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584 APPENDIX A: Mathematical Summary
THIS APPENDIX SUMMARIZES essential background material concerning matrices
and vectors. It is by no means a complete exposition of the subject [see, for exam-

ple, Stewart (1998), Golub and Van Loan (1996), and Meyer (2000)] but concen-
trates mainly on those features useful in optimization.

A.1 DEFINITIONS

A matrix is an array of numbers, symbols, functions, and so on

an ap o 4y
a1 Ay  t Qay

A= . . (A1)
Ay Ap o Ay

An element of the matrix A is denoted by a;;, where the subscript i corresponds to
the row number and subscript j corresponds to the column number. Thus A in (A.1)
has a total of n rows and m columns, and the dimensions of A are n by m(n X m).
If m = n, A is called a “square” matrix. If all elements of A are zero except the main
diagonal (a;, i = 1, ..., n), A is called a diagonal matrix. A diagonal matrix with
each a; = 1 is called the identity matrix, abbreviated I.

Vectors are a special type of matrix, defined as having one column and 7 rows.
For example in (A.2) x has » components

X1

X
X = :2 n X 1 matrix, a vector (A.2)

xn

A vector can be thought of as a point in n-dimensional space, although the graphi-
cal representation of such a point, when the dimension of the vector is greater than
3, is not feasible. The general rules for matrix addition, subtraction, and multipli-
cation described in Section A.2 apply also to vectors.

The transpose of a matrix or a vector is formed by assembling the elements of
the first row of the matrix as the elements of the first column of the transposed
matrix, the second row into the second column, and so on. In other words, a; in the
original matrix A becomes the component a;; in the transpose AT. Note that the
position of the diagonal components (a;) are unchanged by transposition. If the
dimension of A is n X m, the dimension of AT is m X n (m rows and » columns).
If square matrices A and AT are identical, A is called a symmetric matrix. The trans-
pose of a vector X is a row

X _[xl Xy xn] (A3)
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A.2 BASIC MATRIX OPERATIONS

First we present the rules for equality, addition, and multiplication of matrices.

Equality
A=B if and only if a; = by foralliandj
Furthermore, both A and B must have the same dimensions (A and B are “con-

formable™).

Addition
A + B = C requires that the element ¢; = a; + b;, foralliandj

A, B, and C must all have the same dimensions.

Multiplication
AB=C

If the matrix A has dimensions #» X m and B has dimensions g X r, then to obtain
the product AB requires that m = g (the number of columns of A equals the num-
ber of rows of B). The resulting matrix C is of dimension #n X r and thus depends
on the dimensions of both A and B. An element c;; of C is obtained by summing the
products of the elements of the ith row of A times the corresponding elements of
the jth column of B:

cij = 2 aikbkj (A4)
k=1

Note that the number of terms in the summation is 7, corresponding to the number
of columns of A and the rows of B. Matrix multiplication in general is not com-
mutative as is the case with scalars, that is,

AB # BA

Often the validity of this rule is obvious because the matrix dimensions are not con-
formable, but even for square matrices commutation is not allowed.

Multiplication of a matrix by a scalar
Each component of the matrix is multiplied by the scalars,

sA = B is obtained by s(a;) = b; (AS5)

Transpose of a product of matrices

The transpose of a matrix product (AB)7 is (AB)? = BT AT. Likewise, (ABC)? =
CT(AB)T = CTBT AT,
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EXAMPLE A.1 MATRIX OPERATIONS

Consider a number of simple examples of these operations.

Multiplication:

For
100 12

A=|110 B=|34

111 56
(3 X 3) (3x2)

find AB.

Solution.

1(1) + 0(3) + 0(5)  1(2) + 0(4) + 0(6) 1 2
AB =[1(1) +1(3) +0(5) 1(2) +1(4)+06)|=|4 6
9

Bx2)  [1(1) + 13) + 1(5) 1(2) + 1(4) + 1(6) 12
Addition:
For
1 0 2 1 5 1
A=|1 -1 0 B=|4 4 4
0 0 0 1 0 1
Find A + B.
Solution.
1+1 0+5 2+1 2 5 3
A+B=|1+4 —14+4 0+4|=|5 3 4
0-+1 0+0 0+1 1 0 1
Subtraction:
For
1 1 2 6
A"[l 1] B‘[l 3]
find A - B.
Solution.
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Transpose:
For
1 1 2 1
a=i o] wa -2 1]
find (AB)”.
Solution.

any-war= (22N o= 2 )

Multiplication of matrices by vectors:

A coordinate transformation can be performed by multiplying a matrix times a vec-

tor. If
1 1 2 1
A=1]2 0 3 and x=1{1
4 8 4 1
findy = Ax.
1(1) + 1(1) + 2(1) 4
y=12(1)+0(1)+3(1)|=]| 5

4(1) + 8(1) + 4(1) 16

Note y has the same dimension as x. We have transformed a point in three-dimen-
sional space to another point in that same space.

