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              Computing With COMSOL Script™: Differential Equations
 
                            Edward M. Rosen  - EMR Technology Group       
 
There are a number of systems for carrying out numerical computations. Each has its 
limitations, features and capabilities. The use of a particular system to solve a problem  
often depends on the user’s familiarity with the system, its accessibility, capabilities, and 
the cost.  Edgar [1] discusses many of the systems in use in academia.  
 
COMSOL Script provides a large number of capabilities. It can run MATLAB® 
m-files, interface to COMSOL Multiphysics™ (for partial differential equations) and can 
carry out a large variety of mathematical calculations. It is very interactive. Having a  
single system to carry out such a variety of computations makes it an attractive platform. 
 
In order to become familiar with the system, the author decided to explore COMSOL 
Script’s capability to solve ordinary differential equations. A User’s Guide [2] is 
available that describes the system. 
 
Some Aspects of COMSOL Script  
 
The results of commands entered into the command window are immediately displayed 
unless the command is followed by a ‘;’. 
 
There is an ‘edit’ command that allows editing as well as a  ‘type’ command.  These are 
very convenient commands when checking the contents of an m-file while remaining in 
the command window. The ↑ key and ↓ key  are used to recall previously entered 
commands.  
 
To solve sets of differential equations: 
 
1. Invoke COMSOL Script command window. This can be done from the  
    COMSOL Multiphysics menu file. 
 
2. Store any m-files (functions) in a folder that is on the search path. If the folder is 
   named MyCOMSOLFcns then: 
 
    path (‘C:\MyCOMSOLFcns’, path) 
 
   places  MyCOMSOLFcns  on the top of the search path 
 
 
3. Invoke the differential equation solver daspk . If there are no parameters: 
 
     [t,y] = daspk (‘fname’, [0 5], [ 0;1]) 
 
     If  there are parameters, b and c  to be passed: 
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     [t,y] = daspk (‘fname’, [0 5], [ 0;1], opts, b, c ) 
 
     where   fname is the name of the m-file 
 
                  [0 5] is the lower and upper bounds of time (i.e independent variable) 
 
                  [ 0;1] is the initial values for the dependent variables (for two equations)  
 
                  opts is a vector of options (to set tolerances for example) 
                  = odeset (‘RelTol’, 1e-8) 
 
                  b and c are parameters in the differential equations 
 
4. The ouptut is placed into the t and y vectors 
 
For a test of daspk, three intial value differential equations were studied. The results 
are compared to two other systems for solving differential equations, PLAS [3] and  
Polymath [4]. 
 
 
 
The White-dwarf Equation 
     
 
Davis [5} describes the equation which S. Chandrasekhar [6] introduced in his study of 
the gravitational potential of degenerate (white-dwarf) stars: 
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Rewriting Equation (1) in terms of y2 and t results in:: 
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with boundary conditions: 
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1)  The following m-file is stored in the folder MyCOMSOLFcns with the  
      name dwarf.m (using any text editor) 
 
                  function ydot = dwarf(t, y, c) 
                  ydot = zeros(2, 1); 
                  ydot(1) = -2*y(1)/t- (y(2)^2-c) ^1.5; 
                  ydot(2) = y(1); 
                  ydot(3) = 1; 
 
        Since the output [t,y] comes out sequentially, first t and then y, it 
        is sometimes convenient to add an extra equation (of form dy3/dt = 1) 
        to record the independent variable along with the two dependent variables 
        on output. 
 
 2)   In the command window the ‘path’ command is used to add MyCOMSOLFcns to  
       the search path:   
 
       path (‘C:\MyCOMSOLFcns’, path) 
 
 3)  The function daspk is invoked: 
 
      [t,y] = daspk (‘dwarf’, [0.000001 4 ], [ 0;1;0.000001], odeset (‘RelTol’, 1e-8) , 0.1)  
         
      In order to avoid division by 0, the initial time is set to 1e-6. Final time is 4. 
      The function  odeset is used to set the Relative Tolerance to 1.e-8 (default is 1e-3) 
      The 0.1 is the value of  c.  
. 
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        The output is placed into t and y and displayed in the command window. 
 
        Figure 1 indicates the results of the integration and compares it to the 
        results obtained from PLAS and Polymath. 
 
 
 
 

  
 
 
 
                      Figure 1. Solution of the White Dwarf Equation 
 
 
 
The Generalized Equation of Blasius  
 
As described in Davis [5] the generalized equation of Blasius is: 
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 where  
 
         y (0)  =  0 
         y’(0) = 0 
         y’(x) → k as x → ∞  (k is a constant) 
 
When b ≥ 0 a unique solution exists. 
 
The equation arises when one considers the flow of a fluid which streams past a  
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very thin flat plate placed edgeways in it ( Schlichting [7]). 
 
