
prises the boundary ellipse plus its interior.

The convex programming problem
An important result in mathematical programming evolves from the concept of
convexity. For the nonlinear programming problem called the convex programming
problem
Minimize: f(x)
Subjectto: g(x) =0 i=1,...,m 4.3)
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Convex set

Convex set

All of the line
segment is

! Nonconvex set
not in the set

FIGURE 4.9
Convex and nonconvex sets.

in which (a) f(x) is a convex function, and (b) each inequality constraint is a con-
vex function (so that the constraints form a convex set), the following property can
be shown to be true

The local minimum of f(x) is also the global minimum.

Analogously, a local maximum is the global maximum of f(x) if the objective func-
tion is concave and the constraints form a convex set.

Role of convexity
If the constraint set g(x) is nonlinear, the set
R = {x|g(x) = 0}
is generally not convex. This is evident geometrically because most nonlinear func-
tions have graphs that are curved surfaces. Hence the set R is usually a curved sur-

face also, and the line segment joining any two points on this surface generally does
not lie on the surface.
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FIGURE 4.10

Convex and concave functions of one variable.
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f@
Convex function
Plane f(x) =k
X2
X1 /
R={xIf(x)<k}
FIGURE 4.11

Ilustration of a convex set formed by a plane f(x) = k cutting a convex function.

As a consequence, the problem

Minimize: f(x)
gx)=0 i=1,...,m
hx)=0 k=1, ...,r<n

may not be a convex programming problem in the variables x,...,x, if any of
the functions #,(x) are nonlinear. This, of course, does not preclude efficient solu-
tion of such problems, but it does make it more difficult to guarantee the absence
of local optima and to generate sharp theoretical results.

In many cases the equality constraints may be used to eliminate some of the
variables, leaving a problem with only inequality constraints and fewer variables.
Even if the equalities are difficult to solve analytically, it may still be worthwhile
solving them numerically. This is the approach taken by the generalized reduced
gradient method, which is described in Section 8.7.

Although convexity is desirable, many real-world problems turn out to be non-
convex. In addition, there is no simple way to demonstrate that a nonlinear problem
is a convex problem for all feasible points. Why, then is convex programming stud-
ied? The main reasons are

Subject to:

1. When convexity is assumed, many significant mathematical results have been
derived in the field of mathematical programming.

2. Often results obtained under assumptions of convexity can give insight into the
properties of more general problems. Sometimes, such results may even be car-
ried over to nonconvex problems, but in a weaker form.



CHAPTER 4: Basic Concepts of Optimization 127

For example, it is usually impossible to prove that a given algorithm will find
the global minimum of a nonlinear programming problem unless the problem is
convex. For nonconvex problems, however, many such algorithms find at least a
local minimum. Convexity thus plays a role much like that of linearity in the study
of dynamic systems. For example, many results derived from linear theory are used
in the design of nonlinear control systems.

Determination of convexity and concavity

The definitions of convexity and a convex function are not directly useful in
establishing whether a region or a function is convex because the relations must be
applied to an unbounded set of points. The following is a helpful property arising
from the concept of a convex set of points. A set of points x satisfying the relation

xXH(x)x < 1

is convex if the Hessian matrix H(x) is a real symmetric positive-semidefinite
matrix. H(x) is another symbol for Vf(x), the matrix of second partial derivative
of f(x) with respect to each x;

H(x) = H = V¥(x)

The status of H can be used to identify the character of extrema. A quadratic form
O(x) = x"Hx is said to be positive-definite if Q(x) > 0 forall x # 0, and said to
be positive-semidefinite if Q(x) = 0 for all x # 0. Negative-definite and negative-
semidefinite are analogous except the inequality sign is reversed. If Q (x) is positive-
definite (semidefinite), H(x) is said to be a positive-definite (semidefinite) matrix.
These concepts can be summarized as follows:

1. H is positive-definite if and only if x"Hx is >0 forall x # 0.

2. H is negative-definite if and only if x"Hx is <O forall x # 0.

3. H is positive-semidefinite if and only if x’"Hx is = 0 forall x # 0.
4. H is negative-semidefinite if and only if x"Hx is <O forall x # 0.
5. H is indefinite if x"Hx < 0 for some x and > O for other x.

It can be shown from a Taylor series expansion that if f(x) has continuous second
partial derivatives, f(x) is concave if and only if its Hessian matrix is negative-
semidefinite. For f(x) to be strictly concave, H must be negative-definite. For £(x)
to be convex H(x) must be positive-semidefinite and for f(x) to be strictly convex,
H(x) must be positive-definite.

