Tom Edgar's Contributions to the Semiconductor Industry: From Controlling Processes to Technology Development

> John Stuber, Ph.D. Texas Instruments Inc Nov 8, 2010

Background

- Born in Bartlesville, OK
- Undergraduate ChE at the University of Kansas
- Attended "elite" graduate school
- Settled in Texas

Outline

- Automated Process Control at Texas Instruments Inc
- Broad application of generic APC algorithm
- Economic Impact
- Historical Perspective
- Recent Advances

Definition of Process

- <u>http://dictionary.reference.com/</u>
 - 1. a systematic series of actions directed to some end
- In ChE terms, A "process" is a batch chemical reaction
- Integrated circuits are manufactured on top of silicon wafers with a series of deposition, pattern, and etch processes
 - 1200 2200 processes to manufacture an IC
 - 180 300 unique processes
- These batch chemical reactions require expensive, sophisticated equipment and are much more complex than one would gather by examining run-to-run control algorithms
- Control does not necessarily imply feedback

Process Engineering

- A group of Process Engineers (PE) maintain the recipes to support the manufacturing processes in each fab
 - Photolithography
 - Reticles, photoresists and tracks, align & exposure tools
 - Etch
 - Plasma etches for dielectrics, silicon, metal; photoresist ashing
 - Thin Films
 - Plasma Enhanced, sputter, and electroplated depositions
 - Diffusion
 - Multi-wafer Furnaces, Single wafer Lamp Heated chambers
 - Ion implantation and anneal
 - Chemical Mechanical Polishing
 - Oxide, copper, tungsten
 - Surface preparation
 - Passivation, cleaning

Example: Gate Etch Process

- The most critical process for defining the transistor gate length, which is primarily responsible for transistor performance
- 65 nm node recipe has 34 header variables, 18 steps with 53 variables per step
- Source power, bias power, rf frequency, gas chemistry, flowrates, etc. are optimized by process development engineer to provide a good poly profile
 - A 65 nm printed linewidth can be etched down to a poly linewidth ~40 nm
- One of 988 recipes variables (resist trim time) is manipulated with APC

Gate Cross Sections

 Junction stained Transmission Electron Micrographs of transistor gates

130 nm technology

90 nm technology

65 nm technology

Texas Instruments

Fib prepared TEM cross section NMOS

Generic APC Model

N.

EWMA Tuner

- Define error term -e = Y - (mX + B)
- $B(i+1) = B(i) + (1-\lambda)^*e$
- Track only the most recent value for B
- Works in open loop and closed loop
- Fairly insensitive to out of sequence and missing measurements
- Filter factor λ can be dynamic, based on context and/or output variance

Photo Exposure Example

- A baseline is maintained for each resist at each logpoint
- "High Mix" with several products offset from the baseline
- Baseline is tuned with EWMA
- Reticle offsets have dynamic gain tuning

TEXAS INSTRUMENTS

Lessons Learned

- What constitutes a new baseline?
 - Layer, resist, substrate, illumination mode
- How should the error be partitioned between the machine and product offsets?
- Offsets from reticle to reticle should be fixed, however
 - Learning an offset during a machine step/drift results in an incorrect bias estimation for low volume devices
 - Estimated Reticle biases must continue to float forever

Thin Film Deposition

- Maintain a model that will deliver a continuum of thicknesses
- Often times in practice, metrology precision is prioritized
- This can necessitate metrology offsets for some films
- Accuracy needs to be emphasized for thin film metrology

Metrology Offset Graph

 Apply offset to bring measurement into common model

Metrology Offset Picture

 Same TiN film in two stacks, different thickness value from metrology tool

Control Loop Scaling

- Photo Alignment for Scanners
 - 10 inputs and outputs
 - 20 scanners
 - -40 layers
 - 100 products
 - Up to 800,000 SISO loops in one control strategy document
 - In practice, this is a sparse matrix

Economic Impact of APC

- Increase yield
 - Higher selling price for better transistor performance
 - Improved Interconnect RC Control
- Reduce scrap
 - Lower scrap for leakage current
 - Reduce inline excursions
- Increase Equipment availability
 - Reduce rework, test wafers, pilot wafers
 - Increase time between SPC failures, change notices
- Reduce cycle time
 - Reduce rework, test wafers

The Beginning of APC in Semi's

- TI's study of microelectronics manufacturing science and technology (MMST program) began in 1988, ended in 1994/5
- Stephanie (Watts) Butler was involved in supervisory (Run-to-run) control
- Terence Breedijk was involved with real-time tool control
- ProcessWORKS software was invented during this program, later commercialized through Adventa, now owned by Rudolph Technologies

Explosive Growth in APC

- Steph Butler put together a group of APC engineers inside TI ~1996
 - Scott Bushman
 - John Stuber
 - Other people not supervised by TFE
- APC becomes required for gate CD control in the 0.35 um node
- Required for photolithography in 0.25 um node
- Over 150 control points in the 65 nm node
- Retrofitted into all TI fabs over several years
- Will be required in fabs purchased by TI

University Research Essential

- Central APC group was disbursed when TI sells memory business to Micron in 1998
 - Each TI fab picks up individuals to support APC
 - Software developers spun off as Adventa
- TI joins the Texas Modeling and Control Consortium (TMCC) in 2000
- Support for APC research doubled under the AMC umbrella in 2006
- A third student is supported by NSF under GOALI starting 2009

TFE's Diverse Research Topics

- Dealing with unobservability when estimating tool and product states
- Electrical Parameter Control
- Dynamic Sampling
- Virtual metrology
- Controller performance monitoring
- Building energy optimization

Control Performance Assessment (CPA) of Semiconductor Processes

Achievements:

Xiaojing Jiang (UT-Austin)

 Developed and evaluated performance indices (*Pl*₁ and *Pl*₂) based on the closed-loop identification of the run-to-run control loops;
Incorporated autocorrelation analysis to determine effects of operating parameters;

• Future plans:

Apply CPA to high-mix processes

- 1) Threaded: Check every thread to assess performance
- 2) Non-threaded: Apply CPA for different targets and products

Texas Instruments

Building Energy Optimization

- CleanCalc II used for simulator
- Objective function = total annual electric energy
- Constraints in deg F
 - Air handler exit air temp cooling mode $65 \le x \le 71$
 - Air handler exit air temp heating mode $56 \le y \le 61$
 - Air handler exit air dew point $45 \le z \le 50$
- Initially (x,y,z) = (68, 59, 50)
 - Energy (i) = 159,865,060 kWh
- Nelder-Mead algorithm Converges at (66.1493, 59.6906, 49.7385)
 - Energy (m) = 159,251,473 kWh
 - Takes 16 iterations

Kriti Kapoor

Texas Instruments

Summary

- Inside TI, APC is a function of Process Engineering
- Processes without feedback are not "uncontrolled"
- A generic APC algorithm works for many fab processes
 - The challenge is to define the context information correctly
- APC has clear and significant economic impact to a fab
- APC Technology Advances will be made through University research

