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CONSTRAINTS IN OPTIMIZATION arise because a process must describe the physi-
cal bounds on the variables, empirical relations, and physical laws that apply to a
specific problem, as mentioned in Section 1.4. How to develop models that take
into account these constraints is the main focus of this chapter. Mathematical mod-
els are employed in all areas of science, engineering, and business to solve prob-
lems, design equipment, interpret data, and communicate information. Eykhoff
(1974) defined a mathematical model as “a representation of the essential aspects
of an existing system (or a system to be constructed) which presents knowledge of
that system in a usable form.” For the purpose of optimization, we shall be con-
cerned with developing quantitative expressions that will enable us to use mathe-
matics and computer calculations to extract useful information. To optimize a
process models may need to be developed for the objective function f, equality con-
straints g, and inequality constraints h.

Because a model is an abstraction, modeling allows us to avoid repetitive
experimentation and measurements. Bear in mind, however, that a model only imi-
tates reality and cannot incorporate all features of the real process being modeled.
In the development of a model, you must decide what factors are relevant and how
complex the model should be. For example, consider the following questions.

1. Should the process be modeled on a fundamental or empirical level, and what
level of effort (time, expenses, manpower) is required for either approach?

2. Can the process be described adequately using physical principles?

3. What is the desired accuracy of the model, and how does its accuracy influence
its ultimate use?

4. What measurements are available, and what data are available for model verifi-
cation?

5. Is the process actually composed of smaller, simpler subsystems that can be more
easily analyzed?

The answers to these questions depend on how the model is used. As the model of
the process becomes more complex, optimization usually becomes more difficult.

In this chapter we will discuss several factors that need to be considered when
constructing a process model. In addition, we will examine the use of optimization
in estimating the values of unknown coefficients in models to yield a compact and
reasonable representation of process data. Additional information can be found in
textbooks specializing in mathematical modeling. To illustrate the need to develop
models for optimization, consider the following example.

EXAMPLE 2.1 MODELING AND OPTIMIZING BLAST
FURNACE OPERATION

Optimizing the operation of the blast furnace is important in every large-scale steel mill.
A relatively large number of important variables (several of which cannot be measured)
interact in this process in a highly complex manner, numerous constraints must be taken
into account, and the age and efficiency of the plant significantly affect the optimum
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operating point (Deitz, 1997). Consequently, a detailed examination of this problem
demonstrates the considerations involved in mathematical modeling of a typical process.

The operation of a blast furnace is semicontinuous. The raw materials are iron
ore containing roughly 20 to 60 percent iron as oxides and a variety of other metallic
and nonmetallic oxides. These materials are combined with coke, which reacts to
form blast furnace gas. Limestone is a flux that helps separate the impurities from the
hot metal by influencing the pH. Apart from the blast furnace gas, which may serve
as a heating medium in other processes, the output of the furnace consists of molten
iron, which includes some impurities (notably carbon and phosphorus) that must be
removed in the steelmaking process, and slag, which contains most of the impurities
and is of little value. Operation of the blast furnace calls for determination of the
amount of each ore, a production rate, and a mode of operation that will maximize the
difference between the product value and the cost of producing the required quantity
and quality of molten iron. Figure E2.1 shows the flow of materials in the blast fur-
nace, which itself is part of a much larger mill. One ton of hot metal requires about
1.7 tons of iron-bearing materials, 0.5 to 0.65 tons of coke and other fuel, 0.25 tons
of fluxes, and 1.8 to 2.0 tons of air. In addition, for each ton of hot metal produced,
the process creates 0.2 to 0.4 tons of slag, 0.05 tons or less of flue dust, and 2.5 to 3.5
tons of blast furnace gases. The final product, hot metal, is about 93% iron, with other
trace ingredients, including sulfur, silicon, phosphorus, and manganese. The process
variables and conceptual models are identified in Figure E2.1 under the column
“Process Analysis,” which has categories for the objective function, equality con-
straints, and inequality constraints.

Objective function
To formulate the objective function, two categories of costs have to be considered:

1. Costs associated with the material flows (the input and output variables), such as
the costs of purchased materials.
2. Costs associated with the operations related to the process variables in the model.

The terms that make up the objective function (to be maximized) are shown in Figure
E.2.1. The profit of the blast furnace can be expressed as

8 6
f= Ecixi - Zcixi
i=7 i=1

Equality and inequality constraints

The next step in formulating the problem is to construct a mathematical model of the
process by considering the fundamental chemical and physical phenomena and phys-
ical limitations that influence the process behavior. For the case of the blast furnace,
typical features are

1. Iron ore: Ores of different grades are available in restricted quantities. Different
ores have varying percentages of iron and different types and amounts of impu-
rities. The proportion of each ore that occurs in the final hot metal is assumed
to be fixed by its composition. For example, the amount of fine ore must be lim-
ited because too much can disrupt the flow of gas through the furnace and limit
production.

2. Coke: The amount of coke that may be burned in any furnace is effectively limited
by the furnace design, and the hot metal temperature is controlled by the amount
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Process Process Analysis
Objective Function Components
Coke B — Limestone
Associated Costs and Revenues:
Blast Ore 1: x; material cost ¢q
Coke A > furnace | Ore 2: x, material cost ¢
gas Ore 3: x3 material cost ¢3
Ore 1 Cast iron scrap: x4 material cost ¢4
> Coke A: x5 material cost ¢
Coke B: xg material cg
Ore 2 Pig iron: x; sales price ¢7
Blast furnace gas: xg assigned value: cg
Ore 3 Constraints
Equalities
Material and Energy Balances:
Cast iron Metal (iron) balance
scrap Slag balance
Carbon balance
Gas balance
Elemental balances (O, H, S, Si, Al,
. Ca, Mg, P, Ti, K, Cu, Mo, Mn, etc.)
Air Energy balance
Slag «—! L Pig Inequalites
fron Process Limits:
Coke throughput
Hot metal production rate
Slag volume
Ore availability
Elements in slag
Elements in metal
Basicity
Sales limits

FIGURE E.2.1
Objective function components and types of constraints for a blast furnace.

3.

of coke (or carbon). The coke consumption rate can be based on empirical rela-
tionships developed through regression of furnace data.

Slag: For technical reasons, the level of impurities in the slag must be controlled.
There is an upper limit on the percentage of magnesium, upper and lower limits on
the percentage of silicon and aluminum, and close limits on the “basicity” ratio
(CaO + MgO)/(Si0O, + A1,05). The basicity ratio controls the viscosity and melt-
ing point of the slag, which in turn affect the hearth temperature and grade of iron
produced.
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The basicity ratio can be expressed in terms of the blast furnace feeds x; as follows:

WoiX; + 2w3l
WyiX; + EW&

|1M4> "M‘“

where w,, = weight fraction of CaO in feed i

wy; = weight fraction of MgO in feed i
w,; = weight fraction of SiO, in feed i
ws; = weight fraction of A1,0; in feed ¢

4. Phosphorus: All phosphorus in the raw material finds its way into the molten
metal. There is an upper limit on the phosphorus permitted, although precise quan-
tities are sometimes prescribed. In general, it is cheaper to produce higher phos-
phorus iron, but more expensive to refine it.

From these and other considerations you can prepare:

1. A set of input and output variables.

2. A set of steady-state input—output material and energy balances (equality constraints).

3. A set of explicit empirical relations (equality constraints).

4. A set of restrictions (inequality constraints) on the input and output variables as
indicated in Figure E.2.1.

2.1 CLASSIFICATION OF MODELS
Two general categories of models exist:

1. Those based on physical theory.
2. Those based on strictly empirical descriptions (so-called black box models).

Mathematical models based on physical and chemical laws (e.g., mass and energy
balances, thermodynamics, chemical reaction kinetics) are frequently employed in
optimization applications (refer to the examples in Chapters 11 through 16). These
models are conceptually attractive because a general model for any system size can
be developed even before the system is constructed. A detailed exposition of fun-
damental mathematical models in chemical engineering is beyond our scope here,
although we present numerous examples of physiochemical models throughout the
book, especially in Chapters 11 to 16. Empirical models, on the other hand, are
attractive when a physical model cannot be developed due to limited time or
resources. Input—output data are necessary in order to fit unknown coefficients in
either type of the model.
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FIGURE E2.2

ESP collection efficiency versus specific collection area for a linear
model n = 0.129A4 + 85.7 and a nonlinear model n = 100{1 —
[e~002644/(4 082 — 3.15 X 1075 A)]}.

