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84 PART I: Problem Formulation

THE FORMULATION OF objective functions is one of the crucial steps in the appli-
cation of optimization to a practical problem. As discussed in Chapter 1, you must
be able to translate a verbal statement or concept of the desired objective into math-
ematical terms. In the chemical industries, the objective function often is expressed
in units of currency (e.g., U.S. dollars) because the goal of the enterprise is to min-
imize costs or maximize profits subject to a variety of constraints. In other cases the
problem to be solved is the maximization of the yield of a component in a reactor,
or minimization of the use of utilities in a heat exchanger network, or minimization
of the volume of a packed column, or minimizing the differences between a model
and some data, and so on. Keep in mind that when formulating the mathematical
statement of the objective, functions that are more complex or more nonlinear are
more difficult to solve in optimization. Fortunately, modern optimization software
has improved to the point that problems involving many highly nonlinear functions
can be solved.

Although some problems involving multiple objective functions cannot be
reduced to a single function with common units (e.g., minimize cost while simul-
taneously maximizing safety), in this book we will focus solely on scalar objec-
tive functions. Refer to Hurvich and Tsai (1993), Kamimura (1997), Rusnak et al.
(1993), or Steur (1986) for treatment of multiple objective functions. You can, of
course, combine two or more objective functions by trade-off, that is, by suitable
weighting (refer to Chapter 8). Suppose you want to maintain the quality of a
product in terms of two of its properties. One property is the deviation of the vari-
able y; (i designates the sample number) from the setpoint for the variable, y,,. The
other property is the variability of y; from its mean y (which during a transi-
tion may not be equal to y,,). If you want to simultaneously use both criteria, you
can minimize f’

2 2
f=w E[ys,, - y,} + WZZ[yi - >] 3.1

where the w; are weighting factors to be selected by engineering judgment. From
this viewpoint, you can also view each term in the summations as being weighted
equally.

This chapter includes a discussion of how to formulate objective functions
involved in economic analysis, an explanation of the important concept of the
time value of money, and an examination of the various ways of carrying out a
profitability analysis. In Appendix B we cover, in more detail, ways of estimat-
ing the capital and operating costs in the process industries, components that are
included in the objective function. For examples of objective functions other than
economic ones, refer to the applications of optimization in Chapters 11 to 16.

3.1 ECONOMIC OBJECTIVE FUNCTIONS

The ability to understand and apply the concepts of cost analysis, profitability
analysis, budgets, income-and-expense statements, and balance sheets are key
skills that may be valuable. This section treats two major components of economic
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objective functions: capital costs and operating costs. Economic decisions are made
at various levels of detail. The more detail involved, the greater the expense of
preparing an economic study. In engineering practice you may need to prepare pre-
liminary cost estimates for projects ranging from a small piece of equipment or a
new product to a major plant retrofit or design.

To introduce the involvement of these two types of costs in an objective func-
tion, we consider three simple examples: The first involves only operating costs and
income, the second involves only capital costs, and the third involves both.

EXAMPLE 3.1 OPERATING PROFITS AS THE OBJECTIVE
FUNCTION

Let us return to the chemical plant of Example 2.10 with three products (E, F, G) and
three raw materials (4, B, C) in limited supply. Each of the three products is produced
in a separate process (1, 2, 3); Figure E3.1 illustrates the process.

Process data
Process 1: A + B—FE

Process 2: A + B—F
Process 3:34A + 2B+ C—>G

Maximum
Raw available Cost
material (kg/day) (¢/kg)

A 40,000 1.5
B 30,000 2.0
C 25,000 2.5
A X1
X11
¥ 1 S F
2 xg
h.
X3

X12 S xg

X5

X6

P 3 - > G
c — T x10
FIGURE E3.1

Flow diagram for a multiproduct plant.



86 PART 1: Problem Formulation

Reactant Processing Selling price
requirements cost (product) (product)
Process Product (kg/kg product) (¢/kg) (¢/kg)
1 E 2A,3B 1.5 4.0
F 2A,iB 0.5 3.3
3 G 1A,iB,1C 1.0 3.8

(mass is conserved)

Formulate the objective function to maximize the total operating profit per day in the
units of $/day.

Solution The notation for the mass flow rates of reactants and products is the same
as in Example 2.10.

The income in dollars per day from the plant is found from the selling prices
(0.04E + 0.033F + 0.038G). The operating costs in dollars per day include

Raw material costs: 0.0154 + 0.02B + 0.025C

Processing costs: 0.015E + 0.005F + 0.01G

Total costs in dollars per day = 0.0154 + 0.02B + 0.025C + 0.015E
+ 0.005F + 0.01G

The daily profit is found by subtracting daily operating costs from the daily income:
f(x) = 0.025E + 0.028F + 0.028G — 0.0154 — 0.02B — 0.025C

= 0.025x5 + 0.028x, + 0.028x,5 — 0.015x,, — 0.02x,, — 0.025x,

Note that the six variables in the objective function are constrained through material
balances, namely

x1; = 0.667xg + 0.667x5 + 0.5x
X3 = 0.333xg + 0.333x9 + 0.167x,
x7; = 0.333x,
Also
0 = x;; = 40,000
0 = x;, = 30,000
0 = x; < 25,000
The optimization problem in this example comprises a linear objective function and

linear constraints, hence linear programming is the best technique for solving it (refer
to Chapter 7).
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The next example treats a case in which only capital costs are to be optimized.

EXAMPLE 3.2 CAPITAL COSTS AS THE OBJECTIVE
FUNCTION

Suppose you wanted to find the configuration that minimizes the capital costs of a
cylindrical pressure vessel. To select the best dimensions (length L and diameter D) of
the vessel, formulate a suitable objective function for the capital costs and find the opti-
mal (L/D) that minimizes the cost function. Let the tank volume be V, which is fixed.
Compare your result with the design rule-of-thumb used in practice, (L/D)*™ = 3.0.

Solution Let us begin with a simplified geometry for the tank based on the follow-
ing assumptions:

1. Both ends are closed and flat.

2. The vessel walls (sides and ends) are of constant thickness ¢ with density p, and
the wall thickness is not a function of pressure.