EXAMPLE 4.3 ANALYSIS FOR CONVEXITY AND CONCAVITY

For each of these functions
(@) f(x)=3x*

(b) flx)=2x

(c) fx) = —5x*

(d) flx)=2x*—x3
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determine if f(x) is convex, concave, strictly convex, strictly concave, all, or none of
these classes in the range —oo = x = oo.

Solution

(a) f"(x) = 6, always positive, hence f(x) is both strictly convex and convex.

(b) f"(x) = O for all values of x, hence f(x) is convex and concave. Note straight
lines are both convex and concave simultaneously.

(c) f"(x) = —10, always negative, hence f(x) is both strictly concave and concave.

(d) f"(x) = 6 — 3x; may be positive or negative depending on the value of x, hence
f(x) is not convex or concave over the entire range of x.

For a multivariate function, the nature of convexity can best be evaluated by
examining the eigenvalues of f(x) as shown in Table 4.1 We have omitted the indef-
inite case for H, that is when f(x) is neither convex or concave.

TABLE 4.1
Relationship between the character of f(x) and the
state of H(x)
All the

eigenvalues

fx)is H(x) is of H(x) are
Strictly convex Positive-definite >0
Convex Positive-semidefinite =0
Concave Negative-semidefinite =0
Strictly concave Negative-definite <0

Now let us further illustrate the ideas presented in this section by some examples.

EXAMPLE 4.4 DETERMINATION OF POSITIVE-DEFINITENESS
OF A FUNCTION

Classify the function f(x) = 2x3 — 3x,x, + 2x3 using the categories in Table 4.1, or
state that it does not belong in any of the categories.

Solution
f(x) &f(x) &f(x)
ax, %1~ 3% ax? ox3
9 8f(x (x 4 -3
};(x) = —3x; + 4x, f) = fx) =-3 Hx)= {_ }
Xy 6x13x2 6x26x1 3 4

The eigenvalues of H are 7 and 1, hence H(x) is positive-definite. Consequently, fx)
is strictly convex (as well as convex).
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EXAMPLE 4.5 DETERMINATION OF POSITIVE-DEFINITENESS
OF A FUNCTION

Repeat the analysis of Example 4.4 for f{x) = x,2 + x;x, + 2x, + 4

Solution
21
H(x) = [1 0]

The eigenvalues are 1 + V2 and 1 - V2 , OT one positive or one negative value.
Consequently, f(x) does not fall into any of the categories in Table 4.1. We conclude
that no unique extremum exists.

EXAMPLE 4.6 DETERMINATION OF CONVEXITY AND
CONCAVITY

Determine if the following function
fx)=2x, +3x,+6

is convex or concave.
Solution

o = )

hence the function is both convex and concave.

EXAMPLE 4.7 DETERMINATION OF CONVEXITY OF A
FUNCTION

Consider the following objective function: Is it convex?

f(x) = 2x% + 2%, + 1.5x5 + Txy + 8x, + 24
Solution

@, I

ax? ax3 ax,0%,  9xp9%

(1]

The eigenvalues of H(x) are 5.56 and 1.44. Because both eigenvalues are positive, the
function is strictly convex (and convex, of course) for all values of x; and x,.

Therefore the Hessian matrix is
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EXAMPLE 4.8 DETECTION OF A CONVEX REGION

Does the following set of constraints that form a closed region form a convex region?
—x2+x=1
X]— X = —2

Solution. A plot of the two functions indicates that the region circumscribed is

closed. The arrows in Figure E4.8 designate the directions in which the inequalities
hold. Write the inequality constraints as g; = 0. Therefore

gl(x)=—x%+x2—120
gz(X)=x1—x2+220

That the enclosed region is convex can be demonstrated by showing that both g1(x)
and g,(x) are concave functions:

H{g,(x)] = [_z g} negative definite
H[g(x)] = [8 g] negative semidefinite

Because all eigenvalues are zero or negative, according to Table 4.1 both g, and g, are
concave and the region is convex.

X2

i) =—2 +x,—1=0

gz(x)=x1—x2+2=0

FIGURE E4.8
Convex region composed of two concave functions.




CHAPTER 4: Basic Concepts of Optimization 131

EXAMPLE 4.9 CONSTRUCTION OF A CONVEX REGION
Construct the region given by the following inequality constraints; is it convex?

i N=6x <6,x=0x +x<6x=0

Solution. See Figure E4.9 for the region delineated by the inequality constraints. By
visual inspection, the region is convex. This set of linear inequality constraints forms
a convex region because all the constraints are concave. In this case the convex region

is closed.
X2
6 v v

<—
.9
3 —

é
1 —

| LA )
0 1 3 6 X
FIGURE E4.9

Diagram of region defined by linear inequality constraints.