EXAMPLE 2.2 MODELS OF AN ELECTROSTATIC
PRECIPITATOR

A coal combustion pilot plant is used to obtain efficiency data on the collection of par-
ticulate matter by an electrostatics precipitator (ESP). The ESP performance is varied
by changing the surface area of the collecting plates. Figure E2.2 shows the data col-
lected to estimate the coefficients in a model to represent efficiency 7 as a function of
the specific collection area A, measured as plate area/volumetric flow rate.

Two models of different complexity have been proposed to fit the performance data:

Model1: n=bA + b,

12 100[1 e }
Model 2: 7 = -
Y2 T YA

Model 1 is linear in the coefficients, and model 2 is nonlinear in the coefficients. The
mathematical structure of model 2 has a fundamental basis that takes into account the
physical characteristics of the particulate matter, including particle size and electrical
properties, but we do not have the space to derive the equation here.

‘Which model is better?
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Solution. The coefficients in the two models were fitted using MATLAB, yielding
the following results:

Model 1: b,
Modet 2: vy, = 0.0264 vy, = 4082 +y; = —0.00000315

0.129 b, = 85.7

As can be seen in Figure E2.2, model 2 provides a better fit than model 1 over the
range of areas A considered, but model 2 may present some difficulties when used as
a constraint inserted into an optimization code.

The electrostatic precipitator in Example 2.2 is typical of industrial processes;
the operation of most process equipment is so complicated that application of fun-
damental physical laws may not produce a suitable model. For example, thermo-
dynamic or chemical kinetics data may be required in such a model but may not be
available. On the other hand, although the development of black box models may
require less effort and the resulting models may be simpler in form, empirical mod-
els are usually only relevant for restricted ranges of operation and scale-up. Thus,
a model such as ESP model 1 might need to be completely reformulated for a dif-
ferent size range of particulate matter or for a different type of coal. You might have
to use a series of black box models to achieve suitable accuracy for different oper-
ating conditions. .

In addition to classifying models as theoretically based versus empirical, we
can generally group models according to the following types:

Linear versus nonlinear.

Steady state versus unsteady state.

Lumped parameter versus distributed parameter.
Continuous versus discrete variables.

Linear versus nonlinear

Linear models exhibit the important property of superposition; nonlinear ones
do not. Equations (and hence models) are linear if the dependent variables or their
derivatives appear only to the first power: otherwise they are nonlinear. In practice
the ability to use linear models is of great significance because they are an order of
magnitude easier to manipulate and solve than nonlinear ones.

To test for the linearity of a model, examine the equation(s) that represents the
process. If any one term is nonlinear, the model itself is nonlinear. By implication,
the process is nonlinear.

Examine models 1 and 2 for the electrostatic precipitator. Is model 1 linear in
A? Model 2? The superposition test in each case is: Does

Jax, + bx,) = al(x)) + bJ(x,) (2.1a)
and
J(kx) = kJ(x) (2.1b)
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where J = any operator contained in the model such as square, differentiation,

and so on.
k = a constant
x; and x, = variables

ESP model 1 is linear in A

but ESP model 2 is nonlinear because
e“’Yl(Al +4y) e—YxAl e")’lAz
)+ () )
Y2 T viA + Ay) Y2 t v, Yo T YA

Steady state versus unsteady state

Other synonyms for steady state are time-invariant, static, or stationary. These
terms refer to a process in which the values of the dependent variables remain con-
stant with respect to time. Unsteady state processes are also called nonsteady state,
transient, or dynamic and represent the situation when the process-dependent vari-
ables change with time. A typical example of an unsteady state process is the oper-
ation of a batch distillation column, which would exhibit a time-varying product
composition. A transient model reduces to a steady state model when 8/0t = 0.
Most optimization problems treated in this book are based on steady state models.
Optimization problems involving dynamic models usually pertain to “optimal con-
trol” or real-time optimization problems (see Chapter 16)

Distributed versus lumped parameters

Briefly, a lumped parameter representation means that spatial variations are
ignored and that the various properties and the state of the system can be consid-
ered homogeneous throughout the entire volume. A distributed parameter repre-
sentation, on the other hand, takes into account detailed variations in behavior from
point to point throughout the system. In Figure 2.1, compare these definitions for a
well-stirred reactor and a tubular reactor with axial flow. In the first case, we
assume that mixing is complete so no concentration or temperature gradient occurs
in the reactor, hence a lumped parameter mathematical model would be appropri-
ate. In contrast, the tubular reactor has concentration or temperature variations
along the axial direction and perhaps in the radial direction, hence a distributed
parameter model would be required. All real systems are, of course, distributed
because some variations of states occur throughout them. Because the spatial vari-
ations often are relatively small, they may be ignored, leading to a lumped approx-
imation. If both spatial and transient characteristics are to be included in a model,
a partial differential equation or a series of stages is required to describe the process
behavior.

It is not easy to determine whether lumping in a process model is a valid tech-
nique for representing the process. A good rule of thumb is that if the response is



CHAPTER 2: Developing Models for Optimization 45

essentially the same at all points in the process, then the model can be lumped as a
single unit. If the response shows significant instantaneous differences in any direc-
tion along the vessel, then the problem should be treated using an appropriate dif-
ferential equation or series of compartments. In an optimization problem it is desir-
able to simplify a distributed model by using an equivalent lumped parameter
system, although you must be careful to avoid masking the salient features of the
distributed element (hence building an inadequate model). In this text, we will
mainly consider optimization techniques applied to lumped systems.

Continuous versus discrete variables

Continuous variables can assume any value within an interval; discrete vari-
ables can take only distinct values. An example of a discrete variable is one that
assumes integer values only. Often in chemical engineering discrete variables and
continuous variables occur simultaneously in a problem. If you wish to optimize a
compressor system, for example, you must select the number of compressor stages
(an integer) in addition to the suction and production pressure of each stage (posi-
tive continuous variables). Optimization problems without discrete variables are far
easier to solve than those with even one discrete variable. Refer to Chapter 9 for
more information about the effect of discrete variables in optimization.

| Outlet
Feed —— ——
N /—\A_
‘%Q%_ 14%
| == ]
=P A/

\/\_/_

Observed flow
patterns

Stirred tank

Flow in Axial “—> Flow out
— disoorsion S —
Entering reactants Ispersion ¢

distributed uniformly
across the cross section

FIGURE 2.1
Flow patterns in a stirred tank (lumped parameter system) and a tubular
reactor (distributed parameter system).
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An engineer typically strives to treat discrete variables as continuous even at
the cost of achieving a suboptimal solution when the continuous variable is rounded
off. Consider the variation of the cost of insulation of various thickness as shown
in Figure E1.1. Although insulation is only available in 0.5-in. increments, contin-
uous approximation for the thickness can be used to facilitate the solution to this
optimization problem.

2.2 HOW TO BUILD A MODEL

For convenience of presentation, model building can be divided into four phases:
(1) problem definition and formulation, (2) preliminary and detailed analysis,
(3) evaluation, and (4) interpretation application. Keep in mind that model building
is an iterative procedure. Figure 2.2 summarizes the activities to be carried out,

Experience Formulate model objectives, Management
feali ’ evaluation criteria, costs ob'e%tives
v of development J
Select key variables,
physical principles to be applied,
test plan to be used lfrf?b,lf_':
efinition
Phase
Computer simulation, || Develop Observations,
software development model data
Design
Phase
Estimate
parameters
Evaluate and Evaluation
verify model Phase
Apply model

FIGURE 2.2
Major activities in model building prior to application.
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which are discussed in detail later on. The content of this section is quite limited in
scope; before actually embarking on a comprehensive model development pro-
gram, consult textbooks on modeling (see References).