3. The cost of fabrication and material is the same for both the sides and ends, and is
S (dollars per unit weight).

4. There is no wasted material during fabrication due to the available width of metal
plate.

The surface area of the tank using these assumptions is equal to

D2 2
2("—) +apL =2 4 apL (@)
4 2
(ends)  (cylinder)

From assumptions 2 and 3, you might set up several different objective functions:

D2
fi= WT + wDL (units of area) )
aD? . .
A=p - +a@DL |-t (units of weight) (¢
D
=S-p- (% + WDL) -t (units of cost in dollars) ()

Note that all of these objective functions differ from one another only by a multi-
plicative constant; this constant has no effect on the values of the independent vari-
ables at the optimum. For simplicity, we therefore use f; to determine the optimal val-
ues of D and L. Implicit in the problem statement is that a relation exists between
volume and length, namely the constraint

_ wD?

\%
4

-L (e)

Hence, the problem has only one independent variable.
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Next use (e) to remove L from () to obtain the objective function
wD? 4V

+ —_—
2 D

Jo= N
Differentiation of f; with respect to D for constant V, equating the derivative to zero,
and solving the resulting equation gives

1/3
b~ (%] ®

ko

This result implies that f; ~ V*3, a relationship close to the classical “six-tenths” rule
used in cost estimating. From (e), L°® = (4V/ar)13; this yields a rather surprising

result, namely
L opt
— =1 h
(5) ®

The (L/D)°Pratio is significantly different from the rule of thumb stated earlier in the
example, namely, L/D = 3; this difference must be due to the assumptions (perhaps
erroneous) regarding vessel geometry and fabrication costs.

Brummerstedt (1944) and Happel and Jordan (1975) discussed a somewhat more
realistic formulation of the problem of optimizing a vessel size, making the following
modifications in the original assumptions:

1. The ends of the vessel are 2:1 ellipsoidal heads, with an area for the two ends of
2(1.16D% = 2.32D2,

2. The cost of fabrication for the ends is higher than the sides; Happel and Jordan
suggested a factor of 1.5.

3. The thickness ¢ is a function of the vessel diameter, allowable steel stress, pressure
rating of the vessel, and a corrosion allowance. For example, a design pressure of
250 psi and a corrosion allowance of § in. give the following formula for # in inches
(in which D is expressed in feet):

t = 0.0108D + 0.125 (i)

The three preceding assumptions require that the objective function be expressed in
dollars since area and weight are no longer directly proportional to cost

fs = p[mDLS + (1.58)(2.32D%) ]t )

The unit conversion of 7 from inches to feet does not affect the optimum (L/D), nor
do the values of p and S, which are multiplicative constants. The modified objective
function, substituting Equation (i) in Equation (j), is therefore

fs = 0.0339D2L + 0.435D* + 0.3927DL + 0.0376D? (9]
The volume constraint is also different from the one previously used because of the
dished heads:
wD? D
V= L+— !
3 < 3 ) 0

Equation (/) can be solved for L and substituted into Equation (k). However, No ana-
Iytical solution for D° by direct differentiation of the objective function is possible
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now because the expression for f;, when L is eliminated, leads to a complicated poly-
nomial equation for the objective function:

fr = 0.0432V + 0.5000% + 0.3041D% + 0.0263D° (m)

When £, is differentiated, a fourth-order polynomial in D results; no simple analytical
solution is possible to obtain the optimum value of D. A numerical search is therefore
better for obtaining D°P* and should be based on f; (rather than examining df;/dD =
0). However, such a search will need to be performed for different values of V and the
design pressure, parameters which are embedded in Equation (i). Recall that Equa-
tions (i) and (m) are based on a design pressure of 250 psi. Happel and Jordan (1975)
presented the following solution for (L/D)°P:

TABLE E3.2
Optimum (L/D)

Design pressure (psi)
Capacity (gal) 100 250 400

2,500 1.7 24 29
25,000 22 29 43

In Chapter 5 you will learn how to obtain such a solution. Note that for small
capacities and low pressures, the optimum L/D approaches the ideal case; examine
Equation (%) considered earlier. It is clear from Table E3.2 that the rule of thumb that
(L/D)°®* = 3 can be in error by as much as 50 percent from the actnal optimum.
Also, the optimum does not take into account materials wasted during fabrication, a
factor that could change the answer.

Next we consider an example in which both operating costs and capital
costs are included in the objective function. The solution of this example requires
that the two types of costs be put on some common basis, namely, dollars per year.

EXAMPLE 3.3 OPTIMUM THICKNESS OF INSULATION

In specifying the insulation thickness for a cylindrical vessel or pipe, it is necessary
to consider both the costs of the insulation and the value of the energy saved by adding
the insulation. In this example we determine the optimum thickness of insulation for
a large pipe that contains a hot liquid. The insulation is added to reduce heat losses
from the pipe. Next we develop an analytical expression for insulation thickness
based on a mathematical model.

The rate of heat loss from a large insulated cylinder (see Figure E3.3), for which
the insulation thickness is much smaller than the cylinder diameter and the inside heat
transfer coefficient is very large, can be approximated by the formula

AAT

Q=k+ n,

(@
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Insulation of
thickness x

Hqt Air
fluid

Q (heat loss)

AT = T (hot fluid) — T (air)

FIGURE E3.3
Heat loss from an insulated pipe

where AT = average temperature difference between pipe fluid and ambient sur-
roundings, K
A = surface area of pipe, m?
x = thickness of insulation, m
h, = outside convective heat transfer coeffient, kJ/(h)(m?)(K)
k = thermal conductivity of insulation, kJ/(h)(m)(K)
QO = heat loss, kJ/h

All of the parameters on the right hand side of Equation (a) are fixed values except for
x, the variable to be optimized. Assume the cost of installed insulation per unit area can
be represented by the relation C;; + C,x, where C; and C, are constants (C, = fixed
installation cost and C; = incremental cost per foot of thickness). The insulation has a
lifetime of 5 years and must be replaced at that time. The funds to purchase and install
the insulation can be borrowed from a bank and paid back in five annual installments.
Let r be the fraction of the installed cost to be paid each year to the bank. The value of
r selected depends on the interest rate of the funds borrowed and will be explained in
Section 3.2.

