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The traditional method for teaching process control
courses uses analytic techniques based on Laplace
transforms to solve the relevant differential equa-

tions.[1-9] The mathematical manipulations involved in these
analytic solutions are so complex and non-intuitive, however,
that students can lose sight of the physical significance of the
results. Numerical solutions offer a remedy to this problem
and can be used in conjunction with traditional analytic solu-
tions to strengthen the instruction of process control. We
emphasize that numerical solutions are not intended to re-
place analytic methods, but should instead be used in addi-
tion to analytic methods.

The use of computers in obtaining numerical solutions can
give an enhanced physical intuition and understanding that
can be difficult to achieve from
analytic solutions alone. As a re-
port in Science claims, “Many
physics students ... can solve the
calculus-based equations at the
heart of many laws of nature, but
they lack an intuitive feel for how
they work.[10] In contrast, numeri-
cal solutions solve the fundamen-
tal equations directly, allowing stu-
dents to focus on the physical prob-
lem rather than on mathematical
manipulations and approxima-
tions.[11] The interactive nature of
computers allows “what-if” experi-
ments in which values of param-
eters are changed, and the results
are dislayed immediately in graphi-
cal form. The usefulness of this
approach is summarized by the
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Figure 1.  Spreadsheet used to determine the response of a 2nd order process to a step
change in the disturbance. The step function is implemented with an IF function of the
form IF (expression, value if true, value if false). Arrows indicate that cells should be
copied and pasted downward for approximately 5,000 to 10,000 rows.
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title of a recent article in Chemical and Engineering News:
“Thinking Instead of Cookbooking: When Computers
Take Over the Dirty Work ... Students Can Focus on the
Bigger Picture.”[12]

The differential equations that arise in process control ap-
plications are readily solved numerically by using simple
spreadsheets that can be constructed by the students in less
than five minutes. Students can experiment with different
control schemes and parameters in order to gain an under-
standing of how each parameter affects the response of the
system. They develop an intuitive feel for how a system will
respond to input changes and how this response can be con-
trolled. Then, they discover how to optimize the control.

This strategy has been used in the process control course at
Tulane. The numerical approach is used first to introduce a
topic, allowing students to obtain a good physical understand-
ing before proceeding. The topic is then addressed more fully
with the traditional analytical approach based on Laplace
transforms. Students follow the analytical approach more eas-
ily at this point since they already have a solid physical un-
derstanding from the numerical approach.

DESCRIPTION OF APPROACH
This section describes how the numerical approach using

spreadsheets can be used to teach most major topics in a pro-
cess control course, including process dynamics, frequency
response analysis, feedback control, and advanced control

techniques such as feedforward and cascade control.

Process Dynamics

As an example, the response of a linear second-order pro-
cess is examined.[1-9] A linear second-order process is de-
scribed in general by

t zt2 2 1y y y Kf t" '+ + = ( ) ( )
where y is the response of the process (output), y' = dy/dt, y"
= d2y/dt2, f is the disturbance (input), K is the gain, t  is the
characteristic time, and z  is the damping factor.

Differential equations can be solved numerically using
Euler's Method. This method is implemented for second-
order differential equation by repeatedly applying the follow-
ing algebraic equations for small time increments, Dt :
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Note that the initial values of y and y' must be specified, and
the values of y"(t) are obtained by rearranging Eq. (1).
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Below, we present the implementation of this method for a
step change in f(t).

The spreadsheet used to solve this problem is shown in
Figure 1. The results are easily displayed in graphical form
by plotting y and f together as functions of time. All param-
eters are defined at the top of the spreadsheet, and their cell
locations are referenced in the relevant equations. Upon
changing parameter values, the graphical display of the re-
sults is updated immediately, without rewriting any of the
spreadsheet.

The physical significance of the damping factor, z , in a sec-
ond-order linear differential equation can be demonstrated
with this approach by comparing the response to a step change
for different values of z . For z > 1, the response is
overdamped, and it reaches a steady state without oscillating
(Figure 2a). For 0 1< <z , the response is underdamped, and
it exhibits decreasing oscillations as it reaches a steady state
(Figure 2b). For z = 0 , the response is undamped, and it os-
cillates indefinitely (Figure 2c shows a slight increase in
amplitude with time, due to numerical error—see Discussion
section). For z < 0 , the response is unstable, and it increases
without bound (Figure 2d). All of these results are generated
and graphically displayed in a matter of seconds once the
spreadsheet is constructed.