Problem definition and formulation phase

In this phase the problem is defined and the important elements that pertain to
the problem and its solution are identified. The degree of accuracy needed in the
model and the model’s potential uses must be determined. To evaluate the structure
and complexity of the model, ascertain

1. The number of independent variables to be included in the model.

2. The number of independent equations required to describe the system (some-
times called the “order” of the model).

3. The number of unknown parameters in the model.

In the previous section we addressed some of these issues in the context of
physical versus empirical models. These issues are also intertwined with the ques-
tion of model verification: what kinds of data are available for determining that the
model is a valid description of the process? Model building is an iterative process,
as shown by the recycling of information in Figure 2.2.

Before carrying out the actual modeling, it is important to evaluate the eco-
nomic justification for (and benefits of) the modeling effort and the capability of
support staff for carrying out such a project. Primarily, determine that a success-
fully developed model will indeed help solve the optimization problem.

Design phase

The design phase includes specification of the information content, general
description of the programming logic and algorithms necessary to develop and
employ a useful model, formulation of the mathematical description of such a
model, and simulation of the model. First, define the input and output variables, and
determine what the “system” and the “environment™ are. Also, select the specific
mathematical representation(s) to be used in the model, as well as the assumptions
and limitations of the model resulting from its translation into computer code. Com-
puter implementation of the model requires that you verify the availability and ade-
quacy of computer hardware and software, specify computer input—output media,
develop program logic and flowsheets, and define program modules and their struc-
tural relationships. Use of existing subroutines and databases saves you time but can
complicate an optimization problem for the reasons explained in Chapter 15.

Evaluation phase

This phase is intended as a final check of the model as a whole. Testing of indi-
vidual model elements should be conducted during earlier phases. Evaluation of the
model is carried out according to the evaluation criteria and test plan established in
the problem definition phase. Next, carry out sensitivity testing of the model inputs
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and parameters, and determine if the apparent relationships are physically mean-
ingful. Use actual data in the model when possible. This step is also referred to as
diagnostic checking and may entail statistical analysis of the fitted parameters (Box
et al., 1978).

Model validation requires confirming logic, assumptions, and behavior. These
tasks involve comparison with historical input—output data, or data in the literature,
comparison with pilot plant performance, and simulation. In general, data used in
formulating a model should not be used to validate it if at all possible. Because
model evaluation involves multiple criteria, it is helpful to find an expert opinion in
the verification of models, that is, what do people think who know about the
process being modeled?

No single validation procedure is appropriate for all models. Nevertheless, it
is appropriate to ask the question: What do you want the model to do? In the best
of all possible worlds, you want the model to predict the desired process perform-
ance with suitable accuracy, but this is often an elusive goal.

2.3 SELECTING FUNCTIONS TO FIT EMPIRICAL DATA

A model relates the output (the dependent variable or variables) to the independent
variable(s). Each equation in the model usually includes one or more coefficients
that are presumed constant. The term parameter as used here means coefficient and
possibly input or initial condition. With the help of experimental data, we can deter-
mine the form of the model and subsequently (or simultaneously) estimate the value
of some or all of the parameters in the model.

2.3.1 How to Determine the Form of a Model

Models can be written in a variety of mathematical forms. Figure 2.3 shows a few
of the possibilities, some of which were already illustrated in Section 2.1. This sec-
tion focuses on the simplest case, namely models composed of algebraic equations,
which constitute the bulk of the equality constraints in process optimization.
Emphasis here is on estimating the coefficients in simple models and not on the
complexity of the model.

Selection of the form of an empirical model requires judgment as well as some
skill in recognizing how response patterns match possible algebraic functions.
Optimization methods can help in the selection of the model structure as well as in
the estimation of the unknown coefficients. If you can specify a quantitative crite-
rion that defines what “best” represents the data, then the model can be improved
by adjusting its form to improve the value of the criterion. The best model presum-
ably exhibits the least error between actual data and the predicted response in some
sense.
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FIGURE 2.3
Typical mathematical forms of models.
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Typical relations for empirical models might be

y:
y:

G(s) =

Nu

Qg + aixq -+ (222 %) + .-

Qg + a“x% + A12X1Xy + .-

1
a, + aps + a2s2
a(Re)®

49

linear in the variables and coefficients

linear in the coefficients, nonlinear in

the variables (x;, x,)

nonlinear in all the coefficients

nonlinear in the coefficient b

(Nu: Nusselt number; Re: Reynolds

number)

When the model is linear in the coefficients, they can be estimated by a pro-
cedure called linear regression. If the model is nonlinear in the coefficients, esti-
mating them is referred to as nonlinear regression. In either case, the simplest ade-
quate model (with the fewest number of coefficients) should be used.

Graphical presentation of data assists in determining the form of the function
of a single variable (or two variables). The response y versus the independent vari-
able x can be plotted and the resulting form of the model evaluated visually. Figure
2.4 shows experimental heat transfer data plotted on log-log coordinates. The plot
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Predicted Nusselt numbers for turbulent flow with constant wall heat flux (adapted with
permission from John Wiley and Sons from Bird et al., 1964). Abbreviations: Nu = Nusselt
number; Re = Reynolds number; Pr = Prandt]l number.

appears to be approximately linear over wide ranges of the Reynolds number (Re).
A straight line in Figure 2.4 would correspond to log Nu = log a + b log Re or Nu
= a(Re)®. Observe the scatter of experimental data in Figure 2.4, especially for
large values of the Re.

If two independent variables are involved in the model, plots such as those
shown in Figure 2.5 can be of assistance; in this case the second independent vari-
able becomes a parameter that is held constant at various levels. Figure 2.6 shows
a variety of nonlinear functions and their associated plots. These plots can assist in
selecting relations for nonlinear functions of y versus x. Empirical functions of
more than two variables must be built up (or pruned) step by step to avoid includ-
ing an excessive number of irrelevant variables or missing an important one. Refer
to Section 2.4 for suitable procedures.

Now let us review an example for selecting the form of a model to fit experi-
mental data.
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Functions of a single variable x and their corresponding trajectories. (Continues)
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FiIGURE 2.6 (continued)

EXAMPLE 2.3 ANALYSIS OF THE HEAT TRANSFER
COEFFICIENT

Suppose the overall heat transfer coefficient of a shell-and-tube heat exchanger is cal-
culated daily as a function of the flow rates in both the shell and tube sides (w, and
w,, respectively). U has the units of Btu/(h)(°F)(ft?), and w, and w, are in Ib/h. Figures
E2.3a and E2.3b illustrate the measured data. Determine the form of a semiempirical
model of U versus w, and w, based on physical analysis.

Solution. You could elect to simply fit U as a polynomial function of w, and w,; there

appears to be very little effect of w, on U, but U appears to vary linearly with w, (except
at the upper range of w, where it begins to level off). A more quantitative approach
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can be based on a physical analysis of the exchanger. First determine why w, has no

effect on U. This result can be explained by the formula for the overall heat transfer
coefficient

i _t .11 @
U hy ko k

h, = the shell heat transfer coefficient
h, = the tube side heat transfer coefficient
hy = the fouling coefficient

where

If A, is small and & is large, U is dominated by #,, hence changes in w, have little
effect, as shown in Figure E2.3a.