Other commonly encountered vector~matrix products (x and y are n-compo-
nent vectors) include

1. xx = Ex (a scalar) (A.6)
2.xTy = (x,y) = > x (A7)
i=1

Equation (A.7) is referred to as the inner product or dot product, of two vectors.
If the two vectors are orthogonal, then xy = 0. In two or three dimensions, this
means that the vectors x and y are perpendlcular to each other.

3. xTAx Here A is a square matrix of dimension n X n and the product is a scalar.
If A is a diagonal matrix, then

xTAx = > ax} (A.8)
i=1
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XXy XiXp T XXy
4, xxT = : : (A9)
xnxl e xnxn

Each vector has the dimensions (z X 1) and the matrix is square (r X n). Note
that xx” is a matrix rather than a scalar (as with x7x).

There is no matrix version of simple division, as with scalar quantities. Rather,
the inverse of a matrix (A~!), which exists only for square matrices, is the closest
analog to a divisor. An inverse matrix is defined such that AA™! = A™1 A =1 (all
three matrices are n X n). In scalar algebra, the equation a-b = ¢ can be solved for
b by simply multiplying both sides of the equation by 1/a. For a matrix equation,
the analog of solving

AB =C (A.10)
is to premultiply both sides by A"
ATIAB =A"'C
IB=A"'C (A.11)

Because IB = B, an explicit solution for B results. Note that the order of multipli-
cation is critical because of the lack of commutation. Postmultiplication of both
sides of Equation (A.10) by A~! is allowable but does not lead to a solution for B.

To get the inverse of a diagonal matrix, assemble the inverse of each element
on the main diagonal. If

an 0 0
A= 0 [25%) 0
0 0 [2£%)
then
1/ay, 0 0
A_1 = O 1/6122 O

0 0 1/(133

The proof is evident by multiplication: AA™! = L

For a general square matrix of size 2 X 2 or 3 X 3, the procedure is more
involved and is discussed later in Examples A.3 and A.7.

The determinant (denoted by det [A] or |A|) is reasonably easy to calculate by
hand for matrices up to size 3 X 3:

a1 G2 43
det| as; axp 4y | = andnds * apaxpas + a;3andy (A.12)
Qs; 43 sz T 03102013 T G30xa11 T 033831412
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Another way to calculate the value of a determinant is to evaluate its cofactors. The
cofactor of an element a; of the matrix is found by first deleting from the original
matrix the ith row and jth column corresponding to that element; the resulting array
is the minor (M) for that element and has dimension (n — 1) X (n — 1). The cofac-

tor is defined as

¢y = (=1)"* det M; (A.13)
The determinant of the original matrix is calculated by either
1. i a;c; (i fixed arbitrarily; row expansion) (A.14)
or "~
2. En: a;c; (Jjfixed arbitrarily; column expansion) (A.15)
For le;lample, if

an Adn
A= {‘121 azz}

an expansion of the first row gives
det[A] = ayen + apcrn
e = (_1)1+1a22 =dan
cia = (—1)""%ay = —ay
so that

det [A] = ayay — apay

EXAMPLE A.2 CALCULATE THE VALUE OF A DETERMINANT
USING COFACTORS
det|:

Calculate the determinant
using the first row as the expansion.

S = N
—
| S ———

O N

Solution.

1 1 2 1 2 1
det[A]—c“+2012+cl3—det[o 1}—Zdet{o 1}-i-det[o O}

1=1-4+0=-3
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It is actually easier to use the third row because of its two zeros.

1 2
detA = C33 = ('—1)3+3|:2 1:| = "'3

The adjoint of a matrix is constructed using the cofactors defined earlier. The
elements a; of the adjoint matrix A are defined as

In other words, the adjoint matrix is the array composed of the transpose of the
cofactors.
The adjoint of A can be used to directly calculate the inverse, A~
adj[A]
A7l =——= (A.17)
Al
Note that the denominator of (A.17), the determinant of A = |A|, is a scalar. If [A|

= 0, the inverse does not exist. A square matrix with determinant equal to zero is
called a singular matrix. Conversely, for a nonsingular matrix A, det A # 0.