Let the value of the heat lost from the pipe be H, (§/10° kI). Let ¥ be the num-
ber of hours per year of operation. The problem is to

1. Formulate an objective function to maximize the savings in operating cost, savings
expressed as the difference between the value of the heat conserved less the annu-
alized cost of the insulation.

2. Obtain an analytical solution for x*, the optimum.

Solution If operating costs are to be stated in terms of dollars per year, then the cap-
ital costs must be stated in the same units. Because the funds required for the insula-
tion are to be paid back in equal installments over a period of 5 years, the payment
per year is /(Cy + C;x)A. The energy savings due to insulation can be calculated from
the difference between Q(x = 0) = @,, and Q:

ATA

QO_Q=hcATA_m (b)
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The objective function to be maximized is the present value of heat conserved in dol-
lars less the annualized capital cost (also in dollars):

r= - o2) r(:h ) m(SE )L e

- (Cy + Cx)A(dollars) (©

Substitute Equation (b) into (c), differentiate f with respect to x, and solve for the opti-

mum (df/dx = O)
10 kCli hc

Examine how x* varies with the different parameters in (d), and confirm that the trends
are physically meaningful. Note that the heat transfer area A does not appear in Equa-
tion (d). Why? Could you formulate f as a cost minimization problem, that is, the sum
of the value of heat lost plus insulation cost? Does it change the result for x*? How do
you use this result to select the correct commercial insulation size (see Example 1.1)?

Appendix B explains ways of estimating the capital and operating costs, leading to
the coefficients in economic objective functions.

3.2 THE TIME VALUE OF MONEY IN OBJECTIVE FUNCTIONS

So far we have explained how to estimate capital and operating costs. In Example 3.3,
we formulated an objective function for economic evaluation and discovered that
although the revenues and operating costs occur in the future, most capital costs are
incurred at the beginning of a project. How can these two classes of costs be evalu-
ated fairly? The economic analysis of projects that incur income and expense over
time should include the concept of the time value of money. This concept means that
a unit of money (dollar, yen, euro, etc.) on hand now is worth more than the same unit
of money in the future. Why? Because $1000 invested today can earn additional dol-
lars; in other words, the value of $1000 received in the future will be less than the
present value of $1000.

For an example of the kinds of decisions that involve the time value of money,
examine the advertisement in Figure 3.1. For which option do you receive the most
value? Answers to this and similar questions sometimes may be quickly resolved
using a calculator or computer without much thought. To understand the underly-
ing assumptions and concepts behind the calculations, however, you need to
account for cash flows in and out using the investment time line diagram for a proj-
ect. Look at Figure 3.2.
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You Decide Which Option You Prefer If You Are The
Winner Of The Sweepstakes:

Option 1 Option 2 Option 3
OR OR
$2,000,000 NOW. $1,000,000 NOW. $167,000 a year
Payable immediately. PLUS $137,932 a year for 30 years.
for 29 years.

Tell us your choice. Read the instructions on the reverse to learn
how you can activate your Grand Prize Option.

FIGURE 3.1
Options for potential sweepstakes winners. Which option provides the optimal value?

FIGURE 3.2
The time line with divisions
corresponding to 6 time periods.

Money paid out

Money received

FIGURE 3.3
Representation of cash received and disbursed.

Figure 3.3 depicts money received (or income) with vertical arrows pointing
upward; money paid out (or expenses) is depicted by vertical arrows pointing
downward. With the aid of Figure 3.3 you can represent almost any complicated
financial plan for a project. For example, suppose you deposit $1000 now (the pres-
ent value P) in a bank savings account that pays 5.00 percent annual interest com-
pounded monthly, and in addition you plan to deposit $100 per month at the end of
each month for the next year. What will the future value F of your investments be
at the end of the year? Figure 3.4 outlines the arrangement on the time line.

Note that cash flows corresponding to the accrual of interest are not represented
by arrows in Figure 3.4. The interest rate per month is 0.4167, not 5.00 percent (the
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F=2
5
=5 _04167
12
0 1 2 10 11 12
PMT  PMT PMT PMT PMT
P $100  $100 $100  $100  $100
$1000
FIGURE 3.4

The transactions for the example placed on the time line.

RESSRTLL e

Construction  Start up Product Shut down  Salvage
manufactured

FIGURE 3.5
Cash flow transactions for a proposed plant placed on the time line.

annual interest rate). The number of compounding periods is n = 12. PMT is the
periodic payment. ‘

Figure 3.5 shows (using arrows only) some of the typical cash flows that might
occur from the start to the end of a proposed plant. As the plant is built, the cash
flows are negative, as is most likely the case during startup. Once in operation, the
plant produces positive cash flows that diminish with time as markets change and
competitors start up. Finally, the plant is closed, and eventually the equipment sold
or scrapped.

It is easy to develop a general formula for investment growth for the case in
which fractional interest i is compounded once per period (month, year). (Note: On
most occasions we will cite i in percent, as is the common practice, even though in
problem calculations i is treated as a fraction.) If P is the original investment (pres-
ent value), then P(1 + i) is the amount accumulated after one compounding period,
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say 1 year. Using the same reasoning, the value of the investment in successive
years for discrete interest payments is

t=2years F, = P(1 + i)+ iP(1 + i) = P(1 + i) (3.2a)
t= 3years F3; = P(1 + i)*> + iP(1 + i)* = P(1 + i)} (3.2b)
t= nyears F, = P(1 + i)" (3.20)

The symbol F,, is called the future worth of the investment after year n, that is, the
future value of a current investment P based on a specific interest rate 7.

Equation (3.2c) can be rearranged to give present value in terms of future
value, that is, the present value of one future payment F at period n

Ey

p=——"=—
(1 + i)

(3.3)

For continuous compounding Equation (3.2¢) reduces to F, = Pe™. Refer to Gar-
rett, Chapt. 5 (1989) for the derivation of this formula.