Rewriting Equation (3) in terms of y3 and t results in 
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Let     y2 = 
dt

dy3         or  y3’ = y2

          
dt

dyy 2
1 =        or  y2’ = y1

 
 
 Then substituting in Equation (4) results in: 
 
              )1(' 2

2131 −−−= ybyayy
 
With boundary conditions  
 
 
           y1 (0)  =  1.32824        (Taken from Davis [5] p 404 
                           for k = 2        as given by Howarth [8]}                 → y’’ 
                           
           y2 (0) =   0                                                                               → y’ 
           y3 (0)  =  0                                                                               → y 
 
 
A file blasius.m is placed into the folder C:\MyCOMSOLFcns: 
 
              function ydot = blasius(t, y, a, b) 
              ydot = zeros(3,1); 
              ydot(1) = -a*y(3)*y(1) - b*(y(2)^2-1); 
              ydot(2) = y(1); 
              ydot(3) = y(2); 
  
In the command window the folder MyCOMSOLfcns is placed on the path: 
 
              path (‘C:\MyCOMSOLfcns’, path) 
 
Then the following is entered into the command window: 
 
 [t,y] = daspk(‘blasius’, [0  4.4], [1.32824; 0; 0], odeset (‘RelTol’, 1e-8) , 1, 0) 
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Alternately: 
 
 opts =  odeset (‘RelTol’, 1e-8) 
 [t,y] = daspk(‘blasius’, [0  4.4], [1.32824; 0; 0], opts, 1, 0) 
 
 
The integration is carried out between 0 and 4.4, the initial values of 
the dependent variables are 1.32824, 0. and 0 and the value of a = 1 and b= 0.. 
 
The results of the integration is shown in Figure (2). The results of Howarth 
is taken from Davis [5] is included for comparison 
 

 
 
 
                 Figure 2.  Solution to the Blasius Equation 
 
Originally Blasius solved Equation (4) with a = 0.5, b= 0 and k = 1. Howarth (in 
Schlicting [7], p 107) indicated that setting y’’(0) = 0.33206  in this case leads to a 
solution (i.e.  y’(x) → 1 as x → ∞ ). 
            
 
The Thomas-Fermi Equation 
 
In 1927 L. H. Thomas and E. Fermi independently gave a method of studying 
the electron distribution in an atom using statistics for a degenerate gas. This led to the  
Thomas-Fermi equation: 
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Rewriting Equation (5) in terms of y2 and t results in  
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Letting   
 

               y1   =   
dt

dy2          or  y2’ = y1

 
Substituting into Equation (6) 
 

               y1’ = 2/3
2

1 y
t

 

with 
 
               y1 (0)  = -1.58807102  (Taken from Lee and Wu [9])                →   y’ 
 
               y2 (0) = 1                                                                                     →   y 
 
To solve Equation (6) an m-file (fermi.m) is developed and placed into folder 
MyCOMSOLFcns. 
          
                        function ydot = fermi(t, y) 
                        ydot = zeros(2,1); 
                        ydot(1) = (t^-0.5)*(y(2)^1.5); 
                        ydot(2) = y(1); 
 
 In the command window the path is set (as above). Then the following is entered 
 into the command window ( to set the parameters): 
 
       opts = odeset (‘AbsTol’, 1e-8, ‘RelTol’, 1e-8) 
 
Then to integrate from 1e-11 to (say)  5 
 
       [t,y] = daspk (‘fermi’, [1e-11, 5], [-1.58807102;1], opts) 
 
The results are shown in Figure (3). 
 
The solution is very sensitive to the initial value of y1(0) . The value chosen (call it  ω) 
such that  y(x) → 0 as x→∞ corresponds to a neutral atom. Values smaller (more 
negative than  ω) result in the value of y to dropping  to 0. Values greater than ω  result in 
an unbounded solution.   
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Lee and Wu[9] discuss these numerical problems and  generate a solution shown 
in Figure (3). Each of the solvers (Script, Polymath, PLAS) had to have their parameters 
adjusted so as to match the Lee and Wu solution. up to about x = 5. However, at large 
values of x (greater than 5) the solvers begin to deviate and finally “blow-up”.   
 
A detailed discussion of the equation from a detailed physics point of view can be found  
in References [10] and [11]. 
 
 

 
 
              Figure 3. Solution of the Thomas-Fermi Equation 
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Conclusions 
 
For the beginner there is a learning curve to effectively work in the COMSOL Script 
environment  However, for the solution of ordinary differential equations, the system 
offers a reliable  routine, daspk, which duplicates the results obtained from other 
routines. Adding an extra equation to record the independent variable is a convenient 
method to output the dependent and independent variables together. 
 
Nomenclature 
 
1. White Dwarf  Equation  
  
     y               =  dependent variable 
     x               =  t, the independent variable 
     c               = a constant 
     y1             =  y’ 
     y2             =  y, dependent variable 
     y3             =  dependent variable equal to t  (dy3/dt = 1) 
 
2   The Generalized Equation of Blasius 
 
     y               =  dependent variable 
     x               =  t, the independent variable 
     a               = constant, set to 1 
     b               = constant, set to 0 
     k               = constant , equal to 2.0 
     y1             = y’’ 
     y2             = y’ 
     y3             = y, the dependent variable 
 
3. Thomas-Fermi Equation  
 
     y               =  dependent variable 
     x               =  t, the independent variable 
     y1             =  y’ 
     y2             =  y, dependent variable 
     ω              =  value of y1(0) which satisfies boundary condition 
                          y(x) → 0 as x→ ∞ 
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