
The Pitfalls of Readily Available Solutions:  
Physically Consistent Global Analysis of Species Transport from a Spherical Particle1 

A common mistake when attempting to solve an engineering problem is to look up the solution 
from a textbook or paper, or to apply a mathematical technique, without carefully considering 
whether the solution or technique is actually valid. Numerous examples of this mistake arise in the 
literature on the analysis of the stability of dynamical systems, with some of the most common 
mistakes to avoid described in control textbooks and in past columns of IEEE Control Systems 
Magazine [1]–[3]. This column gives an example of a more subtle mistake that can be used for 
setting up a teachable moment [4] for engineering students with a basic understanding of partial 
differential equations. 

This particular example problem consists of assessing the global asymptotic stability of a 
system in which in a molecular species being released from the external surface of a particle. The 
entry or release of molecules to/from the surfaces of particles arises in many industrial processes, 
from commercial air conditioning systems [5], to the removal of toxic chemicals from waste 
streams [6,7], to the formation of protein crystals in microfluidic devices [8]. In many of these 
applications, the concentrations of various species within the particle is of interest, for example, 
when determining the particle size that optimizes process efficiency or for developing an 
understanding of the spatiotemporal dynamics in 
fundamental studies (e.g., [9,10]). If the particle is 
solid, then the mass transfer of a species through 
the particle is via diffusion and is described by a 
linear model [7]. If the particle is a liquid, then the 
mass transfer of a species through the particle is via convection and diffusion, and is described by 
a highly nonlinear model that is only solvable numerically, in which case the pure diffusion model 
can be used to compute analytical bounds on the maximum difference in species concentrations 
within the particle. As the species is released from the external surface of the particle, a 
concentration gradient develops in the particle, with the lowest concentration being at the external 
surface of the particle and the highest concentration at its center (see Figure 1). 

Figure 1.  A species of concentration C(r,t) diffusing through a spherical particle of radius R and 
released from its external surface produces a concentration gradient in the particle. The species 

1 Reprint of M. L. Rasche and R. D. Braatz, The pitfalls of readily available solutions: Physically consistent global 
analysis of species transport from a spherical particle, IEEE Control Systems, 33(5):54-56, 2013.  
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release at the external particle surface at r = R causes the outer edge of the particle to become less 
concentrated than its interior. 

Neglecting convection, the concentration of a species within an isothermal particle undergoing 
a constant flux at its external surface is described by the partial differential equation (PDE) known 
as Fick's second law [11], 
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where F > 0 is the molar flux of a species being released from the external surface of the particle 
[(moles of species)/(external surface area of particle)(time), mol/m2s], C(r,t) is the species 
concentration [(moles of species)/(volume of solution), mol/m3], D is a constant diffusion 
coefficient of the species through the particle [m2/s], the radial position r ranges from the center 
of the particle at r = 0 to the outside surface of the particle at r = R [m], and t is time [s]. Fick's 
second law (1) follows from the insertion of Fick's first law (that is, that flux is proportional to the 
concentration gradient) into the mass conservation equation for the species molecules in the 
particle [7]. The initial species concentration C0 [mol/m3] is assumed to be spatially uniform in (2) 
and the particle is assumed to retain its spherical shape. Condition (4) holds due to the assumed 
spherical symmetry of the particle. The problem statement with model (1)–(4) is described in many 
publications including in what most engineers would consider the definitive book on the 
mathematics of diffusion [11]. 

The species concentration is the state variable in the model (1)–(4). The student problem is to 
assess whether the system of equations (1)–(4) is globally asymptotically stable, that is, whether 
the state variable C(r,t) approaches a single steady-state value for long time regardless of the value 
of the initial state C(r,0) = C0. 

One way to analyze the global asymptotic stability of a linear PDE that does not require 
knowledge of Lyapunov theory [12], complex analysis [13], or the generalized Nyquist stability 
criterion [14] is to analyze the boundedness of the analytical solution for its state variable. An 
engineer well versed in the solution of mass transfer problems will go to the most widely used 
book on the mathematics of diffusion [11] to look up the analytical solution for the model (1)–(4), 
which is given as 
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where the coefficients αn are the solutions to 
cot( ) 1n nR Rα α = .      (6) 

Alternatively, an engineer less familiar with mass transfer problems could directly apply the 
separation of variables [11] to obtain the analytical solution (5)–(6). For large times, the expression 
(5) simplifies to 
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Based on inspection of either (5) or (7), the obvious answer to the question of global asymptotic 
stability is that the system is not stable, since each expression has a term that is a linear function 
of time t with all other terms being bounded for all time. But is this answer correct? 