EXAMPLE A.3 CALCULATION OF THE INVERSE OF A
MATRIX

Consider the following matrix and find its inverse.

1 4
A= Al=1—-8=-7
[2 J N

Solution. The cofactors are

>
I
Il
||_
~J
—
|
N —
|
—
1
I
||
N0 =
||
N A

The use of Equation (A.17) for inversion is conceptually simple, but it is not a very
efficient method for calculating the inverse matrix. A method based on use of row
operations is discussed in Section A.3. For matrices of size larger than 3 X 3, we
recommend that you use software such as MATLAB to find A~
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Another use for the matrix inverse is to express one set of variabless in terms of
another, an important operation in constrained optimization (see Ch.apier 8). For
example, suppose X and z are two n-vectors that are related by

z = Ax (A.18)

Then, to express X in terms of z, merely multiply both sidesof(A.18) by A~ (note
that A must be n X n):
A"lz=x (A.19)

EXAMPLE A4 RELATION OF VARIABLES

Suppose that
21T X + x5

and
Zp = 2x1 + X

What are x; and x, in terms of z; and z,?

Solution. Let

Therefore z = AXx, where

The inverse of A is

hence x = Az or

X3 =711t 2

X, =221~ 2

The inverse matrix also can be employed in the solution of linear algebraic
equations,
Ax=Db (A20)

which arise in many applications of engineering as well as in optimnization theory.
To have a unique solution to Equation (A.20), there must be the same number of
independent equations as unknown variables. Note that the number of equations is
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equal b the number of rows of A, and the number of unknowns is equal to the num-
ber of columns of A.
With the inverse matrix, you can solve directly for x:

x=A""p (A21)

Although this is a conceptually convenient way to solve for x, it is not necessarily
the mostefficient method for doing so. We shall return to the matter of solving lin-
ear equations in Section A.4.

The final matrix characteristic covered here involves differentiation of function
of a vetor with respect to a vector. Suppose f(x) is a scalar function of 7 variables
(¢}, %5, x,). The first partial derivative of f(x) with respect to x is

A oSy "’_f]T

—_—= V =
ox xf [axl 0x, ox,

Foravector function h(x), such as occurs in a series of nonlinear multivariable
constraints

I

)

hl(xl, Koy een s X
h2(.xl, X9y evny x,,)

0
0

P15 X9 o0y x,) = 0

the matix of first partial derivatives, called the Jacobian matrix, is

oh, oh, oh,
o a. )
gh | 1 % o
J=—=]: : :
ox
oh,, oh, oh,,
ox;  dx, 0x,,

For a scalar function, the matrix of second derivatives, called the Hessian
matrix, is

- -
O O &
ox?  ax0x, 0x,0x,,
9* d* 9

Hw=vy=|L
0x,0x, 0x3 0x,0x,
o Lhd

—ax,,axl ax?2 |
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The use of this matrix and its eigenvalue properties is discussed in several chapters.
For continuously differentiable functions, H is symmetric.

A.3 LINEAR INDEPENDENCE AND ROW OPERATIONS

As mentioned earlier, singular matrices have a determinant of zero value. This out-
come occurs when a row or column contains all zeros or when a row (or column)
in the matrix is linearly dependent on one or more of the other rows (or columns).
It can be shown that for a square matrix, row dependence implies column depend-
ence. By definition the columns of A, a,, are linearly independent if

> da; =0 onlyifd; = 0forallj (A.22)
j=1

Conversely, linear dependence occurs when some nonzero set of values for d; sat-
isfies Equation (A.22). The rank of a matrix is defined as the number of linearly
independent columns (= n).

EXAMPLE A.5 LINEAR INDEPENDENCE AND THE RANK OF A

MATRIX
Calculate the rank of
-1 1
A= 0 1
2 -2 2

Solution. Note that columns 1 and 3 are identical. Likewise the third row can be
formed by multiplying the first row by 2. Equation (A.22) is

1 -1 1
d|1|+dy O0|+ds1]=0
-2 2
One solution of (A.22) is d; = 1, d, = 0, d; = —1. Because a nontrivial (nonzero)

solution exists, then the matrix has one dependent and two independent columns, and
the rank = 2 (here 2). The determinant is zero, as can be readily verified using Equa-
tion (A.12).