4.4 INTERPRETATION OF THE OBJECTIVE FUNCTION IN TERMS
OF ITS QUADRATIC APPROXIMATION

If a function of two variables is quadratic or approximated by a quadratic function
f(X) = by + byx; + byxy + byxt + byxs + byxix,, then the eigenvalues of
H(x) can be calculated and used to interpret the nature of f(x) at x*. Table 4.2 lists
some conclusions that can be reached by examining the eigenvalues of H(x) for a
function of two variables, and Figures 4.12 through 4.15 illustrate the different
types of surfaces corresponding to each case that arises for quadratic function. By
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TABLE 4.2
Geometric interpretation of a quadratic function
. Character of
Eigenvalue Signs Types of Geometric center of

Case relations e e, contours interpretation contours Figure
1 e, =e - —  Circles Circular hill Maximum 4.12
2 e, =e, + +  Circles Circular valley Minimum 4.12
3 e >e, - —  Ellipses Elliptical hill Maximum 4.12
4 e >e + +  Ellipses Elliptical valley Minimum 4.12
5 le)l = le,l + —  Hyperbolas Symmetrical Saddle point  4.13

saddle
6 le)l = ley| - +  Hyperbolas Symmetrical Saddle point  4.13

saddle
7 e > e + —  Hyperbolas  Elongated saddle Saddle point 4.13
8 e, =0 - Straight lines Stationary ridge* None 4.14
9 e, =0 + Straight lines Stationary valley*  None 4.14
10 =0 - Parabolas Rising ridge** At 4.15
11 e, =10 + Parabolas Falling valley** At 4.15

*These are “degenerate” surfaces.
*The condition of rising or falling must be evaluated from the linear terms in Jx).

f(x) l ff‘lx
s —=—

Geometry of a quadratic objective function of two independent
variables—elliptical contours. If the eigenvalues are equal, then the
contours are circles.

implication, analysis of a function of many variables via examination of the eigen-
values can be conducted, whereas contour plots are limited to functions of only two
or three variables.
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J)

FIGURE 4.13
Geometry of a quadratic objective function of two

independent variables—saddle point.

fx)
)
x)
FIGURE 4.14

Geometry of a quadratic objective function of two independent
variables—stationary valley.
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f(x)

X2

FIGURE 4.15
Geometry of second-order objective function of two independent variables—
falling valley.

Figure 4.12 corresponds to objective functions in well-posed optimization
problems. In Table 4.2, cases 1 and 2 correspond to contours of f(x) that are con-
centric circles, but such functions rarely occur in practice. Elliptical contours such
as correspond to cases 3 and 4 are most likely for well-behaved functions. Cases 5
to 10 correspond to degenerate problems, those in which no finite maximum or
minimum or perhaps nonunique optima appear.

For well-posed quadratic objective functions the contours always form a con-
vex region; for more general nonlinear functions, they do not (see the next section
for an example). It is helpful to construct contour plots to assist in analyzing the
performance of multivariable optimization techniques when applied to problems of
two or three dimensions. Most computer libraries have contour plotting routines to
generate the desired figures.

As indicated in Table 4.2, the eigenvalues of the Hessian matrix of f{x) indicate
the shape of a function. For a positive-definite symmetric matrix, the eigenvectors
(refer to Appendix A) form an orthonormal set. For example, in two dimensions, if
the eigenvectors are v, and v,, viv, = 0 (the eigenvectors are perpendicular to
each other). The eigenvectors also correspond to the directions of the principal axes
of the contours of f(x).

One of the primary requirements of any successful optimization technique is
the ability to move rapidly in a local region along a narrow valley (in minimiza-
tion) toward the minimum of the objective function. In other words, an efficient
algorithm selects a search direction that generally follows the axis of the valley
rather than jumping back and forth across the valley. Valleys (ridges in maximiza-
tion) occur quite frequently, at least locally, and these types of surfaces have the
potential to slow down greatly the search for the optimum. A valley lies in the
direction of the eigenvector associated with a small eigenvalue of the Hessian



CHAPTER 4: Basic Concepts of Optimization 135

matrix of the objective function. For example, if the Hessian matrix of a quadratic

function is
1 0
H = {o 10]

then the eigenvalues are ¢, = 1 and e, = 10. The eigenvector associated with ¢, =
1, that is, the x, axis, is lined up with the valley in the ellipsoid. Variable transfor-
mation techniques can be used to allow the problem to be more efficiently solved
by a search technique (see Chapter 6).

