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TEACHING PROCESS CONTROL
WITH A NUMERICAL APPROACH
BASED ON SPREADSHEETS

CHRISTOPHER RI1vES AND DANIEL J. LACKS
Tulane University « New Orleans, LA 70118

courses uses analytic techniques based on Laplace

transforms to solve the relevant differential equa-
tions.*¥ The mathematical manipulations involved in these
analytic solutions are so complex and non-intuitive, however,
that students can lose sight of the physical significance of the
results. Numerical solutions offer a remedy to this problem
and can be used in conjunction with traditional analytic solu-
tions to strengthen the instruction of process control. We
emphasize that numerical solutions are not intended to re-
place analytic methods, but should instead be used in addi-
tion to analytic methods.

The use of computersin obtaining numerical solutions can
give an enhanced physical intuition and understanding that
can be difficult to achieve from
analytic solutions aone. As a re-

T he traditional method for teaching process control
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Figure 1. Spreadsheet used to determine the response of a 2nd order process to a step
change in the disturbance. The step function is implemented with an IF function of the
form IF (expression, value if true, value if false). Arrows indicate that cells should be
copied and pasted downward for approximately 5,000 to 10,000 rows.
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title of arecent articlein Chemical and Engineering News:
“Thinking Instead of Cookbooking: When Computers
Take Over the Dirty Work ... Students Can Focus on the
Bigger Picture.”12

The differential equations that arise in process control ap-
plications are readily solved numerically by using simple
spreadsheets that can be constructed by the studentsin less
than five minutes. Students can experiment with different
control schemes and parameters in order to gain an under-
standing of how each parameter affects the response of the
system. They develop anintuitive feel for how a system will
respond to input changes and how this response can be con-
trolled. Then, they discover how to optimize the control.

Thisstrategy has been used in the process control course at
Tulane. The numerical approach is used first to introduce a
topic, allowing studentsto obtain agood physical understand-
ing before proceeding. Thetopicisthen addressed morefully
with the traditional analytical approach based on Laplace
transforms. Studentsfollow the analytical approach more eas-
ily at this point since they aready have a solid physical un-
derstanding from the numerical approach.

DESCRIPTION OF APPROACH

This section describes how the numerical approach using
spreadsheets can be used to teach most major topicsin apro-
cess control course, including process dynamics, frequency
response analysis, feedback control, and advanced control

45 5w
4 4
35 3.5
3 3
25 25
2 2
1.5 15
05 05
0 0
0.5 05
o 50 100 150 200 o 20 40 60 80 100
time time
45 10
4 {c} s (d)
3.5 6
3
25 4
2 2
1.5 o
1
05 2
0 -4
0.5 %
0 20 40 60 80 0 20 40 60
time time

Figure 2. Response of a 2nd order process to a step change
in the disturbance for (a) {=3 (b) {=0.2 (c) {=0 (d)
{ =-0.1 The bold line is the disturbance, and the thin line
is the response.
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techniques such as feedforward and cascade control.
Process Dynamics

As an example, the response of alinear second-order pro-
cess is examined.¥ A linear second-order process is de-
scribed in general by

12y" 4201y’ +y = KF(t) )

wherey isthe response of the process (output), y' = dy/dt, y"
= d?y/dt?, f is the disturbance (input), K isthe gain, t isthe
characteristic time, and ¢ is the damping factor.

Differential equations can be solved numerically using
Euler's Method. This method is implemented for second-
order differential equation by repeatedly applying thefollow-
ing algebraic equations for small time increments, At:

y(t+At) = y(t) +y (At (2)

Y (t+A) =y (1) +y" (DAt 3
Notethat theinitial values of y and y' must be specified, and
the values of y"(t) are obtained by rearranging Eq. (1).

v (1) = KO ch ®) -y
Below, we present the implementation of this method for a
step changein f(t).

The spreadsheet used to solve this problem is shown in
Figure 1. The results are easily displayed in graphical form
by plotting y and f together as functions of time. All param-
eters are defined at the top of the spreadsheet, and their cell
locations are referenced in the relevant equations. Upon
changing parameter values, the graphical display of the re-
sults is updated immediately, without rewriting any of the
spreadshest.

The physical significance of the damping factor, {, inasec-
ond-order linear differential equation can be demonstrated
with thisapproach by comparing the responseto astep change
for different values of {. For {>1, the response is
overdamped, and it reaches a steady state without oscillating
(Figure 2a). For 0<{ <1, theresponseis underdamped, and
it exhibits decreasing oscillations as it reaches a steady state
(Figure 2b). For £ =0, the response is undamped, and it os-
cillates indefinitely (Figure 2c shows a slight increase in
amplitude with time, dueto numerical error—see Discussion
section). For { < 0, theresponseis unstable, and it increases
without bound (Figure 2d). All of these results are generated
and graphically displayed in a matter of seconds once the
spreadshest is constructed.