Next examine the data for U versus w, in the context of Figure 2.6. For a reason-
able range of w, the pattern is similar to curve D in Equation (3) where

X

- =a + Bx b)
y B
which can also be written as
1 o
;- x T A ©

Note the similarity between Equations (c) and (a), where x = h,and y = U. From a stan-

dard heat transfer coefficient correlation (Gebhart, 1971), you can find that /, also varies
according to Kw 28, where K, is a coefficient that depends on the fluid physical proper-
ties and the exchanger geometry. If we lump 1/A; and 1/A together into one constant
1/hy, the semiempirical model becomes

11,1
U hsf KtW?'s
80 80
[
6o * © ° . 60 |-
® [
U
U 40} a0l
20 20 |-
0 | | | | | ! ! l
2.0 4.0 6.0 60 80 100 120
i X 10-3) W, (X 10-3)
FIGURE E2.3a FIGURE E2.3b

Variation of overall heat transfer
coefficient with shell-side flow rate
w, = 8000.

Variation of overall heat transfer
coefficient with tube-side flow rate
w, for w, = 4000.
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or

0.8
hsttw t

The line in Figure E2.3b shows how well Equation (d) fits the data.

In the previous examples and figures we indicated that functions for two inde-
pendent variables can be selected. When three (or more) independent variables
occur, advanced analysis tools, such as experimental design (see Section 2.4) or
principal component analysis (Jackson, 1991), are required to determine the struc-
ture of the model.

Once the form of the model is selected, even when it involves more than two
independent variables, fitting the unknown coefficients in the model using linear or
nonlinear regression is reasonably straightforward. We discuss methods of fitting
coefficients in the next section.

2.3.2 Fitting Models by Least Squares

This section describes the basic idea of least squares estimation, which is used to
calculate the values of the coefficients in a model from experimental data. In esti-
mating the values of coefficients for either an empirical or theoretically based
model, keep in mind that the number of data sets must be equal to or greater than
the number of coefficients in the model. For example, with three data points of y
Versus x, you can estimate at most the values of three coefficients. Examine Figure
2.7. A straight line might represent the three points adequately, but the data can be
fitted exactly using a quadratic model

y = B + Bix + Bx? (2.2)

By introducing the values of a data point (Y;, x,) into Equation 2.2, you obtain one
equation of Y; as a function of three unknown coefficients. The set of three data
points therefore yields three linear equations in three unknowns (the coefficients)
that can be solved easily.

To compensate for the errors involved in experimental data, the number of data
sets should be greater than the number of coefficients p in the model. Least squares
is just the application of optimization to obtain the “best” solution of the equations,
meaning that the sum of the squares of the errors between the predicted and the
experimental values of the dependent variable y for each data point x is minimized.
Consider a general algebraic model that is linear in the coefficients.

)4
y = 2B (2.3)
j=1
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/
/
//¥ Linear

Quadratic

FIGURE 2.7
Linear versus quadratic fit for three data points.

There are p independent variables Xjs j=1,..., p. Independent here means con-
trollable or adjustable, not functionally independent. Equation (2.3) is linear with
respect to the §3;, but x; can be nonlinear. Keep in mind, however, that the values of
x; (based on the input data) are just numbers that are substituted prior to solving for
the estimates (3;,hence nonlinear functions of X; in the model are of no concern. For
example, if the model is a quadratic function,

y=p;+ Bx+ ,B3x?‘

we specify
x =1
Xy = X
X3 = x*

and the general structure of Equation (2.3) is satisfied. In reading Section 2.4 you
will learn that special care must be taken in collecting values of x to avoid a high
degree of correlation between the x;’s.

Introduction of Equation (2.3) into a sum-of-squares error objective function
gives

n 14 2
f= 2<Y,. - > ,Bjx,.j) (2.4)
i=1 =1
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The independent variables are now identified by a double subscript, the first index
designating the data set (experiment) number (i = 1, . .., n) and the second the
independent variables (j = 1, p).

Minimizing f with respect to the 8’s involves differentiating f with respect to
Bi: Ba - - -, B, and equating the p partial derivatives to zero. This yields p equations
that relate the p unknown values of the estimated coefficients B, .. ., B,

n n n n
B Exilxil + BZExil-xiZ + ot .szxilxip = 2 Yix,
i=1 i=1 i=1 i=1

n n n n
Bi > xpxy + By X XXy + 0+ szxﬂxip = 2 Y,
i=1 i=1 i=1 i=1

n n n
B4 Exipxil + B, ExipxiZ + - F szxipxip = 2 Yi-xip (2.5)
i=1 i=1 i=1 ;

where ﬁ,- = the estimated value of §3;
x;’s = the experimental values of x;
Y, = the measured dependent variables

Note the symmetry of the summation terms in x; and that numbering of x;’s in the
summations corresponds to matrix indices (rows, columns). This set of p equations
in p unknowns can be solved on a computer using one of the many readily avail-
able routines for solving simultaneous linear equations.

Equations (2.5) can be expressed in more compact form if matrix notation is

employed (see Appendix A). Let the model be expressed in vector matrix notation as
Y=xB+¢ (2.6)

where € = the random error in the data
Y = the vector of measured dependent variables

81 ] R4

B2 Y,

B = v=|"
—BP— _.Yn_

X1 X2 7 Xy

Xo1 X2 T Xpp

™
Il

Xnl Xm2 77T Xpp
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The objective function to be minimized is
f=¢"e=(Y —xB)"(Y — xB) Q2.7)
Equations 2.5 can then be expressed as
3B = x7Y (2.8)
which has the formal solution via matrix algebra
B= (x"x)x’Y (2.9)

Statistical packages and spreadsheets solve the simultaneous equations in (2.8)
to estimate [} rather than computing the matrix inverse in Equation (2.9).

The next two examples illustrate the application of Equation 2.9 to fit coeffi-
cients in an objective function. The same procedure is used to fit coefficients in
constraint models.

EXAMPLE 2.4 APPLICATION OF LEAST SQUARES TO
DEVELOP A COST MODEL FOR THE COST OF HEAT
EXCHANGERS

In the introduction we mentioned that it is sometimes necessary to develop a model for
the objective function using cost data. Curve fitting of the costs of fabrication of heat
exchangers can be used to predict the cost of a new exchanger of the same class with
different design variables. Let the cost be expressed as a linear equation

C=pi+ BN+ pBA

where 3, B,, and B, are constants
N = number of tubes
A = shell surface area

Estimate the values of the constants 8;, 3,, and B8, from the data in Table E2.4. The
regressors are x; = 1,x, = N, and x; = A.

Solution. The matrices to be used in calculating ﬁ are as follows (each data set is

weighted equally):

1 120 550]

1 130 600

1 108 520

1 110 420

x=|1 84 400

1 90 300

1 80 230

1 55 120

1 64 190
L1 50 100.
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TABLE E2.4

Labor cost data for mild-steel
floating-head exchangers
(0-500 psig) working pressure

Labor cost Area Number of
) ) tubes (V)
310 120 550
300 130 600
275 108 520
250 110 420
220 84 400
200 90 300
190 80 230
150 55 120
140 64 190
100 50 100

Source: Shahbenderian, 1961.

10 891 3,430
(xTx) =1 891 86,241 349,120

(x'Y) =

3,430 349,120 1,472,700

2,135
207,290

844,800

Equation (2.9) gives the best estimates of B;, B8,, and B;:

Check to see if these coefficients yield a reasonable fit to the data in Table E2.4.

B, = 38.177

Bz =
B; = 0.209

1.164

59

EXAMPLE 2.5 APPLICATION OF LEAST SQUARES IN YIELD

CORRELATION

Ten data points were taken in an experiment in which the independent variable x is the
mole percentage of a reactant and the dependent variable y is the yield (in percent):
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x y
20 73
20 78
30 85
40 90
40 91
50 87
50 86
50 91
60 75
70 65

Fit a quadratic model with these data and determine the value of x that maximizes the
yield.

Solution. The quadratic model is y = B, + Byx + B,x°. The estimated coefficients
computed using Excel are

~

B, = 35.66
B, = 2.63
B; = —0.032

The predicted optimum can be formed by differentiating
Y =B+ Box + Bsx?

with respect to x and setting the derivative to zero to get

~

x = P2 4100

2B5

The predicted yield Y at the optimum is 88.8.

