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There are a number of systems for carrying out numerical computations. Each has its
limitations, features and capabilities. The use of a particular system to solve a problem
often depends on the user’s familiarity with the system, its accessibility, capabilities, and
the cost. Edgar [1] discusses many of the systems in use in academia.

COMSOL Script provides a large number of capabilities. It can run MATLAB®

m-files, interface to COMSOL Multiphysics™ (for partial differential equations) and can
carry out a large variety of mathematical calculations. It is very interactive. Having a
single system to carry out such a variety of computations makes it an attractive platform.

In order to become familiar with the system, the author decided to explore COMSOL
Script’s capability to solve ordinary differential equations. A User’s Guide [2] is

available that describes the system.

Some Aspects of COMSOL Script

The results of commands entered into the command window are immediately displayed
unless the command is followed by a “;’.

There is an ‘edit’ command that allows editing as well as a ‘type’ command. These are
very convenient commands when checking the contents of an m-file while remaining in
the command window. The 1 key and | key are used to recall previously entered
commands.

To solve sets of differential equations:

1. Invoke COMSOL Script command window. This can be done from the
COMSOL Multiphysics menu file.

2. Store any m-files (functions) in a folder that is on the search path. If the folder is
named MyCOMSOLFcns then:

path (‘C:\MyCOMSOLFcns’, path)

places MyCOMSOLFcns on the top of the search path

3. Invoke the differential equation solver daspk . If there are no parameters:
[t,y] = daspk (‘fname’, [0 5], [ 0;1])

If there are parameters, b and ¢ to be passed:



[t,y] = daspk (‘fname’, [0 5], [ 0;1], opts, b, ¢ )
where fname is the name of the m-file
[0 5] is the lower and upper bounds of time (i.e independent variable)
[ 0;1] 1s the initial values for the dependent variables (for two equations)

opts is a vector of options (to set tolerances for example)
= odeset (‘RelTol’, 1e-8)

b and c are parameters in the differential equations
4. The ouptut is placed into the t and y vectors
For a test of daspk, three intial value differential equations were studied. The results

are compared to two other systems for solving differential equations, PLAS [3] and
Polymath [4].

The White-dwarf Equation

Davis [5} describes the equation which S. Chandrasekhar [6] introduced in his study of
the gravitational potential of degenerate (white-dwarf) stars:
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Rewriting Equation (1) in terms of y, and t results in::
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with boundary conditions:
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1) The following m-file is stored in the folder MyCOMSOLFcns with the

2)

name dwarf.m (using any text editor)

function ydot = dwarf(t, y, ¢)

ydot = zeros(2, 1);

ydot(1) = -2*y(1)/t- (y(2)*2-¢) *1.5;
ydot(2) = y(1);

ydot(3)=1;

Since the output [t,y] comes out sequentially, first t and then vy, it
is sometimes convenient to add an extra equation (of form dys/dt = 1)
to record the independent variable along with the two dependent variables

on output.

In the command window the ‘path’ command is used to add MyCOMSOLFcns to
the search path:

path (‘C:\MyCOMSOLFcns’, path)

3) The function daspk is invoked:

[t,y] = daspk (‘dwarf’, [0.000001 4 ], [ 0;1;0.000001], odeset (‘RelTol’, 1e-8) , 0.1)

In order to avoid division by 0, the initial time is set to 1e-6. Final time is 4.
The function odeset is used to set the Relative Tolerance to 1.e-8 (default is 1e-3)

The 0.1 is the value of c.



The output is placed into t and y and displayed in the command window.

Figure 1 indicates the results of the integration and compares it to the
results obtained from PLAS and Polymath.
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Figure 1. Solution of the White Dwarf Equation

The Generalized Equation of Blasius

As described in Davis [5] the generalized equation of Blasius is:
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y’(x) > kas x — o (k is a constant)
When b > 0 a unique solution exists.

The equation arises when one considers the flow of a fluid which streams past a



very thin flat plate placed edgeways in it ( Schlichting [7]).