Valleys and ridges corresponding to cases 1 through 4 can lead to a minimum
or maximum, respectively, but not for cases 8 through 11. Do you see why?

4.5 NECESSARY AND SUFFICIENT CONDITIONS FOR AN
EXTREMUM OF AN UNCONSTRAINED FUNCTION

Figure 4.16 illustrates the character of f(x) if the objective function is a function of a
single variable. Usually we are concerned with finding the minimum or maximum of
a multivariable function f(x). The problem can be interpreted geometrically as find-
ing the point in an n-dimension space at which the function has an extremum. Exam-
ine Figure 4.17 in which the contours of a function of two variables are displayed.

An optimal point x* is completely specified by satisfying what are called the
necessary and sufficient conditions for optimality. A condition N is necessary for a
result R if R can be true only if the condition is true (R=>N). The reverse is not
true, however, that is, if N is true, R is not necessarily true. A condition is sufficient
for a result R if R is true if the condition is true (S=>R). A condition T is neces-
sary and sufficient for result R if R is true if and only if T'is true (T'<> R).

fx)

FIGURE 4.16

A function exhibiting different types of stationary points.

Key: a—inflection point (scalar equivalent to a saddle point);
b—global maximum (and local maximum); c—local minimum;
d—local maximum



136 PART II: Optimization Theory and Methods

X2

T

FIGURE 4.17a
A function of two variables with a single stationary point
(the extremum).

The easiest way to develop the necessary and sufficient conditions for a mini-
mum or maximum of f(X) is to start with a Taylor series expansion about the pre-
sumed extremum x*

fx) = f(x*) + VIf(x*) Ax + 3(AX") V¥F(x*)Ax + O3(Ax) + --- (4.4)

where Ax = x — x*, the perturbation of x from x*. We assume all terms in Equa-
tion (4.4) exist and are continuous, but will ignore the terms of order 3 or higher
[O5(Ax)], and simply analyze what occurs for various cases involving just the terms
through the second order.

We defined a local minimum as a point x* such that no other point in the vicin-
ity of x* yields a value of f(x) less than f (x*), or

Ax) — fix*) = 0 4.5)

x* is a global minimum if Equation (4.5) holds for any x in the n-dimensional space
of x. Similarly, x* is a local maximum if

fx) —fx*) =<0 (4.6)
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FIGURE 4.17b
A function of two variables with three stationary
points and two extrema, A and B.

Examine the second term on the right-hand side of Equation (4.4): VIf(x*) Ax.
Because Ax is arbitrary and can have both plus and minus values for its elements,
we must insist that Vf (x*) = 0. Otherwise the resulting term added to f(x*) would
violate Equation (4.5) for a minimum, or Equation (4.6) for a maximum. Hence, a
necessary condition for a minimum or maximum of f(x) is that the gradient of f(x)
vanishes at x*

Vi(x*) =0 4.7

that is, x* is a stationary point.

With the second term on the right-hand side of Equation (4.4) forced to be zero,
we next examine the third term: 3(Ax”) V2f(x*)Ax. This term establishes the char-
acter of the stationary point (minimum, maximum, or saddle point). In Figure 4.17b,
A and B are minima and C is a saddle point. Note how movement along one of the
perpendicular search directions (dashed lines) from point C increases f(x), whereas
movement in the other direction decreases f(x). Thus, satisfaction of the necessary
conditions does not guarantee a minimum or maximum.

To establish the existence of a minimum or maximum at x*, we know from
Equation (4.4) with Vf (x*) = 0 and the conclusions reached in Section 4.3 con-
cerning convexity that for Ax # 0 we have the following outcomes
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V3 (x*) = H(x*) AxT V¥(x*) Ax Near x*, f(x) — f(x*)
Positive-define >0 Increases
Positive-semidefinite =0 Possibly increases
Negative-definite <0 Decreases
Negative-semidefinite =0 Possibly decreases
Indefinite Both =0 and =0 Increases, decreases, neither

depending on Ax

Consequently, x* can be classified as

V2(x*) = H(x*) x*

Positive-definite Unique (“isolated”) minimum
Negative-definite Unique (“isolated”) maximum

These two conditions are known as the sufficiency conditions.
In summary, the necessary conditions (items 1 and 2 in the following list) and
the sufficient condition (3) to guarantee that x* is an extremum are as follows:

1. f(x) is twice differentiable at x*.