Certain assumptions underly least squares computations such as the indepen-
dence of the unobservable errors &;, a constant error variance, and lack of error in the
x’s (Draper and Smith, 1998). If the model represents the data adequately, the resid-
uals should possess characteristics that agree with these basic assumptions. The
analysis of residuals is thus a way of checking that one or more of the assumptions
underlying least squares optimization is not violated. For example, if the model] fits
well, the residuals should be randomly distributed about the value of y predicted by
the model. Systematic departures from randomness indicate that the model is unsat-
isfactory; examination of the patterns formed by the residuals can provide clues about
how the model can be improved (Box and Hill, 1967; Draper and Hunter, 1967).

Examinations of plots of the residuals versus Y; or x;, or a plot of the frequency
of the residuals versus the magnitude of the residuals, have been suggested as
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numerical or graphical aids to assist in the analysis of residuals. A study of the signs
of the residuals (+ or —) and sums of signs can be used. Residual analysis should

include

1. Detection of an outlier (an extreme observation).

2. Detection of a trend in the residuals.

3. Detection of an abrupt shift in the level of the experiment (sequential observations).

4. Detection of changes in the error variance (usually assumed to be constant).

5. Examination to ascertain if the residuals are represented by a normal distribu-
tion (so that statistical tests can be applied).

When using residuals to determine the adequacy of a model, keep in mind that
as more independent variables are added to the model, the residuals may become
less informative. Each residual is, in effect, a weighted average of the ¢;’s; as more
unnecessary x;’s are added to a model, the residuals become more like one another,
reflecting an indiscriminate average of all the &’s instead of primarily representing
one ¢; In carrying out the analysis of residuals, you will quickly discover that a
graphical presentation of the residuals materially assists in the diagnosis because
one aberration, such as a single extreme value, can simultaneously affect several of
the numerical tests.

Nonlinear least squares

If a model is nonlinear with respect to the model parameters, then nonlinear
least squares rather than linear least squares has to be used to estimate the model
coefficients. For example, suppose that experimental data is to be fit by a reaction
rate expression of the form r, = kC}. Here r, is the reaction rate of component A4,
C, is the reactant concentration, and k and » are model parameters. This model is
linear with respect to rate constant k but is nonlinear with respect to reaction order
n. A general nonlinear model can be written as

y =f(x1,x2,x3,...,,61,[32, 33" ) (210)

I

where y = the mode] output
x;’s = model inputs
B;’s = the parameters to be estimated

We still can define a sum-of-squares error criterion (to be minimized) by selecting
the parameter set §3; so as to

min > (¥; — ;)2 2.11)
j i=1

where Y; = the ith output measurement
Y; = model prediction corresponding to the ith data point
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The estimated coefficients listed for model 2 in Example 2.2 were obtained using
nonlinear least squares (Bates and Watts, 1988).

As another example, consider the problem of estimating the gain K and time
constants 7; for first-order and second-order dynamic models based on a measured
unit step response of the process y(¢). The models for the step response of these two
processes are, respectively (Seborg et al., 1989),

y(t) = K(1 — e™™) (2.12)
—tfr _ —t/T,
) = K<1 - e — - ) (2.13)

where ¢t = the independent variable (time)
y = the dependent variable

Although K appears linearly in both response equations, 7, in (2.12) and 7,
and 7, in (2.13) appear nonlinearly, so that nonlinear least squares must be used to
estimate their values. The specific details of how to carry out the computations will
be deferred until we take up numerical methods of unconstrained optimization in
Chapter 6.

24 FACTORIAL EXPERIMENTAL DESIGNS

Because variables in models are often highly correlated, when experimental data
are collected, the x”x matrix in Equation 2.9 can be badly conditioned (see Appen-
dix A), and thus the estimates of the values of the coefficients in a model can have
considerable associated uncertainty. The method of factorial experimental design
forces the data to be orthogonal and avoids this problem. This method allows you
to determine the relative importance of each input variable and thus to develop a
parsimonious model, one that includes only the most important variables and
effects. Factorial experiments also represent efficient experimentation. You system-
atically plan and conduct experiments in which all of the variables are changed
simultaneously rather than one at a time, thus reducing the number of experiments
needed.

Because of the orthogonality property of factorial design, statistical tests are
effective in discriminating among the effects of natural variations in raw materials,
replicated unit operations (e.g., equipment in parallel), different operators, different
batches, and other environmental factors. A proper orthogonal design matrix for
collecting data provides independent estimates of the sums of squares for each vari-
able as well as combinations of variables. Also the estimates of the coefficients
have a lower variance than can be obtained with a nonorthogonal experimental
design (Montgomery, 1997; Box et al., 1978). That is, you can have more confi-
dence in the values calculated for 3; than would occur with a nonorthogonal design.
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TABLE 2.1
Orthogonal experimental design
Scaled (coded)
values of the
independent
Experiment Response variables
number y z %

1 Y, -1 -1
2 Y, 1 -1
3 6 -1 1
4 Y, 1 1
5 Y 0 0

From a practical standpoint, the user of the model must decide which input
variables should be studied because this will determine the number of tests that
must be carried out (Drain, 1997). In a standard factorial design, 2" tests are
required, where # is the number of input variables to be studied. You must also
decide how much each input variable should be changed from its nominal value,
taking into account the sensitivity of the process response to a change in a given
input variable, as well as the typical operating range of the process. The determi-
nation of the region of experimentation requires process knowledge. The experi-
mental range should be chosen so that the resulting measurements of the response
do not involve errors in the sensors that are greater than typical noise levels.

Suppose you want to fit the linear model y = B, + B,2; + Bsz,, Where z; and z,
are the independent variables. Let the values of z; and z, in the experiment be delib-
erately chosen by an experimental orthogonal design like that shown in Table 2.1.

The values of the coded independent variables correspond to the four corners
of a square in the z; and z, space. The summations in Equation (2.5) simplify in this
case (x; = 1, x, = 24, %3 = 2):

5 5 5 5 5 5
zxilxﬁ = Ezli =0 Exilxia = EZZz‘ =0 Exi2xi3 = EZIiZZi =0
i=1 i=1 i=1 i=1 i=1 i=1

5 5 5 5 5
EIXilxil =35 Elxizxiz = EZ%‘ =4 Elxi3xi3 = ZIZ%i =4
i= i= i=1 i= i=

For the experimental design in Table 2.1,

ity tystyatys
XY=| -y +m—y+y
V1= Yot yst oy,
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e Gas flow

200 @
1

Pressure

FIGURE E2.6
Orthogonal design for the variables temperature,
pressure, and flowrate.

It is quite easy to solve Equation (2.9) now because these expressions are
uncoupled, the inverse of x7x for Equation (2.13) can be obtained by merely taking
the reciprocal of the diagonal elements.

EXAMPLE 2.6 IDENTIFICATION OF IMPORTANT VARIABLES
BY EXPERIMENTATION USING AN ORTHOGONAL
FACTORIAL DESIGN

Assume a reactor is operating at the reference state of 220°C, 3 atm pressure, and a
gas flow rate of 200 kg/h. We can set up an orthogonal factorial design to model this
process with a linear model Y = B, + B,x, + B3x; + B,x, so that the coded values of
the x; are 1, —1, and O. Examine Figure E2.6. Suppose we select the changes in the
operating conditions of +20°C for the temperature, +2 atm for the pressure, and £50
kg/h for flowrates. Let x; = 1; then x,, x;, and x,, the coded variables, are calculated
in terms of the proposed operating conditions as follows:

#(°C) — 220
T
p(atm) — 3
X3 = )
m(kg/h) — 200
x4 = —

50
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Based on the design the following data are collected:

Y (yield) X, X3 X4

20.500 -1 -1 -1
60.141 1 -1 -1
58.890 -1 1 -1
67.712 1 1 -1
22.211 -1 -1 1
61.541 1 -1 1
59.902 -1 1 1
69.104 1 1 1
77.870 0 0 0
78.933 0 0 0
70.100 0 0 0

The extra data at the (0, 0) point are used to obtain a measure of the error involved in
the experiment.