The following is a list of some useful extensions of Equation (3.3). Note that
the factors involved in Equations (3.3)-(3.7) are F, P, i, and n, and given the values
of any three, you can calculate the fourth. Software such as Microsoft Excel and
hand calculators all contain programs to execute the calculations, many of which
must be iterative.

1. Present value of a series of payments F, (not necessarily equal) at periods k& =
1, ..., n in the future:

p=_ 0 B A B (G.4)
1 +id @+ Q3 a+ -t a4+ '

- i i__ (34a)
S+ '

2. Present value of a series of uniform future payments each of value 1 starting in
period m and ending with period n:

n 1 1+ 1 k [n+1 1 1
P=> N _<_l>( ) =7 v d ;
f=m (1 + l) I 1+ m l(l + l)m l(l + l)”

_ (1 + i)n—m+1 -1
B i1 + iy

Ifm=1,

(3.5)
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3. Future value of a series of (not necessarily equal) payments P,:
i e '
F= > P14+ iy *! (3.6)
k=1
4. Future value of a series of uniform future payments each of value 1 starting in
period m and ending in period n:
n 1 B (1 + i)n—m+1 _ 1

F= @1+

k=m (1 + l)k - i

3.7

If m = 1 so that k = 1, the equivalent of Equation (3.7) is
2 1 _ 1+ i)-1

F=(+ir
( l) k=1(1+i)k l

The right-hand side of Equation (3.5) is known as the “capital recovery factor” or
“present worth factor,” and the inverse of the right-hand side is known as the “repay-
ment multiplier” 7.

i1+ i)

U+ -1 (3-3)

7

Tables of the repayment multiplier are listed in handbooks and some textbooks.
Table 3.1 gives r over some limited ranges as a function of » and i.

TABLE 3.1
. ia + 0"
Values for the fraction r = —————
1+ -1
Interest rate
n i—>1 2 4 6 8 10 12 14 16 18

1 1010 1020 1.040 1.060 1080 1.100 1.120  1.140 1.160  1.180
2 0507 0515 0530 0545 0561 0576 0592 0.607  0.623  0.639
3 0340 0347 0360 0374 0388 0402 0416 0431 0.445  0.460
5 0206 0212 0.225 0237 0251 0264 0277 0.291 0305 0320
10 0106 0111 0.123 0.136 0149 0163 0177 0.192 0207 0.222
15 0.072 0.078 0.090 0.103 0117 0.132 0.147 0.163 0.179  0.196
20 0055 0061 0.074 0087 0.102 0117 0.134 0.151 0.169  0.187
25 0.045 0.051 0064 0078 0.094 0110 0128 0.145 0.164 0.183
30 0039 0.045 0058 0.073 0.089 0.106 0.124 0143 0162 0.181
40 0.030 0.037 0051 0067 0.084 0.102 0.121 0.141 0.160  0.180
50 0.026 0.032 0.047 0.063 0.082 0.101 0.120 0.140  0.160  0.180
75 0.019 0.026 0042 0061 0.080 0.100 0.120 0.140 0.160 0.180
100 0016 0.023 0.041 0060 008 0100 0.120 0.140 0.160 0.180

Key: n = number of years i = interest rate, %
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For uniform (equal) future payments each of value F, Equation (3.5) becomes
P = or r= — 3.9)

If the interest is calculated continuously, rather than periodically, the equivalent
of Equation (3.5) is (with the uniform payments of value F)

p=r__1 (3.10)
l(elll)

The inverse of the right-hand side of Equation (3.6) is known in economics as
the “sinking fund deposit factor,” that is, how much a borrower must periodically
deposit with a trustee to eventually pay off a loan.

Now let us look at some examples that illustrate the application of the concepts
and relations discussed earlier.

EXAMPLE 3.4 PAYING OFF A LOAN

You borrow $35,000 from a bank at 10.5% interest to purchase a multicone cyclone
rated at 50,000 ft*/min. If you make monthly payments of $325 (at the end of the
month), how many payments will be required to pay off the loan?

Solution The diagram on the time line in Figure E3.4a shows the cash flows.
Because the payments are uniform, we can use Equation (3.5), but use $325 per
month rather than $1.

iz 0.105
35,000 12
P
[ L | i i
PMT n=7?

-325

FIGURE E3.4a
35,000 325{(l * i) - 1] =0
’ ia+ i | @

Equation (a) can be solved for n (months). Use Equation (3.8) to simplify the procedure.
ii + 1)
1+ -1

@+ 1) = ——

r— i
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In [#/(r = 1)]

In(l + i) ®

In the example the data are
0.105

=, = 0008750 1 + i = 1.008750
325 o

r= 35000 = 0009286 r/(r — i) = 173333
285263 _ 47 4 month
0.008712 4 montns

The final payment (No. 328) will be less than $325.00, namely $143.11.

For income tax purposes, you can calculate the principal and interest in each pay-
ment. For example, at the end of the first month, the interest paid is $35,000 (0.008750)
= $306.25 and the principal paid is $325.00 — $306.25 = $18.75, so that the principal
balance for the next month’s interest calculation is $34,981.25. Iteration of this proce-
dure (best done on a computer) yields the “amortization schedule” for the loan.

You can carry out the calculations using the Microsoft Excel function key (found

by clicking on the “insert” button in the toolbar):

1. Click on the function key (f,) in the spreadsheet tool bar.
2. Choose financial function category (Figure E3.4b).
3. Select NPER.

' Paste Function

FIGURE E3.4b
Permission by Microsoft.
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FNPER =

Ratelu 105;17 -
Pt [-z25

000875

Pvlasmnal j -

Tvpe |

: = 3274392653
Returns the number of periods far an investrment based on pr:rio-:hc, rnnsrant pay rnents and ..
a conskant interest rate,
Py is the present value, or the Iump-sum A
paymerits is worth naw, o

? E?:l Formula result =327,4392653

FIGURE E3.4c
Permission by Microsoft.