Rewriting Equation (3) in terms of y3 and t results in
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Then substituting in Equation (4) results in:
y'=-ay,y, —b(y; -

With boundary conditions

y1 (0) = 1.32824 (Taken from Davis [5] p 404

fork=2 as given by Howarth [8]} -y’
y2(0)= 0 e
y3(0) =0 -y

A file blasius.m is placed into the folder C:\MyCOMSOLFcns:

function ydot = blasius(t, y, a, b)
ydot = zeros(3,1);

ydot(1) = -a*y(3)*y(1) - b*(y(2)*2-1);
ydot(2) = y(1);

ydot(3) =y(2);

In the command window the folder MyCOMSOLfcns is placed on the path:
path (‘C:\MyCOMSOLfcns’, path)
Then the following is entered into the command window:

[t,y] = daspk(‘blasius’, [0 4.4], [1.32824; 0; 0], odeset (‘RelTol’, 1e-8), 1, 0)



Alternately:

opts = odeset (‘RelTol’, 1e-8)
[t,y] = daspk(‘blasius’, [0 4.4], [1.32824; 0; 0], opts, 1, 0)

The integration is carried out between 0 and 4.4, the initial values of
the dependent variables are 1.32824, 0. and 0 and the value of a=1 and b= 0..

The results of the integration is shown in Figure (2). The results of Howarth
is taken from Davis [5] is included for comparison
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Figure 2. Solution to the Blasius Equation
Originally Blasius solved Equation (4) with a= 0.5, b= 0 and k = 1. Howarth (in

Schlicting [7], p 107) indicated that setting y’’(0) = 0.33206 in this case leads to a
solution (i.e. y’'(X) > l asx — ).

The Thomas-Fermi Equation

In 1927 L. H. Thomas and E. Fermi independently gave a method of studying
the electron distribution in an atom using statistics for a degenerate gas. This led to the
Thomas-Fermi equation:
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Rewriting Equation (5) in terms of y; and t results in
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with
y1 (0) =-1.58807102 (Taken from Lee and Wu [9]) — Yy
y2(0)=1 -y

To solve Equation (6) an m-file (fermi.m) is developed and placed into folder
MyCOMSOLFcns.

function ydot = fermi(t, y)
ydot = zeros(2,1);

ydot(1) = (t*-0.5)*(y(2)*1.5);
ydot(2) = y(1);

In the command window the path is set (as above). Then the following is entered
into the command window ( to set the parameters):

opts = odeset (‘AbsTol’, 1e-8, ‘RelTol’, 1e-8)
Then to integrate from le-11 to (say) 5
[t,y] = daspk (‘fermi’, [1e-11, 5], [-1.58807102;1], opts)
The results are shown in Figure (3).
The solution is very sensitive to the initial value of y;(0) . The value chosen (call it )
such that y(x) — 0 as x—oo corresponds to a neutral atom. Values smaller (more

negative than ®) result in the value of y to dropping to 0. Values greater than ® result in
an unbounded solution.



Lee and Wu[9] discuss these numerical problems and generate a solution shown

in Figure (3). Each of the solvers (Script, Polymath, PLAS) had to have their parameters
adjusted so as to match the Lee and Wu solution. up to about x = 5. However, at large
values of x (greater than 5) the solvers begin to deviate and finally “blow-up”.

A detailed discussion of the equation from a detailed physics point of view can be found

in References [10] and [11].

Thomas-Fermd Potential of a Meutral Atom: (00 = -1.58807102
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Figure 3. Solution of the Thomas-Fermi Equation



Conclusions

For the beginner there is a learning curve to effectively work in the COMSOL Script
environment However, for the solution of ordinary differential equations, the system
offers a reliable routine, daspk, which duplicates the results obtained from other
routines. Adding an extra equation to record the independent variable is a convenient
method to output the dependent and independent variables together.

Nomenclature

1. White Dwarf Equation

y = dependent variable

X = t, the independent variable

C = a constant

i =y

V2 = vy, dependent variable

V3 = dependent variable equal to t (dy;/dt=1)

2 The Generalized Equation of Blasius

= dependent variable

t, the independent variable
= constant, set to 1
= constant, set to 0
= constant , equal to 2.0

1 =y

2 =y’

3 =y, the dependent variable

<Y< RO XY

3. Thomas-Fermi Equation

y = dependent variable

X = t, the independent variable

yi =y

V2 =y, dependent variable

® = value of y;(0) which satisfies boundary condition

y(x) = 0as x— o0
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