Let's consider the actual physical system in which a species leaves a spherical particle with a 
nonzero flux over time. A species cannot have a negative concentration, so a physically consistent 
lower bound on the species concentration C(r,t) is zero. Continuous removal of the species from 
the particle would eventually deplete the species in the particle, so the species concentration at 
long time would be expected to approach zero; this physical understanding would suggest that the 
system is globally asymptotically stable. This asymptotic behavior is in direct contradiction to the 
analytical solution (5)–(6) reported in the literature that indicates that the species concentration 
C(r,t) approaches negative infinity as the time t goes to infinity. 

Why does analysis based on the analytical solution (5)–(6) produce an incorrect conclusion 
concerning stability? The key issue is that the original problem statement with model (1)–(4), 
although published in many papers and textbooks, does not describe a physical problem for all 
time t. An upper bound for values of the time t when the model (1)–(4) is physically valid can be 
derived by writing an overall species mass balance on the particle, 
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where 34 /3R  is the particle volume and 24R is the external particle surface area. Rearranging this 
equation implies that the model (1)–(4) cannot be physically valid for any time greater than 
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as any later time would attempt to release more species mass from the particle than was initially 
in the particle. At this point, a student might try to correct the analytical solution (5)–(6) by 

including the condition that 0
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≤ . Such a condition does not correct the problem, however. 

 
Figure 2.  Species concentration at the external surface, C(R,t), in a spherical particle of radius R 
and with species released from its external surface at four different constant fluxes F, as calculated 



from the analytical solution (5)–(6). The values for the other system parameters are given in (10)–
(12). The analytical solution is only physically meaningful when the species concentration is 
nonnegative. 

 
A way to gain an understanding of why such reasoning would be invalid is to inspect Figure 

2, which is a plot of the analytical solution (5) for different values for the flux F for 
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the species concentration C at the external particle surface r = R computed from (5)–(6) is negative 

at time t = 105 seconds, which is less than 50 3.33 10
3
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F
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analytical solution (5)–(6) becomes not physically meaningful at a time much earlier than the time 
at which all of the species in the particle is depleted. The analytical solution (5)–(6) is only a 
physically meaningful solution for the model (1)–(4) as long as its predicted species concentration 
at the surface is nonnegative,  
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Either inequality can be tested at each time t, to assess whether the solution remains physically 
meaningful. This solution exploits the information that the lowest species concentration occurs at 
the external surface, which can be argued from physical considerations or by proving that C(r,t) is 
a monotonically decreasing function in r. 

The above discussion focusing on the analytical solution (5)–(6) may give some students the 
impression that (5)–(6) are somehow at fault, but the problem is really in the original problem 
statement with model (1)–(4). When the time t is high enough that the inequality (15) is violated, 
the value of the specified constant flux F becomes higher than is physically possible, that is, higher 
than the species can diffuse through the particle to reach the external surface. For any constant 
positive flux at the surface, it is physically impossible for that flux to be constant at long time, due 
to the limitation in the rate at which the species can diffuse through the particle. 

Now let's return to the question of global 
asymptotic stability. We have established that the 
original problem statement with model (1)–(4) 
was not physically meaningful when specifying 
a positive constant flux for all time. So instead 
consider the problem with the condition that the flux F is always positive but is some function of 
time that is physically selected so that the species in the particle can diffuse to the external surface 

Encourage students to consider whether a 
problem statement is physically meaningful 
before attempting to provide an answer. 



at a high enough rate for the flux to be physically achievable. Now let's consider the global 
asymptotic stability for this modified system. 

The simplest way to approach this stability analysis problem is to exploit some physical 
knowledge about the system, in this case, that the species concentration is directly related to the 
total mass of species in the particle. An overall species mass balance on the particle is 
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is negative definite, which implies that ( ) 0m t →  as t →∞ . From (17), this limit implies that  
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Since the flux was stated to be physically meaningful, ( , ) 0C r t ≥  for all r. This condition implies 
that the integrand in (19) is nonnegative for all r, so the limit in (19) can hold only if ( , ) 0C r t →
. This physically consistent system is globally asymptotically stable for any positive flux of species 
from its surface for all time. 
 
Pedagogical comments 

In this particular diffusion problem, global asymptotic stability was proved simply by 
exploiting physical understanding of the problem. It is important to assign physical problems for 
analyzing stability to students rather than mathematical abstractions. Otherwise, students will 
forget to take practical considerations into account once the model has been written, and will turn 
to a textbook, paper, Mathematica, or the World Wide Web to obtain an analytical solution without 
evaluating whether the problem statement or its solution is physically meaningful or correct. 

 
– Michael L. Rasche and Richard D. Braatz 
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