X Hicrosoft Excel - loan

m@’ File Edft u'lew Insert Format Tools Data thdov-) ‘.I-_Iéip k

2RISRy sBRI|o- - |8&|= & 8l 3|0
inﬂria' fudlB rul==s=88 %, W Iug
B13 -
N A Feo 8 i C
1] Interest Payback Rate Number of Payments
2 0.00875 0.0092857 14
3.
4 -
5
FIGURE E3.4d

Permission by Microsoft.

4. Enter correct values for payment (—$325), rate (0.105/12), and present value
($35,000) (Figure E3.4c), and click on “OK” to get the screen shown in Figure
E3.4d. The solution appears in the “Number of Payments” cell (Figure E3.4e).

Note the many other options that can be called up by the function key.
You can also carry out the calculations in a spreadsheet format.

1. Enter in the value for the interest by typing “=0.105/12” in the interest cell.
2. Type “= —325/35000” in the payback rate cell.

3. In our example we type “In(b2/(b2-al))/In(l+al)” to calculate the number of
payments.
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Microsoft Excel - loan

Interest Payback Rate Humber of Payments
0.00875 0.009285714 327 4392653

FIGURE E3.4e
Permission by Microsoft.

EXAMPLE 3.5 SELECTION OF THE CHEAPEST ANODES

Ordinary anodes for an electrochemical process last 2 years and then have to be
replaced at a cost of $20,000. An alternative choice is to buy impregnated anodes that
last 6 years and cost $56,000 (see Figure E3.5). If the annual interest rate is 6 percent
per year, which alternative would be the cheapest?

Alternative A Alternative B
0 2 4 6 0 2 4 6
] | ] |
$20,000  $20,000 $20,000 $56,000
FIGURE E3.5

Solution We want to calculate the present value of each alternative. The present
value of alternative A using Equation (3.4) is

_ _ —-$2
_ $20,000 + $20,0002 + $ 0,0004 = —$53.642
1 (1 +0.06)* (1 + 0.06)

The present value of alternative B is —$56,000. Alternative A gives the largest (small-
est negative) present value.
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3.3 MEASURES OF PROFITABILITY

As mentioned previously, most often in the chemical process industries the objec-
tive function for potential projects is some measure of profitability. The projects
with highest priorities are the ones with the highest expected profitability; “ex-
pected” implies that probabilistic considerations must be taken into account (Palvia
and Gordon, 1992), such as calculating the upper and lower bounds of a prediction.
In this section, however, we are concerned with a deterministic approach for eval-
uating profitability, keeping in mind that different definitions of profitability can
lead to different priority rankings. Analyses are typically carried out in spreadsheets
to generate a variety of possibilities that allow the projects to be ranked as a prel-
ude to decision making.

Among the numerous measures of economic performance that have been pro-
posed, two of the simplest are
1. Payback period (PBP)—how long a project must operate to break even; ignores

the time value of money.

Cost of investment

PBP =
Cash flow per period

Example: For an investment of $20,000 with a return of $500 per week the PBP is

$20,000 _
$500 = 40 weeks

2.Return on investment (ROI)—a simple yield calculation without taking into
account the time value of money

_ Net income (after taxes) per year
ROI (in percent) = - X 100
Cost of investment

Example: Given the net return of $6000 (per year) for an initial investment of
$45,000, the ROI is

$6000
$45,000

X 100 = 13.3%/year

Two other measures of profitability that take into account the time value of
money are

1. Net present value (NPV).
2. Internal rate of return (IRR).

NPV takes into account the size and profitability of a project, but the IRR measures
only profitability. If a company has sufficient resources to consider several small
projects, given a prespecified amount of investment, a number of high-value IRRs
usually provide a higher overall NPV than a single large project.
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FIGURE 3.6

Cash flows used in calculating net
present value (NPV) and internal
rate of return (IRR) for a typical
capital investment project.

S I S T S

Figure 3.6 designates the cash flows that might occur for a cash investment in
a project. NPV is calculated by adding the initial investment (represented as a neg-
ative cash flow) to the present value of the anticipated future positive (and negative)
cash flows. Equation (3.4) showed how to calculate NPV.

o If the NPV is positive, the investment increases the company’s assets: The
investment is financially attractive.

* If the NPV is zero, the investment does not change the value of the company’s
assets: The investment is neutral.

» If the NPV is negative, the investment decreases the company’s assets: The
investment is not financially attractive.

The higher the NPV among alternative investments with the same capital outlay,
the more attractive the investment.

IRR is the rate of return (interest rate, discount rate) at which the future cash
flows (positive plus negative) would equal the initial cash outlay (a negative cash
flow). The value of the IRR relative to the company standards for internal rate of
return indicates the desirability of an investment:

« If the IRR is greater than the designated rate of return, the investment is finan-
cially attractive.

* If the IRR is equal to the designated rate of return, the investment is marginal.

» If the IRR is less than the designated rate of return, the investment is financially
unattractive.

Table 3.2 compares some of the features of PBP, NPV, and IRR.

Numerous other measures of profitability exist, and most companies (and
financial professionals) use more than one. Cut-off levels are placed on the meas-
ures of profitability so that proposals that fall below the cut-off level are not deemed
worthy of consideration. Those that fall above the cut-off level can be ranked in
order of profitability and examined in more detail.

In optimization you are interested in

1. Minimizing the payback period (PBP), or
2. Maximizing the net present value (NPV), or
3. Maximizing the internal rate of return (IRR)
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TABLE 3.2
Comparisons of various methods used in economic analyses
Payback period (PBP) Net present value (NPV) Internal rate of return (IRR)
Definition

Number of years for the net
after-tax income to recover the

Present worth of receipts less
the present worth of

IRR equals the interest rate i
such that the NPV of receipts

net investment without disbursements less NPV of disbursements
considering time value of equals zero
money

Advantages

Measure of fluidity of an
investment

Commonly used and well
understood

Works with all cash flow
patterns

Easy to compute

Gives correct ranking in most
project evaluations

Gives rate of return that is a
familiar measure and indicates
relative merits of a proposed
investment

Treats variable cash flows

Does not require reinvestment
rate assumption

Disadvantages

Does not measure profitability
Ignores life of assets

Does not properly consider the
time value of money and
distributed investments or cash
flows

Is not always possible to
specify a reinvestment rate for
capital recovered

Size of NPV ($) sometimes
fails to indicate relative
profitability

Implicitly assumes that capital
recovered can be reinvested at
the same rate

Requires trial-and-error
calculation

Can give multiple answers for
distributed investments

or optimizing another criterion of profitability. The decision variables are adjusted
to reach an extremum. In most of the problems and examples in the subsequent
chapters we have not included factors for the time value of money because we want
to focus on other details of optimization. Nevertheless, the addition of such factors

is quite straightforward.