Frequency Response Analysis

The frequency-dependent response to an oscillating distur-
bance is important in many fields, including process control.
The traditional method of teaching frequency response analy-
sis is given in process control textbooks.[1-9] A second-order
process (Eq. 1) is examined here, and the spreadsheet used to
solve this problem (Figure 3) is just a slight modification of

Figure 2. Response of a 2nd order process to a step change
in the disturbance for (a) z = 3 (b) z = 0 2.  (c) z = 0  (d)

z = -0 1.  The bold line is the disturbance, and the thin line
is the response.
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Figure 3. Spreadsheet used to determine the response of a 2nd order process to an
oscillating disturbance. Arrows indicate that cells should be copied and pasted down-
ward for approximately 5,000 to 10,000 rows.

Figure 4. Response of a 2nd order process to an oscillating
disturbance for (a) z = 1 5. , w = 0 1. ; (b) z = 1 5. , w = 0 3. ; (c)
z = 1 5.  , w = 2 ; (d) z = 0 5. , w = 0 2. . The bold line is the
disturbance, and the thin line is the response.

the spreadsheet used for the step
function input (only the disturbance
is different).

The frequency response of the sys-
tem can be addressed by comparing
the response obtained with different
values of the angular frequency, w .
When the frequency is small, the sys-
tem has sufficient time to react to the
changing disturbance, and the re-
sponse is nearly in phase with the
disturbance (Figure 4a). When the
frequency is increased, however, the
system does not have sufficient time
to react, and the response increas-
ingly lags behind the disturbance
(Figures 4b and 4c).  Additionally,
the amplitude of the response usu-
ally decreases with increasing frequency (Figures 4a, 4b, and
4c). For z < 1 and small frequencies, however, the behavior
of a linear second-order system is unusual in that the ampli-
tude increases with increasing frequency (Figure 4d). Note
that the immediate graphical results allow students to quickly
and easily experiment with different values of w  and z .

Feedback Control

A feedback control mechanism measures the output of the
process, compares it to the desired value (the set point), and
then alters an input to the process in order to bring the output
closer to the desired value.[1-9]

The output of a proportional-integral-derivative (PID) con-
troller is given by

y K
K

dt K
d

dtc c
c

l
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e t e
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where e = -y ysp , ysp  is the set point, and y is the output of
the process. When the system is not under any control, the
values of Kc and tD  are set equal to zero, while t l  is set
equal to infinity. The integral term can be calculated numeri-
cally as

e e
0
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and the derivative term can be calculated numerically as
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The numerical approach is applied here to the feedback con-
trol of a process consisting of three first-order systems in se-
ries. The dynamics of the other parts of the control loop (e.g.,
measuring device) are not included for simplicity, but can
easily be included if desired (as pointed out in the Discussion
section). A process consisting of three first-order systems in

series is described by three coupled first-order differential
equations,

t

t

i i i i p c

i i i i i l

y y K f K y i

y y K y i

'

' ,

+ = + = ( )

+ = = ( )-

1 7

2 3 8

where i is the system number. These coupled differential equa-
tions are numerically integrated using Euler's method by re-
peatedly applying the algebraic equations

y t t y t y t t ii i i+( ) = ( ) + ( ) = ( )D D' , ,1 2 3 9
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Figure 6. Response of a process consisting of three first-order systems in
series with feedback control to a step change in the disturbance. (a) P-
only, Kc = 1  ; (b) P-only, Kc = 4  ; (c) P-only, Kc = 15  ; (d) PI: Kc = 1 , t l = 5; (e)
PI: Kc = 1 , t l = 1 3. , (f) PID: Kc =1, t l = 1 3. , tD = 15 . The bold line is the dis-
turbance, and the thin line is the response.

where the y ti
' ( ) are obtained from Equations 7 and 8. The spreadsheet

used to solve this problem is shown in Figure 5.