2. Vf(x*) = 0, that is, a stationary point exists at x*,

3. H(x*) is positive-definite for a minimum to exist at x*, and negative-definite for
a maximum to exist at x*,

Of course, a minimum or maximum may exist at x* even though it is not possible to
demonstrate the fact using the three conditions. For example, if f{x) = x*3, x* = 0
is a minimum but H(0) is not defined at x* = 0, hence condition 3 is not satisfied.

EXAMPLE 4.10 CALCULATION OF A MINIMUM OF f (x)

Does f(x) = x* have an extremum? If so, what is the value of x* and f(x*) at the
extremum?

Solution

flx) =43 f"(x) = 124
Set f'(x) = 0 and solve for x; hence x = 0 is a stationary point. Also, f(0) = 0, mean-
ing that condition 3 is not satisfied. Figure E4.10 is a plot of f{x) = x*. Thus, a mini-
mum exists for f(x) but the sufficiency condition is not satisfied.

If both first and second derivatives vanish at the stationary point, then further
analysis is required to evaluate the nature of the function. For functions of a single
variable, take successively higher derivatives and evaluate them at the stationary
point. Continue this procedure until one of the higher derivatives is not zero (the nth
one); hence, f'(x®), f"(x*), . . . , f@~D(x*) all vanish. Two cases must be analyzed:

L. If n is even, the function attains a maximum or a minimum,; a positive sign of f®
indicates a minimum, a negative sign a maximum.
2. If n is odd, the function exhibits a saddle point.

For more details refer to Beveridge and Schechter (1970).
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fx)

| |
—1 0 1 x

FIGURE E4.10

For application of these guidelines to f(x) = x*, you will find d*fx)ldx* = 24 for
which # is even and the derivative is positive, so that a minimum exists.

EXAMPLE 4.11 CALCULATION OF EXTREMA

Identify the stationary points of the following function (Fox, 1971), and determine if
any extrema exist.

f(x) =4 + 45x) — 4x, + x3 + 2x% — 2%, + x7 — 2xix,

Solution. For this function, three stationary points can be located by setting VAx) = 0:

af(x
%=4.5+2x1—2.xé+4x?_4XIX2=0 (a)
1

of (x
i(—l=—4+4ch—24>wc1—2x%=0 b)
dx,

The set of nonlinear equations (a) and (b) has to be solved, say by Newton’s method,
to get the pairs (x,, x,) as follows:

Stationary point Hessian matrix
Point (X1 X3) f® eigenvalues Classification
B (1.941, 3.854) 0.9855 37.03 0.97 Local minimum
A (—1.053,1.028) —0.5134 105 35 Local minimum
(also the global
minimum)
C 0.6117, 1.4929) 2.83 7.0 —2.56  Saddle point

Figure 4.17b shows contours for the objective function in this example. Note that
the global minimum can only be identified by evaluating f(x) for all the local minima.
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For general nonlinear objective functions, it is usually difficult to ascertain the
nature of the stationary points without detailed examination of each point.

EXAMPLE 4.12

In many types of processes such as batch constant-pressure filtration or fixed-bed ion
exchange, the production rate decreases as a function of time. At some optimal time
£°P', production is terminated (at P°?) and the equipment is cleaned. Figure E4.12a
illustrates the cumulative throughput P(f) as a function of time ¢ for such a process.
For one cycle of production and cleaning, the overall production rate is

R(l‘) = ﬂ

R @

where R(f) = the overall production rate per cycle (mass/time)
t, = the cleaning time (assumed to be constant)

Determine the maximum production rate and show that P is indeed the maxi-
mum throughout.

Solution. Differentiate R(f) with respect to ¢, and equate the derivative to 0:

dR(r) = P(t) + [dP(r)/dt](t + 1.) _ 0
at (t + 1,)? h
opt _ dP(t) b
P _TOPI(t_I_tC) b)

The geometric interpretation of Equation () is the classical result (Walker et al., 1937)
that the tangent to P(f) at P intersects the time axis at —z,. Examine Figure E4.12b,
The maximum overall production rate is

P(t)

Popt ——————

0

0 £OPt t

FIGURE E4.12a
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P(t)
Slope = ar@)
dt opt

Popt [
|
|
|
|
l
|
0 [

0 t
5 tc topt ;

FIGURE E4.12b

dP(t)
dt

2
4P (the slope) is negative
dar?

FIGURE E4.12¢

Popt
"+ g,

R opt _—

Does P meet the sufficiency condition to be a maximum? Is

d*R(t) _2P() - 2[dP(t)/dt)(t + t,) + [d*P(t)/dr*)(t + t.)?

<0

?