(12)

Frequency Response Analysis

Thefrequency-dependent response to an oscillating distur-
banceisimportant in many fields, including process control.
Thetraditional method of teaching frequency response analy-
sisis given in process control textbooks.[*¥ A second-order
process (Eg. 1) isexamined here, and the spreadsheet used to
solve this problem (Figure 3) isjust a slight modification of
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to react, and the response increas-
ingly lags behind the disturbance
(Figures 4b and 4c). Additionally,
the amplitude of the response usu-
ally decreaseswith increasing frequency (Figures4a, 4b, and
4c). For £ <1 and small frequencies, however, the behavior
of alinear second-order system is unusual in that the ampli-
tude increases with increasing frequency (Figure 4d). Note
that theimmediate graphical resultsallow studentsto quickly
and easily experiment with different values of o and .

Feedback Control

A feedback control mechanism measures the output of the
process, compares it to the desired value (the set point), and
then altersan input to the processin order to bring the output
closer to the desired value.*9

Theoutput of aproportional -integral-derivative (PID) con-
troller is given by

Kt de
=K.e+—L [edt+K — 4
Ye c T _I(; cb dt (4)

where e=yg, —Y, Vg isthe set point, and y is the output of
the process. When the system is not under any control, the
values of K. and tp are set equal to zero, while 1, is set
equal toinfinity. Theintegral term can be cal cul ated numeri-
caly as

t

[edt = e(t;)At

0 i

(5

and the derivative term can be calculated numerically as

de(t)  e(t)—eg(t - At)
dt At

(6)

The numerical approach isapplied here to the feedback con-
trol of aprocess consisting of threefirst-order systemsin se-
ries. The dynamics of the other parts of the control loop (e.g.,
measuring device) are not included for simplicity, but can
easily beincluded if desired (as pointed out in the Discussion
section). A process consisting of three first-order systemsin
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Figure 3. Spreadsheet used to determine the response of a 2nd order process to an
oscillating disturbance. Arrows indicate that cells should be copied and pasted down-
ward for approximately 5,000 to 10,000 rows.
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Figure 4. Response of a 2nd order process to an oscillating
disturbance for (a) { =15, ®=0.1; (b) {=1.5, v =0.3; (c)
(=15, o=2; (d) {=05 ®=0.2. The bold line is the
disturbance, and the thin line is the response.

series is described by three coupled first-order differential
equations,

riy'i+yi:Kif+prc i=1

(7
(8

wherei isthe system number. These coupled differential equar
tions are numerically integrated using Euler's method by re-
peatedly applying the algebraic equations

Ty +Yi =Ky =23

yilt+A)=yi()+yi(Hat =123 )
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wherethe Y; (t) are obtained from Equations 7 and 8. The spreadsheet
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Figure 7. Tuning of PID parameters with Ziegler-Nichols
method, for a process consisting of three first-order systems in
series with feedback control. (a) Determination of KI® and
Py; (b) PID with Ziegler-Nichols parameters: K. =3.7, 1, =54,
Tp =1.4. The bold line is the disturbance, and the thin line is
the response.

and error to be 6.3 (Figure 7a), and the value of P, isobserved
to be 10.8. The response using the Ziegler-Nichols parameters
isshown in Figure 7b.

Feedforward Control

A feedforward control mechanism measures the disturbance
and uses this measured value to adjust an input variable with
the goal of keeping the process output at the desired value.
The output of a simple feedforward controller is given by

Ye= Aysp - Bf (12)
where A and B are controller parametersthat will depend on the
particular process to be controlled.

The numerical approach is applied here to the feedforward
control of a process consisting of three first-order systems in
series (Eq. 7 and 8). The spreadsheet for this problem is shown
in Figure 8. Perfect control can be obtained by choosing the
parameters such that the system is at steady state with the pro-
cessoutput at the set point (i.e., y1 =y, =y3 =0 and Y3 = Yg).
From equations 7 and 8, it is easily found that the parameter
values that yield perfect control are A =1/(KK;K3) and

()
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time time

Figure 9. Response of a process consisting of three first-or-
der systems in series with feedforward control to a step change
in the disturbance. (a) A=1/(KyK;K3)=0.842 and
B=K, /K, =0625; (b) A=0.842and B=0.5. The bold line
is the disturbance; the thin line is the response.
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Figure 8. Spreadsheet used to determine the response of a process consisting of three first-order systems in series with feedforward

control. Arrows indicate that cells should be copied and pasted downward for approximately 5,000 to 10,000 rows.