By experimenting with different values of the control parameters
( Kc, t l  and tD ), the relationship between each control parameter
and the response can be determined. If proportional-only control is
used (i.e., tD = 0  and t l  = a large number that approximates •), the
response is offset from the set point (Figure 6a). Increasing the value
of Kc will minimize this offset (Figure 6b), but the system can be-
come unstable if Kc is too large (Figure 6c). Adding integral control
(i.e., decreasing t l  from •  ) will eliminate this offset (Figure 6d).
But if the value of t l  is too small, the system becomes unstable (Fig-
ure 6e). Adding derivative control (i.e., increasing tD  from 0) stabi-
lizes the system (Figure 6f). This stabilization allows a larger Kc and
a smaller t l  to be used, but a large tD  value also slows the response.

The values of the control parameters should be chosen such that a
quick response with small oscillations and no offset is achieved. The
Zeigler-Nichols tuning method is one way to obtain advantageous
values for the three control parameters, in which

K
K
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P
b

P
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c
c
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= ( )
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10
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10
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t

where Kc
max  is the maximum value of Kc for which the response is

stable with a proportional-only controller, and Pu is the period of os-
cillation of the response at Kc

max . The value of Kc
max  is found by trial
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Figure 9. Response of a process consisting of three first-or-
der systems in series with feedforward control to a step change
in the disturbance. (a) A K K Kp= =1 0 8422 3/ ( ) .  and
B K Kl p= =/ .0 625 ; (b)  A = 0.842 and B = 0 5. . The bold line
is the disturbance; the thin line is the response.

Figure 7. Tuning of PID parameters with Ziegler-Nichols
method, for a process consisting of three first-order systems in
series with feedback control. (a) Determination of Kc

max  and
Pu ; (b) PID with Ziegler-Nichols parameters: Kc = 3 7. , t l = 5 4. ,
tD = 1 4. . The bold line is the disturbance, and the thin line is
the response.

and error to be 6.3 (Figure 7a), and the value of Pu is observed
to be 10.8. The response using the Ziegler-Nichols parameters
is shown in Figure 7b.

Feedforward Control

A feedforward control mechanism measures the disturbance
and uses this measured value to adjust an input variable with
the goal of keeping the process output at the desired value.[1]

The output of a simple feedforward controller is given by

y Ay Bfc sp= - ( )11

where A and B are controller parameters that will depend on the
particular process to be controlled.

The numerical approach is applied here to the feedforward
control of a process consisting of three first-order systems in
series (Eq. 7 and 8). The spreadsheet for this problem is shown
in Figure 8.  Perfect control can be obtained by choosing the
parameters such that the system is at steady state with the pro-
cess output at the set point (i.e., y y y1 2 3 0' ' '= = =  and y ysp3 = ).
From equations 7 and 8, it is easily found that the parameter
values that yield perfect control are A K K Kp= 1 2 3/ ( )  and
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Figure 11. Response of a process consist-
ing of three first-order systems in series
with cascade control to a step change in
the disturbance (primary controller: Kc=2
and t l =5, secondary controller: Kc=10).
The bold line is the disturbance, and the
thin line is the response.

B K Kl p= / . As shown in Figure 9a, perfect control is indeed achieved
with these parameters. Perfect control is no longer achieved when
A K K Kpπ 1 2 3/ ( )  or B K Kl pπ /  (as shown in Figure 9b). Since real
processes are generally not simple with accurately known parameters,
perfect control is only idealistic, not practical.

Cascade Control

Cascade control uses two control loops (primary and secondary).[1] The
primary control compares the process output to the desired value (set
point), yielding a second set point to be used for a secondary control.
The secondary control compares an intermediate quantity to this second
set point to determine how to alter an input variable.

The example of a process consisting of three first-order systems in
series (Eq. 7 and 8) is used to examine cascade control. The intermediate
quantity used in the secondary control loop is the output of the first-
order process ( yl ). A proportional-integral controller is used for the
primary controller, and a proportional-only controller is used for the
secondary controller. The spreadsheet used to solve this problem is
shown in Figure 10.

The response of the system with cascade control is shown in Figure 11
- this response is superior to the response with feedback control (Figure
7b). (Note that this example is somewhat artificial in that the secondary
control loop consists of only a first-order process and will be stable for
any value of the secondary controller gain. Therefore, an arbitrarily large
value of the secondary controller gain can be used to make the response
arbitrarily fast. This arbitrarily fast response is not possible in gen-
eral, e.g., if the secondary loop includes dead time or a process higher
than second-order).