Solution. The matrices involved are

110 0 0 0091 0 0 0
0800 0 0125 0 0
Ty _ Te\—1 —
¥X= 100380 (xx) 0 0 0125 0
0008 0 0 0 0125
646.9
96.99
T 3
XY =1 9101
551

With these matrices you can compute the estimates of B,- by solving Equation (2.9),
yielding

¥ = 58.810 + 12.124x, + 11.402x; + 0.689x,

In terms of the original variables

#(°C) — 220
20 )

LR

¥ = 58.810 + 12.124(

m(kg/h) — 200>

+ 0.68
? ( 50

= 58.810 + 0.6062(¢ — 220) + 5.701(p — 3) + 0.0138 (m — 200)

It is clear from the size of the estimated coefficients that mass flowrate changes have
a much smaller influence on the yield and thus, for practical purposes, could be elim-
inated as an important independent variable.
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If the independent variables are orthogonal, deciding whether to add or delete
variables or functions of variables in models is straightforward using stepwise least
squares (regression), a feature available on many software packages. Stepwise
regression consists of sequentially adding (or deleting) a variable (or function) of
variables to a proposed model and then testing at each stage to see if the added (or
deleted) variable is significant. The procedure is only effective when the indepen-
dent variables are essentially orthogonal. The coupling of orthogonal experimental
design with optimization of operating conditions has been called “evolutionary
operation” by which the best operating conditions are determined by successive
experiments (Box and Draper, 1969; Biles and Swain, 1980).

2.5 DEGREES OF FREEDOM

In Section 1.5 we briefly discussed the relationships of equality and inequality con-
straints in the context of independent and dependent variables. Normally in design
and control calculations, it is important to eliminate redundant information and
equations before any calculations are performed. Modern multivariable optimiza-
tion software, however, does not require that the user clearly identify independent,
dependent, or superfluous variables, or active or redundant constraints. If the num-
ber of independent equations is larger than the number of decision variables, the
software informs you that no solution exists because the problem is overspecified.
Current codes have incorporated diagnostic tools that permit the user to include all
possible variables and constraints in the original problem formulation so that you
do not necessarily have to eliminate constraints and variables prior to using the soft-
ware. Keep in mind, however, that the smaller the dimensionality of the problem
introduced into the software, the less time it takes to solve the problem.

The degrees of freedom in a model is the number of variables that can be spec-
ified independently and is defined as follows:

Ny =N, — Ng (2.14)

where N = degrees of freedom
N, = total number of variables involved in the problem
N = number of independent equations (including specifications)

A degrees-of-freedom analysis separates modeling problems into three cate-
gories:

1. Np = 0: The problem is exactly determined. If N = 0, then the number of inde-
pendent equations is equal to the number of process variables and the set of
equations may have a unique solution, in which case the problem is not an opti-
mization problem. For a set of linear independent equations, a unique solution
exists. If the equations are nonlinear, there may be no real solution or there may
be multiple solutions.
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2. Ny > 0: The problem is underdetermined. If N > 0, then more process vari-
ables exist in the problem than independent equations. The process model is said
to be underdetermined, so at least one variable can be optimized. For linear mod-
els, the rank of the matrix formed by the coefficients indicates the number of
independent equations (see Appendix A).

3. Ny <0: The problem is overdetermined. If N, < 0, fewer process variables exist
in the problem than independent equations, and consequently the set of equa-
tions has no solutions. The process model is said to be overdetermined, and least
squares optimization or some similar criterion can be used to obtain values of the
unknown variables as described in Section 2.5.

EXAMPLE 2.7 MODEL FOR A SEPARATION TRAIN

Figure E2.7 shows the process flow chart for a series of two distillation columns,

with mass flows and splits defined by x;, x,, . . ., x5. Write the material balances, and
show that the process model comprises two independent variables and three degrees
of freedom.

Solution. The balances for columns 1 and 2 are shown below:

Column 1 Xy, =Xx,+x3 or X1 — % —x3=0 (a)
Xy = .40x1 or Xy — 0.4x1 =0 (b)
x3 = .60x, or x3 — 0.6x;, =0 (o

There are three equations and three unknowns.

40% light ends Medium solvent
—— —_—
(x3) (xg)
Feed Column Column
=) 1 2
|

60% bottoms Heavy solvent
(x2) (x5)

FIGURE E2.7
Train of distillation columns.
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The coefficient matrix is

Variables
x X2 X3
Equations (a) 1 -1 -1
(b) -0.4 1
©) -0.6 0 1

The three equations are not independent. The rank of the coefficient matrix is 2,
hence there are only two independent variables, and column 1 involves 1 degree of
freedom.

Column 2 X, = X4 + X5 or Xy — x4 —x5=10 @
There is one equation and three unknowns, so there are two degrees of freedom.Over-

all there are four equations (a), (b), (c), (d) and five variables.The coefficient matrix
is

(@ 1 -1 -1 0 0
(b) ~0.4 1 0 0 0
(c) -0.6 0 1 0 0
(d) 0 1 0 -1 -1

Because the rank of the coefficient matrix is three, there are only three inde-
pendent equations, so Equation (2.14) indicates that there are two degrees of freedom.
You can reduce the dimensionality of the set of material balances by substitution of
one equation into another and eliminating both variables and equations.

In some problems it is advantageous to eliminate obvious dependent variables to
reduce the number of equations that must be included as constraints. You can elimi-
nate linear constraints via direct substitution, leaving only the nonlinear constraints,
but the resulting equations may be too complex for this procedure to have merit. The
following example illustrates a pipe flow problem in which substitution leads to one
independent variable.

EXAMPLE 2.8 ANALYSIS OF PIPE FLOW

Suppose you want to design a hydrocarbon piping system in a plant between two
points with no change in elevation and want to select the optimum pipe diameter that
minimizes the combination of pipe capital costs and pump operating costs. Prepare a
model that can be used to carry out the optimization. Identify the independent and
dependent variables that affect the optimum operating conditions. Assume the fluid
properties (i, p) are known and constant, and the value of the pipe length (L) and
mass flowrate (m) are specified. In your analysis use the following process variables:
pipe diameter (D), fluid velocity (v), pressure drop (Ap), friction factor (f).

Solution. Intuitively one expects that an optimum diameter can be found to minimize
the total costs. It is clear that the four process variables are related and not indepen-
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dent, but we need to examine in an organized way how the equality constraints (mod-
els) affect the degrees of freedom.
List the equality constraints:

1. Mechanical energy balance, assuming no losses in fittings, no change in elevation,

and so on.
Ap = 2fpv°L @
P D a
2. Equation of continuity, based on plug flow under turbulent conditions.
D2
m= (p . )v ®)

3. A correlation relating the friction factor with the Reynolds number (Re).

Dvp

f=FRe) = f(T)

The friction factor plot is available in many handbooks, so that given a value of Re,
one can find the corresponding value of f. In the context of numerical optimization,
however, using a graph is a cumbersome procedure. Because all of the constraints
should be expressed as mathematical relations, we select the Blasius correlation for a
smooth pipe (Bird et al., 1964):

0.0461°2

f= 0046 Re™*? = D02,02,02 ©

0

The model involves four variables and three independent nonlinear algebraic
equations, hence one degree of freedom exists. The equality constraints can be manip-
ulated using direct substitution to eliminate all variables except one, say the diameter,
which would then represent the independent variables. The other three variables
would be dependent. Of course, we could select the velocity as the single independent
variable of any of the four variables. See Example 13.1 for use of this model in an
optimization problem.