EXAMPLE 3.6 CALCULATION OF THE OPTIMAL INSULATION

THICKNESS

In Example 3.3 we developed an objective function for determining the optimal thick-
ness of insulation. In that example the effect of the time value of money was intro-
duced as an arbitrary constant value of r, the repayment multiplier. In this example,
we treat the same problem, but in more detail. We want to determine the optimum
insulation thickness for a 20-cm pipe carrying a hot fluid at 260°C. Assume that cur-
vature of the pipe can be ignored and a constant ambient temperature of 27°C exists.
The following information applies:
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Values of energy saved

LT 1]

0 1 2 3 4 5

Insulation cost

FIGURE E3.6
Cash flows for insulating a pipe.

Y 8000 operating hours/year

H, 3.80/10° kJ fuel cost, 80% thermal efficiency (boiler)
k 0.80 kJ/(h)(m)(°C), insulation

(oN $34/cm insulation for 1 m? of area, cost of insulation
h, 32.7 kJ/(h)(m?)(°C), heat transfer coefficient (still air)

Life of the insulation = 5 years
Annual discount rate (i) = 14%
L 100 m, length of pipe

The insulation of thickness x can be purchased in increments of 1 cm (i.e., 1, 2, 3 cm,
etc.). Equation (b) in Example 3.3 still applies. The value of the energy saved each
year over 5 years is

1

Qo= Q= AT(DL) | he = (S (1my)

(Y)(H,) in§/year

and the cost of the insulation is
Cx(wDL) in$

at the beginning of the 5-year period. Figure E3.6 is the time line on which the cash
flows are placed.

The basis for the calculations will be L = 100m. Because the insulation comes in 1-
cm increments, let us calculate the net present value of insulating the pipe as a function
of the independent variable x; vary x for a series of 1-, 2-, 3-cm (etc.) thick increments to
get the respective internal rates of return, the payback period, and the return on invest-
ment. The latter two calculations are straightforward because of the assumption of five
even values for the fuel saved. The net present value and internal rates of return can be
compared for various thicknesses of insulation. The cost of the insulation is an initial neg-
ative cash flow, and a sum of five positive values represent the value of the heat saved.
For example, for 1 cm insulation the net present value is ( = 0.291 from Table 3.1)

$5281
0.291

P, = —$2135 + = $16,013
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A summary of the calculations is

Value Net Internal
Insulation  Insulation of fuel Payback Return on present rate of
thickness cost saved period investment value return
x (cm) % ($/year)  (years) (% per year) ¥ (%)
1 2,135 5,281 1.27 79 16,013 247
2 4,270 8,182 1.64 61 23,847 191
3 6,405 10,020 2.01 50 28,028 155
4 8,540 11,288 2.38 42 30,250 130
5 10,675 12,215 2.75 36 31,301 112
6 12,810 12,984 3.10 32 31,809 98
7 14,945 13,480 3.48 29 31,378 86

From Example 3.3, Equation E3.3(d) gives x = 6.4 cm as the optimal thickness cor-
responding to the net present value as the criterion for selection. Note that the optimal
thickness chosen depends on the criterion you select.

Additional examples of the use of PBP, NPV, and IRR can be found in
Appendix B. In Section B.5, we present a more detailed explanation of the vari-
ous components that constitute the income and expense values that must be used
in project evaluation.
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PROBLEMS

3.1 If you borrow $100,000 from a lending agency at 10 percent yearly interest and wish
to pay it back in 10 years in equal installments paid annually at the end of the year,
what will be the amount of each yearly payment? Compute the principal and interest
payments for each year.

3.2 Compare the present value of the two depreciation schedules listed below for i = 0.12
and n = 10 years. Depreciation is an expense and thus has a negative sign before each
value. The present value also have a negative sign.

Year (a) (b)
1 —1000 —800
2 —1000 ~1400
3 —1000 —1200
4 —1000 —1000
5 —1000 —1000
6 —1000 —1000
7 —1000 —900
8 —1000 —900
9 —1000 -900
10 —1000 —900

3.3 To provide for the college education of a child, what annual interest rate must you
obtain to have a current investment of $5000 grow to become $10,000 in 8 years if the
interest is compounded annually?

3.4 A company is considering a number of capital improvements. Among them is pur-
chasing a small pyrolysis unit that is estimated to earn $15,000 per year at the end of
each year for the next 5 years at which time the sellers agree to purchase the unit back
for $550,000. Ignore tax effects, risk, and so on, and determine the present value of the
investment based on an interest rate of 15.00% compounded annually. At the end of
year 2 there will be an expense of $25,000 to replace the unit combustion chamber.

3.5 One member of your staff suggests that if your department spends just $10,000 to
improve a process, it will yield cost savings of $3000, $5000, and $4000 over the next
3 years, respectively, for a total of $12,000. Your company policy is to have an internal
rate of return of at least 15% on process improvements. What is the NPV of this pro-
posed improvement?

3.6 You want to save for a cruise in the Caribbean. If you place in a savings account at 6%
interest $200 at the beginning of the first year, $350 at the beginning of the next year, and
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3.7

3.8

3.9
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$250 at the beginning of the third year, how much will you have available at the end of
the third year?

You open a savings account today (the middle of the month) with a $775 deposit. The
account pays 63% interest (annual value) compounded semimonthly. If you make
semimonthly deposits of $50 beginning next month, how long will it take for your
account to reach $4000?