o N| ™ w

Chemical Engineering Education



achieved
n
isindeed ed whe
trol is hiE’V. e real
perfec no 'O-ngure ob). aramet
L rigure 2 pe wn in by koown P
in t C show! ately
s shown Perf/e(l:< (as'th accur 1The
A ers. P Ith a . I
K,/ Kpparam":'tr B }f[lsi mplet"‘é)ract|c""I Ondary)u e (set
B= these Ks) 0 ly not ic, no andsec-red va ntrol.
ith K Ko eral_eapst imary desi co d
w 1/ (Kp e gen ly id (prim. the ndarY on
Aiessasar lison | loops tput to ertity o this 50
roc ontro / ntrol ou for tity .
L3 scade ntrol u res point 'ntermedariable. rder sy medict
£ Ca adeco | comp d st anint put v first-ol inter first-
g < primary ieldi y contro owto isting scade e outpu used forr the
2 ?‘_’ § point), )éndargtermine cess Congine | loop is ttr0||er I-SS used flc;m is
n 3 @ he sec tod a pro Oexamntro con ller is rob
. . = Iet point ple of isused to|ary “ integral contr?ve thisp 1
= E3 & he examand 8) secon tional - al-only to so igure 1
| 3 £ T (Eq.7 in the e t used ninFig igure
2 g = ser'es,,[y uSEd(yl). A pd apropoadshee | isshow ntrol (F dary
& = tl rei col on
28 g o orter process oller, " Thesp ith fectback | bogable o
) 2 ‘5-3§ %8 order p contr roller. cascad ith f-eedir1tha-[| be Stablarge
E gg T o imary cont 10. with nsewl ificial d wil itrarily se
T pri dary re stem espo arti an bit on
- ) on in Figu hesy ther hat 0cess anar heresp en-
] s £2 s nin of the s rtot mew pr efore, aket ing
fg ® 8 show onse perio |elsspst-0rd.er Ther tom ible higher
K i g5 o 'iiexamoﬂw o s oan be " process
3 5 _ olfer is
| 2 £s ] thlsresfethattsists of y contr e Canonse I meor a
T =} ho] (NO con ndal’ o“er resp ti
. o, % § 7b)tr0| IOOFf)the%CO y Contrily fasltudesdead
>3 2z n ol dar itrar inc
z col e n it in
B o 8 g g anyVaI?theseCc%hisaézry'oop in the
e o® 2 2 ks valueoily fest secon ented in in
e 3 8 2 bitrar if the ). implem duced
T & = © 17] ar o | rder Impl intro Ves
3 87— 2o a, eg nd-o was icisin mo S
§ >3 g2 err]an seco oach eadSheetS;t atoplt thec'&uatior;
1 & 8 == t N pr r -fir’,ex’ ing eq ut-
g 0o 8 S g SIo fAp ing sp lows: fi ed: n ernin comp
S L3N] o 5 us jon o us follo eriv ov ate col aly,
°of "3 g 53 Dlslcmenta“o approa‘%r:]'ane;onsaresglve theog sepir ssed: fr:‘s are
3 Q e ical at u ts ly o isc or
o 28 Imp eri rseat eq dents ¢ ual sd sf
3 is num ou ing ud id si ran
B > 2 832 process andthuter Iab'ts do t ceof t onL merical and
% = o re, p den ifican based ina nu ions, -
P = lectu r com stu ignif ions iring lutio rob
] E 2 an to (-)ually (@l sical .Sgsol utio S requ tical S3§)Somep Its
- c= o eric he phy alytic oblem analy el areraﬂum
w 2 I o num andt. nal an rmat. lude pr uiring packagtscomp |tsfroe
REE g g erS)’tradi“? ture fo ents ini)lems N ftWaraetstuden sto resuple, on
= 3 S he inlec ignm rol ion sof th tion Xam
s i = g :Eaught, i e assgmeets’n?rol S‘at'sreq“';ﬁcal so:; For e o
Ty g 3 2 Home:Wg Spreadthe co Ie?m num solutio ss COnSIieS
S 2 oI —> gE usin use fr tical rocess serie
. 2 =8y 5 2 tions s that analy ofap ms in ein
2. .. 3 Sz problem sponseof Syst:;‘3ID cha”?( =2
§ oSy g c 2 Re r s riKe
mE o 3 e EN - 1. ) -0 a lle _ .
g n "‘% :' = g ﬁ f Figurelree fIrStntrOI to Contror: Kc_lg)e
e . & 3 f th eco imary trolle ndt
a - 58 *w&ﬁ E.b 7 ing o scad e (pr con ce, a
= k3 c ith ca nc ry ban
i U) 1) 6 |th_ rba da isturl
© S o 5 w distu econ dist
— < o o the =5, is the nse.
1N and pldineis e
b > & ] 0 e ist
o 2 (SN 2 ‘ 6 Th inei
i — o 14 40 inli
5 - g th
- o~ g ,{‘ 0 20 time
2o @ g ! o
m§ 5 - Elto]"lgl3
i hEbd f[ HEEEEEE
1 FEELE