2.6 EXAMPLES OF INEQUALITY AND EQUALITY CONSTRAINTS
IN MODELS

As mentioned in Chapter 1, the occurrence of linear inequality constraints in indus-
trial processes is quite common. Inequality constraints do not affect the count of the
degrees of freedom unless they become active constraints. Examples of such con-
straints follow:
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1. Production limitations arise because of equipment throughput restrictions, stor-
age limitations, or market constraints (no additional product can be sold beyond
some specific level).

2. Raw material limitations occur because of limitations in feedstock supplies;
these supplies often are determined by production levels of other plants within
the same company.

3. Safety or operability restrictions exist because of limitations on allowable oper-
ating temperatures, pressures, and flowrates.

4. Physical property specifications on products must be considered. In refineries
the vapor pressure or octane level of fuel products must satisfy some specifica-
tion. For blends of various products, you usually assume that a composite prop-
erty can be calculated through the averaging of pure component physical prop-
erties. For N components with physical property values V, and volume fraction
¥;, the average property V is

_ N
V= gviyi

EXAMPLE 2.9 FORMULATION OF A LINEAR INEQUALITY
CONSTRAINT FOR BLENDING

Suppose three intermediates (light naphtha, heavy naphtha, and “catalytic” oil) made
in a refinery are to be blended to produce an aviation fuel. The octane number of the
fuel must be at least 95. The octane numbers for the three intermediates are shown in

the table.
Amount blended Octane
(barrels/day) number
Light naphtha X 92
Heavy naphtha Xy 86
Catalytic oil X3 97

Write an inequality constraint for the octane number of the aviation fuel, assum-
ing a linear mixing rule.

Solution. Assume the material balance can be based on conservation of volume (as
well as mass). The production rate of aviation gas is x, = x; + x, + x;. The volume-
average octane number of the gasoline can be computed as

X

Xy X3
2) + +—097)= 95
%) Xp + X+ X3 (86) X+ Xy + X3 ©7)=9 @

X + Xa -+ X3
Multiplying Equation (a) by (x; + x, + x;) and rearranging, we get
_3x1 - 9x2 + 2JC3 =0 (b)

This constraint ensures that the octane number specification is satisfied. Note that
Equation (b) is linear.
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EXAMPLE 2.10 LINEAR MATERIAL BALANCE MODELS

In many cases in which optimization is applied, you need to determine the allocation
of material flows to a set of processes in order to maximize profits. Consider the
process diagram in Figure E2.10.

A
x11 J *1 1 - S F
X
S x 3
*2 2 - S F
B C .ng
X12 N x5
X3
3 —— G
x6 x
C 10
X7

FIGURE E2.10
Flow diagram for a multiproduct plant.

Each product (E, F, G) requires different (stoichiometric) amounts of reactants
according to the following mass balances:

Reactants
Product (1-kg product)
E 2kg A, kegB
F 2kgA,jkeB
G 3kgA, skgB,3kgC

Prepare a model of the process using the mass balance equations.

Solution. Twelve mass flow variables can be defined for this process. Let x;, x,, x3
be the mass input flows of A to each process. Similarly let x,, X5, ¢, and x, be the indi-
vidual reactant flows of B and C, and define xg, xo, and x, as the three mass product
flows (E, E G). Let x;; and x,, be the total amounts of A and B used as reactants (C
is the same as x;). Thus, we have a total of 12 variables.

The linear mass balance constraints that represent the process are:

A=x=x+x+x (@)
B=x12=x4+x5+x6 (b)
X1 = 0.6673(33 (C)

x, = 0.667x @
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%3 = 0.5%0 (e)
x4 = 0.333x; )
x5 = 0.333x, (&)
x6 = 0.167xy, (h)
x; = 0.333x,, )

With 12 variables and 9 independent linear equality constraints, 3 degrees of freedom
exist that can be used to maximize profits. Note that we could have added an overall
material balance, x,; + x;, + x; = x5 + X + x,, but this would be a redundant equa-
tion since it can be derived by adding the material balances.

Other constraints can be specified in this problem. Suppose that the supply of A
was limited to 40,000 kg/day, or

Xy =< 40,000 ()

If this constraint is inactive, that is, the optimum value of x,, is less than 40,000
kg/day, then, in effect, there are still 3 degrees of freedom. If, however, the optimiza-
tion procedure yields a value of x;; = 40,000 (the optimum lies on the constraint, such
as shown in Figure 1.2), then inequality constraint f becomes an equality constraint,
resulting in only 2 degrees of freedom that can be used for optimization. You should
recognize that it is possible to add more inequality constraints, such as constraints on
materials supplies, in the model, for example,

X2 = 30,000 (k)
x; = 25,000 @

These can also become “active™ constraints if the optimum lies on the constraint
boundary. Note that we can also place inequality constraints on production of E, F,
and G in order to satisfy market demand or sales constraints

xg = 20,000 (m)
X9 = 25,000 (n)
X10 = 30,000 (0)

Now the analysis is much more complex, and it is clear that more potential equal-
ity constraints exist than variables if all of the inequality constraints become active. It
is possible that optimization could lead to a situation where no degrees of freedom
would be left—one set of the inequality constraints would be satisfied as equalities.
This outcome means no variables remain to be optimized, and the optimal solution
reached would be at the boundaries, a subset of the inequality constraints.

Other constraints that can be imposed in a realistic problem formulation include

1. Operating limitations (bottlenecks)—there could be a throughput limitation on
reactants to one of the processes (e.g., available pressure head).

2. Environmental limitations—there could be some additional undesirable by-products
H, such as the production of toxic materials (not in the original product list given
earlier), that could contribute to hazardous conditions.
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You can see that the model for a realistic process can become extremely com-
plex; what is important to remember is that steps 1 and 3 in Table 1.1 provide an
organized framework for identifying all of the variables and formulating the objec-
tive function, equality constraints, and inequality constraints. After this is done, you
need not eliminate redundant variables or equations. The computer software can
usually handle redundant relations (but not inconsistent ones).
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PROBLEMS

2.1 Classify the following models as linear or nonlinear
(a) Two-pipe heat exchanger (streams 1 and 2)

o, | 9Ty _ 2

R T, T
ot az S1p1Cp1 ( 2 I)
T, 2
= (T, — Ty)
0t pCpS,

BC: T](t, O) =a IC: TI(O,Z) =0

T,(t,0) = b T(0,z) = T
where T = temperature C, = heat capacity
t = time S = area factor

BC = boundary conditions IC = initial conditions

p = density

(b) Diffusion in a cylinder

aC (azc 1ac>
— =D — + -—
ot art  r or
C(O,r)=C0
aC(z,0
0) _
ar

C(tR) = C,



2.2

2.3
24

2.5
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radial direction
constant

where C = concentration r
t = time D

Classify the following equations as linear or nonlinear (y = dependent variable; x, z =
independent variables)

(@) yi+yi=d’

2
v, %,

b —=u—
®) vigr = ko3
Classify the models in Problems 2.1 and 2.2 as steady state or unsteady state.

Classify the models in Problems 2.1 and 2.2 as lumped or distributed.

What type of model would you use to represent the process shown in the figure?
Lumped or distributed? Steady state or unsteady state? Linear or nonlinear?