141

(©

@

dr* (t+1)
Rearrangement of (d) and introduction of () into (d), or the pair (P, 1°P"), gives
d*P(z
( )(r +1)02<0

dr?
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From Figure E4.12b we note in the range 0 < << #°P* that dP(¢)/dt is always positive
and decreasing so that d?P(s)/d#? is always negative (see Figure E4.12c). Conse-
quently, the sufficiency condition is met.
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PROBLEMS

4.1 Classify the following functions as continuous (specify the range) or discrete:
(a) f(x) =€

(b) f(x) = ax,_, + b(x, — x,) where x, represents a stage in a distillation column

(¢) f(x) =

Xp — Xs
1+ x,

where x;, = concentration of vapor from a still and x, is the
concentration in the still



4.2

4.3

44

4.5

4.6
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The future worth S of a series of n uniform payments each of amount P is

s=§[(1 + iyt — 1]

where i is the interest rate per period. If i is considered to be the only variable, is it dis-
crete or continuous? Explain. Repeat for n. Repeat for both r and i being variables.

In a plant the gross profit P in dollars is
P=nS - (nV+F)

where n = the number of units produced per year
S = the sales price in dollars per unit
V = the variable cost of production in dollars per unit
F = the fixed charge in dollars

Suppose that the average unit cost is calculated as

nv +F

Average unit cost =
Discuss under what circumstances # can be treated as a continuous variable.

One rate of return is the ratio of net profit P to total investment

P(1—1) [S = (V+ F/n)]
R=100———=100(1 —¢t)————
1 ( ) I/n
where ¢t = the fraction tax rate
I = the total investment in dollars
Find the maximum R as a function of n for a given I if n is a continuous variable.
Repeat if n is discrete. (See Problem 4.3 for other notation.)

Rewrite the following linear programming problems in matrix notation.

(2) Minimize: fx) = 3x;+2x, + x3
Subject to: gi(x) = 2x; +3x, + 13 =10
&X) = x;+ 2, +x3 =15
(b) Maximize: f(x) = 5x; + 10x, + 12x3
Subject to: gi(x) = 15x; + 10x, + 10x; = 200
&(x) = x =0
g(x) = x,=0
8(x) = x3=0

hy(x) = 10x; + 25x, + 20x; = 300

Put the following nonlinear objective function into matrix notation by defining suitable
matrices; X = [x; x,]".

F(x) = 3 + 2x; + 3x, + 223 + 2x,x, + 63
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4.7 Sketch the objective function and constraints of the following nonlinear programming
problems.

(a) Minimize: Ffx)

2x2 = 2xxy + 2x3 — 6x, + 6
Subjectto:  gy(x) = x, +x, =2
(b) Minimize: fx) = x3—3xx, +4
Subjectto:  gi(x) = 5x; + 2x, = 18
hy(x) = —2x,+x3=35

(c) Minimize: f(x) = —5x% + x2

Subject to:  g)(x) = x_% 1 = -1
: 2 5
&X) = x =0
8&(x) = x=0

4.8 Distinguish between the local and global extrema of the following objective function.

Fx) =2x3 + 3 + 2%k + duyx, + 3

4.9 Are the following vectors (a) feasible or nonfeasible vectors with regard to Problem
4.5b; (b) interior or exterior vectors?

M x=[5 2 10"
2)x=[10 2 75
3)x=[0 0 o
4.10 Shade the feasible region of the nonlinear programming problems of Problem 4.7. Is

x = [1 117 an interior, boundary, or exterior point in these problems?

4.11 What is the feasible region for x given the following constraints? Sketch the feasible
region for the two-dimensional problems.

(a) M) =x+x,-3=0
h(x) = 2%, —x,+1=0
(b) mx) =x3+x3+x3=0
hyx) = x; +x,+x=0
) ax) =x-x-2=20
&X) = x—x+4=20
@ mix) =x+x2+3
) = x—x+2=20
&(x) = x =0
)

= X2ZO
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4.12 Two solutions to the nonlinear programming problem
Minimize:  f(x) = Tx; — 6x + 4x;
Subjectto:  hyx) =x?+ 23 +3x31—-1=0
hy(x) = 5x; + 5x, — 3%, —6=0

have been reported, apparently a maximum and a minimum.

0.947 0.534
X = 0.207 X = 0.535
—-0.0772 -0.219

Ff(x) = 5.08 f(x) = —0.346

Verify that each of these x vectors is feasible.

4.13 The problem
Minimize: f(x) = 100(x, — x3)* + (1 — x;)?
Subjectto: xZ+ x3=2
is reported to have a local minimum at the point x* = [1 1]T. Is this local optimum also
a global optimum?