In general for a matrix, the determination of linear independence cannot be per-
formed by inspection. For large matrices, rather than solving the set of linear equa-
tions (A.22), elementary row or column operations can be used to demonstrate linear
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independence. These operations involve adding some multiple of one row to
another row, analogous to the types of algebraic operations (discussed later) that are
used to solve simultaneous equations. The value of the determinant of A is invari-
ant under these row (or column) operations. Implications with respect to linear
independence and the use of determinants for equation-solving are discussed in
Section A.4.

EXAMPLE A.6 USE OF ROW OPERATIONS

Use row operations to determine if the matrix

1 0
A=1|1 2
3 4

N N =

is nonsingular, that is, composed of linearly independent columns.

Solution. First create zeros in the a,, and a5, position by multiplication or addition.
The necessary transformations are

1. Multiply row 1 by (-1); add to row 2

1 0 1
C=]|0 2 1
3 4 5
2. Multiply row 1 by (-3); add to row 3
1 0 1
CG=]0 2 1
0 4 2
Next use row 2 to create a zero in a,.
3. Multiply row 2 by (-2); add to row 3
1 0 1
C3 =10 2 1
0 0 O

Note that neither rows 1 or 2 are changed in this step. The appearance of a row with
all zero elements indicates that the matrix is singular (det [A] = 0).

Row operations can also be used to obtain an inverse matrix. Suppose we aug-
ment A with an identity matrix I of the same dimension; then multiply the aug-
mented matrix by A~

ATAT] = [T}A™1] (A23)

If A is transformed by row operations to obtain I, A~! occurs in the augmented part
of the matrix.
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EXAMPLE A.7 CALCULATION OF INVERSE MATRIX

Verify the results of Example A.3 using row operations.

Solution. Form the augmented matrix

1 4 1 0
C°‘[2101J

Successive transformations would be

1 4 10 1 41 0
= C:

G [o -7 -2 1} 2 [o 1 2 —%J
1o 4
C3[ol%—%

Therefore the inverse of A is

~UN -
= s
| I

A.4 SOLUTION OF LINEAR EQUATIONS

The need to solve sets of linear equations arises in many optimization applications.
Consider Equation (A.20), where A is an n X n matrix corresponding to the coef-
ficients in n equations in # unknowns. Because x = A7'b, then from (A.17) |A]
must be nonzero; A must have rank », that is, no linearly dependent rows or
columns exist, for a unique solution. Let us illustrate two cases where |A] = 0:

26+ 2x,=6

x1+.X2=5

2 2] XI:l _ 6:’

1 1] %] |5
It is obvious that only one linearly independent column or row exists, and |A| is
zero. Note that there is no solution to this set of equations. As a second case, sup-

or

6
pose b were changed to [ 3] - Here an infinite number of solutions can be obtained,

but no unique solution exists.
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Degenerate cases such as those above are not frequently encountered. More

often, |A| # 0. Let
2 1 1
A= [1 2j| and b = [0}

2, + x, = 1 (A.24a)
X, + 2%, =0 » (A.24b)

or

By algebraic substitution, x; and x, can be found. Multiply Equation (A.24a) by
(-0.5) and add this equation to (A.24b),

2%, +x =1 (A.24c)
0+ 1.5x, = —0.5 (A.244d)

Solve (A.24d) for x, = —0.333. This result can be substituted into (A.24c) to obtain
x; = 0.667.

The steps employed in Equations (A.24) are equivalent to row operations. The
use of row operations to simplify linear algebraic equations is the basis for Gauss-
ian elimination (Golub and Van Loan, 1996). Gaussian elimination transforms the
original matrix into upper triangular form, that is, all components of the matrix
below the main diagonal are zero. Let us illustrate the process by solving a set of
three equations in three unknowns for X.

EXAMPLE A.8 SOLUTION OF SIMULTANEOUS LINEAR
EQUATIONS

Solve for x given A and b.

10 1 1 x
A=1|1 2 2 b=10 X = | X
2 1 1 2 X3

Solution. First a composite matrix from A and b is constructed:

|

Carry out row operations, keeping the first row intact; successive matrices are

1 0 1 1 10 1 1
c,={0 2 1 -1 c,=i0 2 1 -1
2 1 1 2 01 -1 0

N O =

1 0 1
C,=[Aib]=|1 2 2
2 1 1
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Next, with the second row in C, kept intact, the upper triangular form is achieved by
operating on the third row:

1 0 11
C,=|0 2 1 -1
0 0 —-15 05

C, can now be converted to the form of algebraic equations:

X1 + X3 = 1
2x2 + X3 = —1
—15% = 05

which can be solved stage by stage starting with the last row to get x; = —0.333,
x, = —0.333, x; = 1.333.