247
2

200

Summer



homework problem requiresthat students find the maximum
value of a controller gain for a proportional-only controller
in acertain process by three methods: by trial and error with
numerical solutions, by deriving thetransfer function and find-
ing the gain that leads to positive real parts of its poles, and
by the Bode stability criterion using analytical expressions
for phase lags and amplitude ratios. The students compare
the results for the maximum controller gain from these
different methods and find them to be the same (within
numerical error).

The exams test the students' knowledge of applying nu-
merical methods to process control problems, in addition to
the traditional process control material. One of the exams
includesacomputer part (givenin classin our computer com-
puter 1ab), where students solve a problem numerically with
aspreadsheet and turn in the printed result. The other exams
have problemsin which students must show how to set up a
spreadsheet to numerically solve agiven problem, providing
all of the relevant equations.

Students found the numerical approach using spreadsheets
to be extremely useful in understanding the concepts under-
lying process control. In unsolicited comments on the course
evaluations, two-thirds of the students remarked that the nu-
merical approach wasthe most val uabl e aspect of the course.

The students al so seemed to genuinely enjoy this approach.
When problems were solved with this method in the com-
puter lab, students were often so eager to discover the ef-
fects of changing some parameters that they would proceed
ahead of the discussion. They would also occasionally con-
tinue experimenting with the effects of different parameters
after the class had ended.

Other Issues

The numerical approach is more general than the analytic
approach, in that it can aso be applied to nonlinear differen-
tial equations, i.e., alinearization approximation is not nec-
essary as it is for the analytic approach based on Laplace
transforms. To emphasize this point, a homework problem
was given in which students investigate the frequency re-
sponse for a process described by the nonlinear differential
equation y +y? =f (whereaisthe number of lettersin their
last name divided by five), and then use the results to con-
struct Bode and Nyquist diagrams.

A concern with the numerical approach, of courseg, is that
there is numerical error in the results. Students should be
aware of the numerical error and that the error can be re-
duced by decreasing the time step At or by using a more
sophisticated integration method (e.g., Runge-Kuttaor apre-
dictor-corrector method). A reasonable time step for these
problemsis At = t/100, where 7 isthe smallest characteris-
tic time for the system.

Although excluded herefor simplicity, it isstraightforward
toincludein thisapproach the dynamics of other elements of
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the control loop, such as actuators (e.g., valves) and measur-
ing devices. Including the dynamics of these dements would
amount toincludingafew morecoupled differentid equations which
trandaesto afew more columns on the spreadshedt.

Dead timeisalso straightforward to includein thisapproach.
Tointroduce dead timeto avariabley, anew variable, Y. dexd,
is defined such that v, gea(t) = Y(t — tgeas) . The values for
Y. deag &€ Obtained in the spreadsheet from the values of v,
by setting the cell for y, 4o @ thetime, t, equal to the value
of thecell fory at thetime t — tyeq (i-€., tgeaq / At rowsabove
in the spreadsheet).

The present approach is different than, but complementary
to, an approach that uses packaged software (such as Control
Station™®) for teaching process control. In the present ap-
proach, students are in fact solving the governing equations
themselves, with anumerical method rather than an analytica
method. In contrast, the Control Station software®® presents
results without requiring that students solve the equations.

CONCLUSION

In the usual method for teaching process control, students
aretaught to solvetherelevant differential equationsanalyti-
cally by using L aplacetransforms. Thismethod involves com-
plex mathematical manipulations, which can cause students
to lose sight of the physical significance of the problem. The
main goal of a process control course should be to provide a
general understanding and intuitivefeel for how physical pro-
cesses behave and how they can be controlled. Numerical
solutions for process control problems are extremely easy to
obtain using spreadsheets created by studentsthemselves. This
approach allows students to concentrate on what is physi-
cally happening as opposed to the complex mathematics, yet
the students solve the problems themselves (i.e., the solu-
tion is not given to them by packaged software). This ap-
proach has been used in the Process Control courseat Tulane,
and student feedback has been extremely positive.
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