4.14 Under what circumstances is a local minimum guaranteed to be the global minimum?
(Be brief.)

4,15 Are the following functions convex? Strictly convex? Why?
(a) 2x} + 2x.x, + 3x3 + Tx, + 8x, + 25

What are the optimum values of x; and x,?
(b) eSx

4.16 Determine the convexity or concavity of the following objective functions:
(a) fxpxy) = (v — x)* + x3
(b) flxy, x5 x3) = xi + x5 + X3

(©) flxpxy) = € + ™
4.17 Show that f = " + e™is convex. Is it also strictly convex?
4.18 Show that f = x| is convex.

4.19 Is the following region constructed by the four constraints convex? Closed?
X, = 1 —x
X, = 1+ 0.5x;

2

0

IA

X

v

X2
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4.20 Does the following set of constraints form a convex region?
gilx) = —-(t+x3)+9=0

&) =—x —x+1=0

4.21 Consider the following problem:
Minimize: f(x)
Subjectto:  g(x) = 2+ x3-9=0

&x) = (+x3) -1=0
g(x) = (x+x)—-1=0

i

2+ x,

Does the constraint set form a convex region? Is it closed? (Hint: A plot will help you
decide.)

4.22 Is the following function convex, concave, neither, or both? Show your calculations.

f(x) =Inx + Inx,

4.23 Sketch the region defined by the following inequality constraints. Is it a convex region?
Is it closed?

x1+x2—120
xl—x2+120
2—x1 =0

Xy =0

4.24 Does the following constraint set form a convex region (set)?

h(x)

2+x2-9=0
g®) =—(x +x3)+1=0

gz(x) = —(xl + JC2) +1=0
4.25 Separable functions are those that can be expressed in the form
¥(x) = ;t/f.-(X)

For example, x? + x2 + x3 is a separable function because
Y(x) = X a7

Show that if the terms in a separable function are convex, the separable function is
convex.
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4.26 Is the following problem a convex programming problem?

200
Minimize: f(x) = 100x, + —
X1X2
300
Subject to: 2%, + — =1
X1X2
X1, Xy =0

4.27 Classify each of the following matrices as (a) positive-definite, (b) negative-definite,

(c) neither.
o byl e [

o 1] @ [L7

4.28 Determine whether the following matrix is positive-definite, positive-semidefinite,
negative-definite, negative-semidefinite, or none of the above. Show all calculations.

111
A=1(111
110

4.29 In designing a can to hold a specified amount of soda water, the cost function (to be
minimized) for manufacturing one can is

AD,h) = wDh + %DZ

and the constraints are

Z—Dzh = 400

35 =D=38 8=h=18

Based on the preceding problem, answer the following; as far as possible for each

answer use mathematics to support your statements:

(a) State whether f(D, k) is unimodal (one extremum) or multimodal (more then one
extremum).

(b) State whether f(D, &) is continuous or not.

(c) State whether f(D, h) is convex, concave, or neither.

(d) State whether or not f(D, &) alone meets the necessary and sufficient conditions
for a minimum to exist.

(e) State whether the constraints form a convex region.

4.30 A reactor converts an organic compound to product P by heating the material in the
presence of an additive A (mole fraction = x,). The additive can be injected into the
reactor, while steam can be injected into a heating coil inside the reactor to provide heat.
Some conversion can be obtained by heating without addition of A, and vice versa.
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The product P can be sold for $50/1b mol. For 1 1b mol of feed, the cost of the addi-
tive (in dollars/Ib mol) as a function of x, is given by the formula, 2.0 + 10x, + 20x,2.
The cost of the steam (in dollars) as a function of S is 1.0 + 0.003S + 2.0 X 107 §2,
(§ = Ib steam/Ib mol feed). The yield equation is y, = 0.1 + 0.3x, + 0.001S + 0.0001x,
S; ¥, = Ib mol product P/Ib mol feed.

(a) Formulate the profit function (basis of 1.0 Ib mol feed) in terms of x, and S.
f= Income — Costs
The constraints are:
O0=x,=1 S=0
(b) Isfaconcave function? Demonstrate mathematically why it is or why it is not concave.

(c) Is the region of search convex? Why?

4.31 The objective function for the work requirement for a three-stage compressor can be
expressed as (p is pressure)

P <&>o.zss . <&>0.236 . (&)o.zse
D1 123 b3

Dy =31 atm and p, = 10 atm. The minimum occurs at a pressure ratio for each stage
of V/10. Isfconvex for 1 =< p, = 10,1 < p; < 10?