Looking forward to retirement, you wish to accamulate $60,000 after 15 years by mak-
ing deposits in an account that pays 93% interest compounded semiannually. You open
the account with a deposit of $3200 and intend to make semiannual deposits, begin-
ning 6 months later, from your profit-sharing bonus paychecks. Calculate how much
these deposits should be.

What is the present value of the tax savings on the annual interest payments if the loan
payments consist of five equal monthly installments of principal and interest of $3600
on a loan of $120,000. The annual interest rate is 14.0%, and the tax rate is 40%.
(Assume the loan starts at the first of July so that only five payments are made during
the year on the first of each month starting August 1.)

3.10 The following advertisement appeared in the newspaper. Determine whether the state-

ment in the ad is true or false, and show by calculations or explanation why your answer
is correct.

A 15-year fixed-rate mortgage with annual payments saves you nearly 60
percent of the total interest costs over the life of the loan compared with a 30-
year fixed-rate mortgage.

3.11 You borrow $300,000 for 4 years at an interest rate of 10% per year. You plan to pay

in equal annual, end-of-year installments. Fill in the following table.

Balance due Principal Interest Total
at beginning payment, payment, payment,
Year of year, $

A WN =

3.12 Consideration is being given to two plans for supplying water to a plant. Plan A

requires a pipeline costing $160,000 with annual operation and unkeep costs of $2200,
and an estimated life of 30 years with no salvage. Plan B requires a flume costing
$34,000 with a life of 10 years, a salvage value of $5600, and annual operation and
upkeep of $4500 plus a ditch costing $58,000, with a life of 30 years and annual costs
for upkeep of $2500. Using an interest rate of 12 percent, compare the net present val-
ues of the two alternatives.

3.13 Cost estimators have provided reliable cost data as shown in the following table for the

chlorinators in the methyl chloride plant addition. Analysis of the data and recommen-
dations of the two alternatives are needed. Use present worth for i = 0.10 and i = 0.20.



CHAPTER 3: Formulation of the Objective Function
Chlorinators
Glass-lined Cast iron
Installed cost $24,000 $7200
Estimated useful life 10 years 4 years
Salvage value $4000 $800
Miscellaneous annual costs as percent of original cost 10 20

Maintenance costs

Glass-lined. $230 at the end of the second year, $560 at the end of the fifth year, and

$900 at the end of each year thereafter.

Cast iron. $730 each year.
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The product from the glass-lined chlorinator is essentially iron-free and is estimated to
yield a product quality premium of $1700 per year. Corpare the two alternatives for

a 10-year period. Assume the salvage value of $800 is valid at 10 years.

3.14 Three projects (4, B, C) all earn a total of $125,000 over a period of 5 years (after-tax
earnings, nondiscounted). For the cash-flow patterns shown in the table, predict by
inspection which project will have the largest rate of return. Why?

Cash flow, $10°
Year A B C
1 45 25 10
2 35 25 30
3 25 25 45
4 15 25 30
5 5 25 10

3.15 Suppose that an investment of $100,000 will earn after-tax profits of $10,000 per year
over 20 years. Due to uncertainties in forecasting, however, the projected after-tax
profits may be in error by +20 percent. Discuss how you would determine the sensi-
tivity of the rate of return to an error of this type. Would you expect the rate of return
to increase by 20 percent of its computed value for a 20-percent increase in annual

after-tax profits (i.e., to $12,000)?

3.16 The installed capital cost of a pump is $200/hp and the operating costs are 4¢/kWh.
For 8000 h/year of operation, an efficiency of 70 percent, and a cost of capital i = 0.10,
for n = 5 years, determine the relative importance of the capital versus operating costs.

3.17 The longer it takes to build a facility, the lower its rate of return. Formulate the ratio
of total investment / divided by annual cash flow C (profit after taxes plus deprecia-
tion) in terms of 1-, 2-, and 3-year construction periods if i = interest rate, and n = life

of facility (no salvage value).

3.18 A chemical valued at $0.94/Ib is currently being dried in a fluid-bed dryer that allows
0.1 percent of the 4-million Ib/year throughput to be carried out in the exhaust. An
engineer is considering installing a $10,000 cyclone that would recover the fines; extra
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pressure drop is no concern. What is the expected payback period for this investment?
Maintenance costs are estimated to be $300/year. The inflation rate is 8 percent, and
the interest rate 15 percent.

To reduce heat losses, the exterior flat wall of a furnace is to be insulated. The data pre-
sented to you are

Temperature inside the furnace at the wall 500°F (constant)

Air temperature outside wall Assume constant at 70°F
Heat transfer coefficients
Outside air film (%) 4 Btu/(h)(ft>)(°F)
Conductivity of insulation (k) 0.03 Btu/(hr)(ft)(°F)
Cost of insulation $0.75/(ft?) (per inch of thickness)
Values of energy saved $0.60/10° Btu
Hours of operation 8700/year
Interest rate 30% per year for capital costs

Note that the overall heat transfer coefficient U is related to % and k by
1 1 t

U n T @0

where ¢ is the thickness in inches of the insulation, and the heat transfer through the
wallis Q@ = UA (Tiymace — Lwan)» Where T is in °F. Ignore any effect of the uninsulated
part of the wall.

What is the minimum cost for the optimal thickness of the insulation? List specif-
ically the objective function, all the constraints, and the optimal value of z. Show each
step of the solution. Ignore the time value of money for this problem.

We want to optimize the heat transfer area of a steam generator. A hot oil stream from
a reactor needs to be cooled, providing a source of heat for steam production. As
shown in Figure P3.20, the hot oil enters the generator at 400°F and leaves at an
unspecified temperature T; the hot oil transfers heat to a saturated liquid water stream
at 250°F, yielding steam (30 psi, 250°F). The other operating conditions of the
exchanger are

U = 100 Btu/(h) (ft*)(°F) overall heat transfer coefficient

WoilCpy = 7.5 X 10* Btu/(°F)(h)

We ignore the cost of the energy of pumping and the cost of water and only consider
the investment cost of the heat transfer area. The heat exchanger cost is $25/ft? of heat

Water Steam
(250°F, —— (250°F,
saturated) Steam 30 psia)
generator
Oil(T) <«—— «<——— Hot oil
(400°F)
FIGURE P3.20

Steam generator flow diagram.