Gaussian elimination is a very efficient method for solving » equations in n
unknowns, and this algorithm is readily available in many software packages. For
solution of linear equations, this method is preferred computationally over the use
of the matrix inverse. For hand calculations, Cramer’s rule is also popular.

The determinant of A is unchanged by the row operations used in Gaussian
elimination. Take the first three columns of C; above. The determinant is simply
the product of the diagonal terms. If none of the diagonal terms are zero when the
matrix is reformulated as upper triangular, then |A| # O and a solution exists. If
|A| = 0, there is no solution to the original set of equations.

A set of nonlinear equations can be solved by combining a Taylor series lin-
earization with the linear equation-solving approach discussed above. For solving
a single nonlinear equation, 4(x) = 0, Newton’s method applied to a function of a
single variable is the well-known iterative procedure

h(x*)
k+1 F e ALKk — _
x = Ax (")) (A.25)

or
dx
where £ is the iteration number and Ax* is the correction to the previous value, x.

Similarly, a set of nonlinear equations, h(x) = 0, can be solved iteratively using
Newton’s method, by solving a set of linearized equations of the form Ax = b:

H

L (A) = —h)

- Ax* = —h(x¥) (A.26)

Xk



598 APPENDIX A: Mathematical Summary

Note that the Jacobian matrix dh/0x on the left-hand side of Equation (A.26) is
analogous to A in Equation (A.20), and Ax* is analogous to x. To compute the cor-
rection vector Ax, 8h/dx must be nonsingular. However, there is no guarantee even
then that Newton’s method will converge to an x that satisfies h(x) = 0.

In solving sets of simultaneous linear equations, the “condition” of the matrix
is quite important. If some elements are quite large and some are quite small (but
nonzero), numerical roundoff or truncation in a computer can have a significant
effect on accuracy of the solution. A type of matrix is referred to as “ill condi-
tioned” if it is nearly singular (equivalent to the scalar division by 0). A common
measure of the degree of ill conditioning is the condition number, namely the ratio
of the eigenvalues with largest (o) and smallest (o) modulus:

Condition number = (A27)

The bigger the ratio, the worse the conditioning; a value of 1.0 is best. The calcu-
lation of eigenvalues are discussed in the next section. In general, as the dimension
of the matrix increases, numerical accuracy of the elements is diminished. One
technique to solve ill-conditioned sets of equations that has some advantages in
speed and accuracy over Gaussian elimination is called “L-U decomposition”
(Dongarra et al., 1979; Stewart, 1998), in which the original matrix is decomposed
into upper and lower triangular forms.

A.5 EIGENVALUES, EIGENVECTORS

An n X n matrix has n eigenvalues. We define an n-vector v, the eigenvector, which
is associated with an eigenvalue e such that

Av = ev (A.28)

Hence the product of the matrix A multiplying the eigenvector v is the same as the
product obtained by multiplying the vector v by the scalar eigenvalue e. One
eigenvector exists for each of the # eigenvalues. Eigenvalues and eigenvectors pro-
vide unambiguous information about the nature of functions used in optimization.
If all eigenvalues of A are positive, then A is positive-definite. If all ¢; < 0, then
A is negative-definite. See Chapter 4 for a more complete discussion of definite-
ness and how it relates to convexity and concavity.

If we rearrange Equation (A.28) (note that the identity matrix must be intro-
duced to maintain conformable matrices),

(A—el)v=0 (A.29)

(A - el) in Equation (A.29) has the unknown variable e substracted from each diag-
onal element of A. Equation (A.29) is a set of linear algebraic equations where v is
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the unknown vector. However, because the right-hand side of (A.29) is zero, either
v = 0 (the trivial solution), or a nonunique solution exists. For example in

2V1 + 2V2 =0
V1 + Vy = 0
then det [A] = 0, and the solution is nonunique, that is, v; = — v,. The equations

are redundant. However, if one of the coefficients of v, or v, in Equation (A.29)
changes, then the only solution is v; = v, = 0 (the trivial solution).