4.32 In the following problem
(a) Is the objective function convex? (b) Is the constraint region convex?

200
Minimize: f(x) = 100x;, + —
X1%2
g(x) = 2x, + =1
Subject to: X T X
X1 =0
Xy =0

4.33 Answer the questions below for the following problem; in each case justify your answer.

Minimize: fx) = %x? — %x% —x,
Subject to:  x7 + x5 =4
X1 — X =2

(a) Is the problem a convex programming problem?
(b) Is the point x = [1 1]7 a feasible point?
(c) Is the point x = [2 2]T an interior point?

4.34 Happel and Jordan (1975) reported an objective function (cost) for the design of a dis-
tillation column as follows:

/= 14720(100 — P) + 6560R — 30.2PR + 6560 — 30.2P
+ 19.57 (5000R — 23PR + 5000 — 23P)%3
+ 23.2 [S000R — 23PR + 5000 — 23P]%%
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where n = number of theoretical stages
R = reflux ratio
P = percent recovery in bottoms stream

They reported the optimum occurs at R = 8, n = 55, and P = 99. Is f convex at this
point? Are there nearby regions where f is not convex?

4.35 Given a linear objective function,
f = xl + .x2

(x, and x, must lic in region 4)

X2

X1

FIGURE P4.35

explain why a nonconvex region such as region A in Figure P4.35 causes difficulties
in the search for the maximum of fin the region. Why is region A not convex?

4.36 Consider the following objective function

fla) = 21 ~af

Show that fis convex. Hint: Expand f for both # odd and » even. You can plot the func-
tion to assist in your analysis. Under what circumstances is

n

f) = Xeilx = e

i=1
convex?

4.37 Classify the stationary points of
(@) f=—x*+x>+20
b) f=x*+3x*+x+5
(¢) f=x*—2x*+ 1
() f=x — 8xpx, + x3

according to Table 4.2
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4.38 List stationary points and their classification (maximum, minimum, saddle point) of
(@) f=x3+ 2x +3x3+ 6x, + 4
(b) f=x; + x, + x3 — dxyx, + 2x3
4.39 State what type of surface is represented by
f(x) = 2xk, — 2x3 + x3
at the stationary point x = [0 O] (use Table 4.2).

4.40 Interpret the geometry of the following function at its stationary point in terms of
Table 4.2

flx) = 3x3x,

4.41 Classify the following function in terms of the list in Table 4.2:
Fx) =10x; — x3 + 10x, — x3 — xx, + x3 — 34

4.42 In crystal NaCl, each Na* or Cl~ ion is surrounded by 6 nearest neighbors of opposite
charge and 12 nearest neighbors of the same charge. Two sets of forces oppose each
other: the coulombic attraction and the hard-core repulsion. The potential energy u(r)
of the crystal is given by the Lennard—Jones potential expression,

el (8-

where €,0 are constants, such that € > 0, oo > 0.

(a) Does the Lennard—Jones potential u(r) have a stationary point(s)? If it does, locate
it (them).

(b) Identify the nature of the stationary point(s) min, max, etc.

(c) What is the magnitude of the potential energy at the stationary points?

4.43 Consider the function

y = (x = a?

Note that x = a minimizes y. Let z = x* — 4x + 16. Does the solution to x> — 4x +
16 =0,

x=4:|:T "_48=2ij2\/§

minimize z? (j = V—1).
4.44 The following objective function can be seen by inspection to have a minimum atx = 0:

fx) = %%
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Can the criteria of Section 4.5 be applied to test this outcome?

4.45 (a) Consider the objective function,
f=6x}+ x3 + 6xx, + 3x3

Find the stationary points and classify them using the Hessian matrix.
(b) Repeat for

F=73x3 4 6x; + x% + 6x3, + x5 + 2% + x0ox5 + X
(c) Repeat for

f=agx; + ax, + ax? + asx3 + axx,

4.46 An objective function is
&) =(x — 8+ (x, —5)* + 16

By inspection, you can find x* = [8 5]T yields the minimum of f{x). Show that x*
meets the necessary and sufficient conditions for a minimum.

4.47 Analyze the function

Find all of its stationary points and determine if they are maxima, minima, or inflec-
tion (saddle) points. Sketch the curve in the region of

2=x=<2

4.48 Determine if the following objective function
fx) =2x} + x3 + x}x3 + 4xx, + 3

has local minima or maxima. Classify each point clearly.

4.49 Ts the following function unimodal (only one extremum) or multimodal (more than one
extremum)?

4.50 Determine whether the solution x = [—0.87 —0.8]7 for the objective function
fx) = xt + 12x} — 15x3 — 56x, + 60

is indeed a maximum.
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