DISCUSSION
Implementation of Approach

This numerical approach using spreadsheets was implemented in the
process control course at Tulane as follows: first, a topic is introduced in
a lecture, and the governing equations are derived; next, the class moves
on to our computer lab, where students solve the governing equations
numerically (all students do this individually on separate comput-
ers), and the physical significance of the results is discussed; finally,
the traditional analytic solutions based on Laplace transforms are
taught, in lecture format.

Homework assignments include problems requiring numerical solu-
tions using spreadsheets, problems requiring analytical solutions, and
problems that use the Control Station software package.[13] Some prob-

lems require that students compare results
from numerical solutions to results from
analytical solutions. For example, one
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homework problem requires that students find the maximum
value of a controller gain for a proportional-only controller
in a certain process by three methods: by trial and error with
numerical solutions, by deriving the transfer function and find-
ing the gain that leads to positive real parts of its poles, and
by the Bode stability criterion using analytical expressions
for phase lags and amplitude ratios. The students compare
the results for the maximum controller gain from these
different methods and find them to be the same (within
numerical error).

The exams test the students' knowledge of applying nu-
merical methods to process control problems, in addition to
the traditional process control material. One of the exams
includes a computer part (given in class in our computer com-
puter lab), where students solve a problem numerically with
a spreadsheet and turn in the printed result. The other exams
have problems in which students must show how to set up a
spreadsheet to numerically solve a given problem, providing
all of the relevant equations.

Students found the numerical approach using spreadsheets
to be extremely useful in understanding the concepts under-
lying process control. In unsolicited comments on the course
evaluations, two-thirds of the students remarked that the nu-
merical approach was the most valuable aspect of the course.

The students also seemed to genuinely enjoy this approach.
When problems were solved with this method in the com-
puter lab, students were often so eager to discover the ef-
fects of changing some parameters that they would proceed
ahead of the discussion. They would also occasionally con-
tinue experimenting with the effects of different parameters
after the class had ended.

Other Issues

The numerical approach is more general than the analytic
approach, in that it can also be applied to nonlinear differen-
tial equations, i.e., a linearization approximation is not nec-
essary as it is for the analytic approach based on Laplace
transforms. To emphasize this point, a homework problem
was given in which students investigate the frequency re-
sponse for a process described by the nonlinear differential
equation y y fa' + =  (where a is the number of letters in their
last name divided by five), and then use the results to con-
struct Bode and Nyquist diagrams.

A concern with the numerical approach, of course, is that
there is numerical error in the results. Students should be
aware of the numerical error and that the error can be re-
duced by decreasing the time step Dt  or by using a more
sophisticated integration method (e.g., Runge-Kutta or a pre-
dictor-corrector method). A reasonable time step for these
problems is Dt = t / 100 , where t  is the smallest characteris-
tic time for the system.

Although excluded here for simplicity, it is straightforward
to include in this approach the dynamics of other elements of

the control loop, such as actuators (e.g., valves) and measur-
ing devices. Including the dynamics of these elements would
amount to including a few more coupled differential equations, which
translates to a few more columns on the spreadsheet.

Dead time is also straightforward to include in this approach.
To introduce dead time to a variable y, a new variable, y dead+ ,
is defined such that y t y t tdead dead+ ( ) = -( ) . The values for
y dead+  are obtained in the spreadsheet from the values of y,
by setting the cell for y dead+  at the time, t, equal to the value
of the cell for y at the time t tdead-  (i.e., t tdead / D  rows above
in the spreadsheet).

The present approach is different than, but complementary
to, an approach that uses packaged software (such as Control
Station[13]) for teaching process control. In the present ap-
proach, students are in fact solving the governing equations
themselves, with a numerical method rather than an analytical
method. In contrast, the Control Station software[13] presents
results without requiring that students solve the equations.

CONCLUSION
In the usual method for teaching process control, students

are taught to solve the relevant differential equations analyti-
cally by using Laplace transforms. This method involves com-
plex mathematical manipulations, which can cause students
to lose sight of the physical significance of the problem. The
main goal of a process control course should be to provide a
general understanding and intuitive feel for how physical pro-
cesses behave and how they can be controlled. Numerical
solutions for process control problems are extremely easy to
obtain using spreadsheets created by students themselves. This
approach allows students to concentrate on what is physi-
cally happening as opposed to the complex mathematics, yet
the students solve the problems themselves (i.e., the solu-
tion is not given to them by packaged software). This ap-
proach has been used in the Process Control course at Tulane,
and student feedback has been extremely positive.
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