The determinant of (A — eI) must be zero for a nontrivial solution (v # 0) to
exist. Let us illustrate this idea with a (2 X 2) matrix:

ST B S

1 - 2
det[ 26 l_e]=(1—e)2——4=e2—2e—3=0 (A.30)

Equation (A.30) determines values of e which yield a nontrivial solution. Factoring
(A.30)

(e—3)e+1)=0 e=3-1
Therefore, the eigenvalues are 3 and — 1. Note that for e = 3,

R

A—el=
¢ [2 )

and fore = —1,

2 2
A—el—{2 2}

both of which are singular matrices.
For each eigenvalue there exists a corresponding eigenvector. For e; = 3, Equa-

tion (A.29) becomes
(1 — 3) 2 vll _
2 1=3)||va|

_2V11 + 2V12 = 0
2V11 - 2V12 =0

Note that these equations are equivalent and cannot be solved uniquely; the solu-
tion to both equations is v;; = v,. Thus, the eigenvector has direction but not
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length. The direction of the eigenvector can be specified by choosing v;; and cal-
culating v,,. For example, let v;; = 1. Then

i

The magnitude of v, cannot be determined uniquely. Similarly, for e, = — 1,

we ]
21

is a solution of (A.29).

For a general n X n matrix, an nth-order polynomial results from solving det
(A - eI) = 0. This polynomial will have n roots, and some of the roots may be
imaginary numbers. A computer program can be used to generate the polynomial
and factor it using a root-finding technique, such as Newton’s method. However,
more efficient iterative techniques can be found in computer software to calculate
both ¢; and v; (Dongarra et al., 1979).

Principal minors

In Chapter 4 we discuss the definitions of convexity and concavity in terms of
eigenvalues; an equivalent definition using determinants of principal minors is also
provided. A principal minor of A of order k is a submatrix found by deleting any
n — k columns (and their corresponding rows) from the matrix. The leading prin-
cipal minor of order k is found by deleting the last » — k columns and rows. In
Example A.2, the leading principal minor (order 1) is 1; the leading principal minor

1 2
(order 2) is [2 1] , and for order 3 the minor is the 3 X 3 matrix itself.
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PROBLEMS

Al

A2

A3

A4

For

Find

(a) AB and BA (compare)

(b) A’B

A+ B

dDA-B

(e) det A, det B

() Adj A, Adj B

() A™1, B~ (verify the answer)

Solve Ax = b for x, where
1 2 3 1
A=1|3 2 1 b=1}2
1 0 1 1

Use
(2) Gaussian elimination and demonstrate that A is nonsingular. Check to see that the
determinant does not change after each row operation.
() Usex = A~ 1pb.
(¢) Use Cramer’s rule.
Suppose
2 = 3x1 + X3
Zp =Xt Xyt x5 z = Ax
I3 = 2x2 + X3

Find equations for x;, x,, and x, in terms of z;, z,, z;. Use an algebraic method first;
check the result using A~ L.

For
1 1 1 0 0
x,=|1 X, =10 A=|0 2 O
2 2 0 0 4

find the magnitude (norm) of each vector.

What is x7%,? x,x17 xTAx,?
Find a vector X, that is orthogonal to x,(x7x; = 0). Are X, X,, and x; linearly inde-
pendent?
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APPENDIX A: Mathematical Summary

For
1 1 2
A=|-1 0 1
-2 =3 1

calculate det A using expansion by minors of the second row. Repeat with the third
column.

Calculate the eigenvalues and eigenvectors of {(1) i] Repeat for

2 0
0 3
0 0

N OO

Show that for a 2 X 2 symmetrical matrix, the eigenvalues must be real (do not con-
tain imaginary components). Develop a 2 X 2 nonsymmetrical matrix which has com-
plex eigenvalues.

A technique called LU decomposition can be used to solve sets of linear algebraic
equations. L and U are lower and upper triangular matrices, respectively. A lower tri-
angular matrix has zeros above the main diagonal; an upper triangular matrix has zeros
below the main diagonal. Any matrix A can be formed by the product of LU.

(a) For

1 1 0
A=12 3 1
1 0 1
find some L and U that satisfy LU = A.
(b) fAx =b,LUx =borUx =L7 b =b.
Let
1
b=|1
2

Calculate L™! and b. Then solve for x using substitution from the upper triangular
matrix U.

You are to solve the two nonlinear equations,
2+x(=38
X1Xo = 4

using the Newton—Raphson method. Suggested starting points are (0, 1) and (4, 4).



