
 1

 Computing With COMSOL Script™: Differential Equations

 Edward M. Rosen - EMR Technology Group

There are a number of systems for carrying out numerical computations. Each has its
limitations, features and capabilities. The use of a particular system to solve a problem
often depends on the user’s familiarity with the system, its accessibility, capabilities, and
the cost. Edgar [1] discusses many of the systems in use in academia.

COMSOL Script provides a large number of capabilities. It can run MATLAB®
m-files, interface to COMSOL Multiphysics™ (for partial differential equations) and can
carry out a large variety of mathematical calculations. It is very interactive. Having a
single system to carry out such a variety of computations makes it an attractive platform.

In order to become familiar with the system, the author decided to explore COMSOL
Script’s capability to solve ordinary differential equations. A User’s Guide [2] is
available that describes the system.

Some Aspects of COMSOL Script

The results of commands entered into the command window are immediately displayed
unless the command is followed by a ‘;’.

There is an ‘edit’ command that allows editing as well as a ‘type’ command. These are
very convenient commands when checking the contents of an m-file while remaining in
the command window. The ↑ key and ↓ key are used to recall previously entered
commands.

To solve sets of differential equations:

1. Invoke COMSOL Script command window. This can be done from the
 COMSOL Multiphysics menu file.

2. Store any m-files (functions) in a folder that is on the search path. If the folder is
 named MyCOMSOLFcns then:

 path (‘C:\MyCOMSOLFcns’, path)

 places MyCOMSOLFcns on the top of the search path

3. Invoke the differential equation solver daspk . If there are no parameters:

 [t,y] = daspk (‘fname’, [0 5], [0;1])

 If there are parameters, b and c to be passed:

 2

 [t,y] = daspk (‘fname’, [0 5], [0;1], opts, b, c)

 where fname is the name of the m-file

 [0 5] is the lower and upper bounds of time (i.e independent variable)

 [0;1] is the initial values for the dependent variables (for two equations)

 opts is a vector of options (to set tolerances for example)
 = odeset (‘RelTol’, 1e-8)

 b and c are parameters in the differential equations

4. The ouptut is placed into the t and y vectors

For a test of daspk, three intial value differential equations were studied. The results
are compared to two other systems for solving differential equations, PLAS [3] and
Polymath [4].

The White-dwarf Equation

Davis [5} describes the equation which S. Chandrasekhar [6] introduced in his study of
the gravitational potential of degenerate (white-dwarf) stars:

 0)(2 2/32
2

2

=−++ cyx
dx
dy

dx
ydx (1)

 y(0) = 1

 y’(0) = 0

Rewriting Equation (1) in terms of y2 and t results in::

 0)(2 2/32
2

2
2

2
2

=−++ cyt
dt

dy
dt

ydt (2)

 3

Let

 y1 =
dt

dy2

Then

 2/32
2

1'
1)(2 cy

t
yy −−−= (3)

and
 1

'
2 yy =

with boundary conditions:

 0)0(1 =y

 1)0(2 =y

1) The following m-file is stored in the folder MyCOMSOLFcns with the
 name dwarf.m (using any text editor)

 function ydot = dwarf(t, y, c)
 ydot = zeros(2, 1);
 ydot(1) = -2*y(1)/t- (y(2)^2-c) ^1.5;
 ydot(2) = y(1);
 ydot(3) = 1;

 Since the output [t,y] comes out sequentially, first t and then y, it
 is sometimes convenient to add an extra equation (of form dy3/dt = 1)
 to record the independent variable along with the two dependent variables
 on output.

 2) In the command window the ‘path’ command is used to add MyCOMSOLFcns to
 the search path:

 path (‘C:\MyCOMSOLFcns’, path)

 3) The function daspk is invoked:

 [t,y] = daspk (‘dwarf’, [0.000001 4], [0;1;0.000001], odeset (‘RelTol’, 1e-8) , 0.1)

 In order to avoid division by 0, the initial time is set to 1e-6. Final time is 4.
 The function odeset is used to set the Relative Tolerance to 1.e-8 (default is 1e-3)
 The 0.1 is the value of c.
.