CHAPTER 3: Formulation of the Objective Function 109

transfer surface. You can expect a credit of $2/10° Btu for the steam produced. Assume
the exchanger will be in service 8000 h/year. Find the outlet temperature T, and heat
exchanger area A that maximize the profitability, as measured by (a) return on invest-
ment (ROI) and (b) net present value.

3.21 In Chemical Engineering (Jan. 1994, p. 103) the following explanation of
internal rate of return appeared:

Internal return rate. The internal return rate (IRR), also known as the dis-
counted cash flow return rate, is the iteratively calculated discounting rate
that would make the sum of the annual cash flows, discounted to the present,
equal to zero. As shown in Figure 2, the IRR for Project Chem-A is 38.3%/yr.
Note that this single fixed point represents the zero-profitability situation. It
does not vary with the cost of capital (discount rate), although the prof-
itability should increase as the cost of capital decreases. There is no way that
the IRR can be related to the profitability of a project at meaningful discount
rates because of the nonlinear nature of the discounting step.

What is correct and incorrect about this explanation? Be brief!

3.22 Refer to Problem 3.5. The same staff member asks if the internal rate of return on
the proposed project is close to 15%. Calculate the IRR.

3.23 The cost of a piece of equipment is $30,000. It is expected to yield a cash return per
month of $1000. What is the payback period?

3.24 After retrofitting an extruder, the net additional income after taxes is expected to be
$5000 per year. The remodeling cost was $50,000. What is the return on investment in
percent?

3.25 Your minimum acceptable rate of return (MARR) is 18%, the project life is 10 years,
and no alternatives have a salvage value. The following mutually exclusive alternatives
have been proposed. Rank them, and recommend the best alternative.

A B C D E

Capital investment, $ 38,000 50,000 55,000 60,000 70,000
Net annual earnings, $ 11,000 14,100 16,300 16,800 19,200
IRR, % 26.1 252 26.9 25.0 24.3

3.26 You have four choices of equipment (as shown in the following table) to solve a pol-
lution control problem. The choices are mutually exclusive and you must pick one.
Assuming a useful life of 10 years for each design, no market value, and a pretax min-
imum acceptable rate of return (MARR) of 15% per year, rank them and recommend

a choice.
Alternative D, D, D, D,
Capital investment, $1000 600 760 1,240 1,600
Annual expenses, $1000 780 728 630 574

P (present value), $1000 —$4,515 —$4,414 —$4,402 —$4,481
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3.27 A company invests $1,000,000 in a new control system for a plant. The estimated
annual reduction in cost is calculated to be $162,000 in each of the next 10 years. What
is the
(a) Return on investment (ROI)

(b) Internal rate of return (IRR)
Ignore income tax effects and depreciation to simplify the calculations.

3.28 The following table gives a comparison of costs for two types of heaters to supply heat
to an oil stream in a process plant at a rate of 73,500,000 Btu/h:

Oil convection Rotary air preheater
Heat input in 10 Btu/h 114.0 96.5
Thermal efficiency, % 64.5 76.1
Total fuel cost (at $1.33/per 10 Btu) for 1 year $1,261,000 $1,068,000
Power at $0.06/kWh for 1 year 48,185
Capital cost (installed), $ $1,888,000 $2,420,000

Assume that the plant in which this equipment is installed will operate 10 years, that
a tax rate of 34%/year is applicable, and that a charge of 10% of the capital cost per
year for depreciation will be employed over the entire 10-year period, that fixed
charges including maintenance incurred by installation of this equipment will amount
to 10%/year of the investment, and that a minimum acceptable return rate on invested
capital after taxes and depreciation is 15%. Determine which of the two alternative
installations should be selected, if any.

3.29 You are proposing to buy a new, improved reboiler for a distillation column that will
save energy. You estimate that the initial investment will be $140,000, annual savings
will be $25,000 per year, the useful life will be 12 years, and the salvage value at the
end of that time will be $40,000. You are ignoring taxes and inflation, and your pretax
constant dollar minimum acceptable rate of return (MARR) is 10% per year. Your boss
wants to see a sensitivity diagram showing the present worth as a function of £50%
changes in annual savings and the useful life.

(a) What is the present value P of your base case?

(b) You calculate the P of —50% annual savings to be —$42,084 and the P for +50%
annual savings to be $128,257. The P at —50% life is —$8,539. What is the P at
+50% life?

(c) Sketch the P sensitivity diagram for these two variables [P vs the change in the
base (in %)]. To which of the two variables is the decision most sensitive?
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OPTIMIZATION THEORY
AND METHODS

Part II DESCRIBES modern techniques of optimization and translates these con-
cepts into computational methods and algorithms. Because the literature on opti-
mization techniques is vast, we focus on methods that have proved effective for a
wide range of problems. Optimization methods have matured sufficiently during
the past 20 years so that fast and reliable methods are available to solve each impor-
tant class of problem.

Seven chapters make up Part II of this book, covering the following areas:

1. Mathematical concepts (Chapter 4)

2. One-dimensional search (Chapter 5)

3. Unconstrained multivariable optimization (Chapter 6)
4. Linear programming (Chapter 7)

5. Nonlinear programming (Chapter 8)

6. Optimization involving discrete variables (Chapter 9)
7. Global optimization (Chapter 10)

The topics are grouped so that unconstrained methods are presented first, followed
by constrained methods. The last two chapters in Part II deal with discontinuous
(integer) variables, a common category of problem in chemical engineering, but one
quite difficult to solve without great effort.

As optimization methods as well as computer hardware and software have
improved over the past two decades, the degree of difficulty of the problems that
can be solved has expanded significantly. Continued improvements in optimization
algorithms and computer technology should enable optimization of large-scale
nonlinear problems involving thousands of variables, both continuous and integer,
some of which may be stochastic in nature.