S

Air
—_—

FIGURE P2.5

A wastewater treatment system uses five stacked
venturi sections to ensure maximum oxygenation
efficiency.
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2.6

2.7

2.8

29

PART I: Problem Formulation

Determine the number of independent variables, the number of independent equations,
and the number of degrees of freedom for the reboiler shown in the figure. What vari-
ables should be specified to make the solution of the material and energy balances
determinate? (Q = heat transferred)

Liquid —>; —>Vapor

(77
1]
Y

Figure P2.6

Determine the best functional relation to fit the following data sets:

(a) (b) (© (@
X Yt X Y: X; YI Xi Yi
1 5 2 94.8 2 0.0245 0 8290
2 7 5 87.9 4 0.0370 20 8253
3 9 8 81.3 8 0.0570 40 8215
4 11 11 74.9 16 0.0855 60 8176
14 68.7 32 0.1295 80 8136
17 64.0 64 0.2000 100 8093
128 0.3035
The following data have been collected:
X Y;
10 1.0
20 1.26
30 1.86
40 331
50 7.08

Which of the following three models best represents the relationship between Y and x?

y= eu+ﬁx
y = ea+ﬁlx+ﬁ,x2
y= ax®

Given the following equilibrium data for the distribution of SO, in hexane, determine
a suitable linear (in the parameters) empirical model to represent the data.
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x Y,
pressure weight fraction
(psia) hexane
200 0.846
400 0.573
600 0.401
800 0.288
1000 0.209
1200 0.153
1400 0.111
1600 0.078

2.10 (a) Suppose that you wished to curve fit a set of data (shown in the table) with the
equation

y=co+ cre™ + e

W~ O R
= NN =

Calculate ¢, ¢;, and ¢, (show what summations need to be calculated). How do
you find ¢, and ¢, if ¢, is set equal to zero?

(b) If the desired equation were y = axe ~**, how could you use least-squares to find
a; and a,?

2.11 Fit the following data using the least squares method with the equation:

y=c¢yt cx

X Y;
0.5 0.6
1.0 14
2.1 2.0

34 3.6
Compeare the results with a graphical (visual) estimate.

2.12 Fit the same data in Problem 2.11 using a quadratic fit. Repeat for a cubic model (y =
o + ¢ + ¢33 + ¢3x°). Plot the data and the curves.

2.13 You are asked to get the best estimates of the coefficients by, b;, and ¢ in the follow-
ing model

y =by+ bie™*

given the following data.
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Y X
51.6 04
53.4 14
20.0 5.4
—4.2 19.5
—-3.0 482

—4.8 95.9

Explain step by step how you would get the values of the coefficients.

2.14 Fit the following function for the density p as a function of concentration C, that is,
determine the value of « in

p=a+133C

given the following measurements for p and C:

p (g/cm?) C (gmol/L)

3.31 1.01
4.69 1.97
5.92 3.11
7.35 4.00
8.67 495

2.15 (a) For the given data, fit a quadratic function of y versus x by estimating the values
of all the coefficients.
(b) Does this set of data constitute an orthogonal design?

y 6.4 5.6 6.0 75 6.5 8.3 7.7 11.7 10.3 17.6 18.0
x 1.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0

2.16 Data obtained from a preset series of experiments was

Temperature, 7 Pressure, p Yield, Y
(°F) (atm) (%)
160 1 4
160 1 5
160 7 10
160 7 11
200 1 24
200 1 26
200 7 35
200 7 38

Fit the linear model ¥ = by + byx; + byx, using the preceding table. Report the esti-
mated coefficients by, b;, and b,. Was the set of experiments a factorial design?

2.17 You are given data for ¥ versus x and asked to fit an empirical model of the form:
y=a+ Bx

where 3 is a known value. Give an equation to calculate the best estimate of «.
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2.18 A replicated two-level factorial experiment is carried out as follows (the dependent
variables are yields):

Time Temperature Yield
(h) O (%)
1 240 24
5 240 42
1 280 3
5 280 19
1 240 24
5 240 46
1 280 5
5 280 21

Find the coefficients in a first-order model, Y = B, + Bx; + B,x,. (Y = yield, x; =
time, x, = temperature.)

2.19 An experiment based on a hexagon design was carried out with four replications at the

origin, producing the following data:

Factor levels Design levels
Yield Temperature Time
(%) (°0) 1)) x X,
96.0 75 2.0 1.000 0
78.7 60 2.866 0.500 0.866
76.7 30 2.866 —0.500 0.866
54.6 15 2.0 —1.000 0
64.8 30 1.134 —0.500 —-0.866
78.9 60 1.134 0.500 —0.866
97.4 45 2.0 0 0
90.5 45 2.0 0 0
93.0 45 2.0 0 0
86.3 45 2.0 0 0

. temperature — 45 .

Coding: xj=—F— X, = time — 2

30

Fit the full second-order (quadratic) model to the data.

2.20 A reactor converts an organic compound to product P by heating the material in the
presence of an additive A. The additive can be injected into the reactor, and steam can
be injected into a heating coil inside the reactor to provide heat. Some conversion can
be obtained by heating without addition of A, and vice versa. In order to predict the
yield of P, Y, (Ib mole product per 1b mole feed), as a function of the mole fraction of
A, X,, and the steam addition S (in Ib/Ib mole feed), the following data were obtained.

Y, X, S
02 03 0
03 0 30
05 0 60
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(a) Fit a linear model

Y,=co+ Xy + oS
that provides a least squares fit to the data.

(b) If we require that the model always must fit the point ¥, = 0 for X, = § = 0, cal-
culate ¢y, ¢, and ¢, so that a least squares fit is obtained.

2.21 If you add a feed stream to the equilibrium stage shown in the figure, determine the
number of degrees of freedom for a binary mixture (Q = heat transferred).

T

Ln+l

Feed

Va-1 L,

FIGURE P2.21

2.22 How many variables should be selected as independent variables for the furnace
shown in the figure?

25% excess dry air
100°F
CO,
(60)
80% CH,
Fuel 70°F — > Furnace [—» F1ue gases
0% N, 1900°F
0,
0 (loss)

FIGURE P2.22

2.23 Determine the number of independent variables, the number of independent equations,
and the number of degrees of freedom in the following process (4, B, and D are chem-
ical species):
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@ .,
\ @@ Fl B

X . Fy
4 5 | Mixer [ Readtor = 5 Ibistinl-
: ation
F,|@B
Fs Splitt | 4.p
A8 plitter B

FIGURE P2.23

The encircled variables have known values. The reaction parameters in the reactor are

known as the fraction split at the splitter between F, and F;. Each stream is a single
phase.

2.24 A waste heat boiler (see Fig. P2.24) is to be designed for steady-state operation under
the following specifications.

Stream drum

Risers
Downcomers Shell
ﬁ LS %
Gas in 1 Gas out
L1 L1
[T IT 171 I1

Tube diameter, d

FIGURE P2.24
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Total gas flow 25,000 kg/h

Gas composition S0, (9%), O, (12%), N, (79%)
Gas temperatures in = 1200°C; out = 350°C
Stream pressure outside tubes 250 kPa

Gas properties Cp = 0.24 keal/(g)(°C)

© = 0.14 kg/(m)(h)
k = 0.053 kcal/(m)(h)(°C)
Cost data are
Shell $2.50/kg
Tubes $150/m?
Electricity $0.60/kWh
Interest rate 14%

Base the optimization on just the cost of the shell, tubes, and pumping costs for the
gas. Ignore maintenance and repairs.

Formulate the optimization problem using only the following notation (as
needed):

surface area of tubes, m?

cost of shell, $

cost of tubes, $

heat capacity of gas, keal/(kg)(°C)

diameter of shell, m

tube outer and inner diameters, m

friction factor

acceleration due to gravity, m/s?

gas side heat transfer coefficient inside the tubes, kcal/(m?)(h)(°C)
interest rate, fraction

gas thermal conductivity, kcal/(m)(h)(°C)

length of shell, m

molecular weight of gas

n number of tubes

N life of equipment, years

Q duty of the boiler, kcal/h
T,

T

@

°

QLU OO0

Q

(X9

P~ oA~ 0 Sh

o

g
=

, T, gas temperature entering and leaving the boiler, °C
temperature in general

Pe density of gas, kg/m?

Mg viscosity of gas, kg/(m)(h)
Vv gas velocity, m/s

W, gas flow, kg/h

W, weight of shell, tons

n efficiency of blower

AP, gas pressure drop, kPa

Z shell thickness, m

How many degrees of freedom are in the problem you formulated?