 4

 The output is placed into t and y and displayed in the command window.

 Figure 1 indicates the results of the integration and compares it to the
 results obtained from PLAS and Polymath.

 Figure 1. Solution of the White Dwarf Equation

The Generalized Equation of Blasius

As described in Davis [5] the generalized equation of Blasius is:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=+ 1

2

2

2

3

3

dx
dyb

dx
yday

dx
yd (3)

 where

 y (0) = 0
 y’(0) = 0
 y’(x) → k as x → ∞ (k is a constant)

When b ≥ 0 a unique solution exists.

The equation arises when one considers the flow of a fluid which streams past a

 5

very thin flat plate placed edgeways in it (Schlichting [7]).

Rewriting Equation (3) in terms of y3 and t results in

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=+ 1

2
3

2
3

2

3
3

3

dt
dy

b
dt

yd
ay

dt
yd

 (4)

Let y2 =
dt

dy3 or y3’ = y2

dt

dyy 2
1 = or y2’ = y1

 Then substituting in Equation (4) results in:

)1(' 2

2131 −−−= ybyayy

With boundary conditions

 y1 (0) = 1.32824 (Taken from Davis [5] p 404
 for k = 2 as given by Howarth [8]} → y’’

 y2 (0) = 0 → y’
 y3 (0) = 0 → y

A file blasius.m is placed into the folder C:\MyCOMSOLFcns:

 function ydot = blasius(t, y, a, b)
 ydot = zeros(3,1);
 ydot(1) = -a*y(3)*y(1) - b*(y(2)^2-1);
 ydot(2) = y(1);
 ydot(3) = y(2);

In the command window the folder MyCOMSOLfcns is placed on the path:

 path (‘C:\MyCOMSOLfcns’, path)

Then the following is entered into the command window:

 [t,y] = daspk(‘blasius’, [0 4.4], [1.32824; 0; 0], odeset (‘RelTol’, 1e-8) , 1, 0)

 6

Alternately:

 opts = odeset (‘RelTol’, 1e-8)
 [t,y] = daspk(‘blasius’, [0 4.4], [1.32824; 0; 0], opts, 1, 0)

The integration is carried out between 0 and 4.4, the initial values of
the dependent variables are 1.32824, 0. and 0 and the value of a = 1 and b= 0..

The results of the integration is shown in Figure (2). The results of Howarth
is taken from Davis [5] is included for comparison

 Figure 2. Solution to the Blasius Equation

Originally Blasius solved Equation (4) with a = 0.5, b= 0 and k = 1. Howarth (in
Schlicting [7], p 107) indicated that setting y’’(0) = 0.33206 in this case leads to a
solution (i.e. y’(x) → 1 as x → ∞).

The Thomas-Fermi Equation

In 1927 L. H. Thomas and E. Fermi independently gave a method of studying
the electron distribution in an atom using statistics for a degenerate gas. This led to the
Thomas-Fermi equation:

 2/3
2

2 1 y
xdx

yd
= (5)

 y(0) = 1
 y(x) → 0 as x → ∞

Rewriting Equation (5) in terms of y2 and t results in

 7

 2/3
22

2
2 1 y

tdt
yd

= (6)

Letting

 y1 =
dt

dy2 or y2’ = y1

Substituting into Equation (6)

 y1’ = 2/3
2

1 y
t

with

 y1 (0) = -1.58807102 (Taken from Lee and Wu [9]) → y’

 y2 (0) = 1 → y

To solve Equation (6) an m-file (fermi.m) is developed and placed into folder
MyCOMSOLFcns.

 function ydot = fermi(t, y)
 ydot = zeros(2,1);
 ydot(1) = (t^-0.5)*(y(2)^1.5);
 ydot(2) = y(1);

 In the command window the path is set (as above). Then the following is entered
 into the command window (to set the parameters):

 opts = odeset (‘AbsTol’, 1e-8, ‘RelTol’, 1e-8)

Then to integrate from 1e-11 to (say) 5

 [t,y] = daspk (‘fermi’, [1e-11, 5], [-1.58807102;1], opts)

The results are shown in Figure (3).

The solution is very sensitive to the initial value of y1(0) . The value chosen (call it ω)
such that y(x) → 0 as x→∞ corresponds to a neutral atom. Values smaller (more
negative than ω) result in the value of y to dropping to 0. Values greater than ω result in
an unbounded solution.

 8

Lee and Wu[9] discuss these numerical problems and generate a solution shown
in Figure (3). Each of the solvers (Script, Polymath, PLAS) had to have their parameters
adjusted so as to match the Lee and Wu solution. up to about x = 5. However, at large
values of x (greater than 5) the solvers begin to deviate and finally “blow-up”.

A detailed discussion of the equation from a detailed physics point of view can be found
in References [10] and [11].

 Figure 3. Solution of the Thomas-Fermi Equation

 9

Conclusions

For the beginner there is a learning curve to effectively work in the COMSOL Script
environment However, for the solution of ordinary differential equations, the system
offers a reliable routine, daspk, which duplicates the results obtained from other
routines. Adding an extra equation to record the independent variable is a convenient
method to output the dependent and independent variables together.

Nomenclature

1. White Dwarf Equation

 y = dependent variable
 x = t, the independent variable
 c = a constant
 y1 = y’
 y2 = y, dependent variable
 y3 = dependent variable equal to t (dy3/dt = 1)

2 The Generalized Equation of Blasius

 y = dependent variable
 x = t, the independent variable
 a = constant, set to 1
 b = constant, set to 0
 k = constant , equal to 2.0
 y1 = y’’
 y2 = y’
 y3 = y, the dependent variable

3. Thomas-Fermi Equation

 y = dependent variable
 x = t, the independent variable
 y1 = y’
 y2 = y, dependent variable
 ω = value of y1(0) which satisfies boundary condition
 y(x) → 0 as x→ ∞

 10

References

1. Edgar, T. E. “Computing Through the Curriculum: An Integrated Approach
 for Chemical Engineering”, http://www.CACHE.org/

2. COMSOL Script User’s Guide, Version 1.0 , COMSOL AB 1.

3. Rosen, E. M., “Solving Differential Equations Using PLAS”, CACHE News, No 55
 Fall 2002

4. Cutlip , M.B. and M. Shacham, “Polymath”, http://www.polymat-software.com/

5. Davis, Harold T., “Introduction to Nonlinear Differential and
 Integral Equations”, United States Atomic Energy Commission
 Sept 1960

6. Chandrasekhar, S. An Introduction to Stellar Structure, 1958

7. Schlichting, H., Boundary Layer Theory, McGraw-Hill, New York (1955),
 pp 103, 118

8. Howarth, L., “On the solution of the laminar boundary layer equations”,
 Proc. Roy. Soc., London, A, 164, 547 (1938).

9. Lee, P.S. and Ta-You Wu, “Statistical Potential of Atomic Ions”,
 Chinese Journal of Physics, Vol 35, No 6-11, Dec 1997
 http://psroc.phys.ntu.edu.tw/cjp/find_content.php?year=1997&vol=35&no=6-II

10. Physics 221B Spring 1997 Notes 23 The Thomas-Fermi Model
 http://socrates.berkeley.edu/~tplagge/221-littlejohn/23-thomas-fermi-model.pdf

11. Hille, E. “On the Thomas-Fermi Equation”
 http://www.pnas.org/cgi/reprint/62/1/7

http://psroc.phys.ntu.edu.tw/cjp/find_content.php?year=1997&vol=35&no=6-II
http:///
http://www.pnas.org/cgi/reprint/62/1/7

