
Shortly after starting as an assistant professor, I real-
ized that quite a few of our students were unable to
analyze laboratory data at a level consistent with that

expected when I had worked in industry. Having been put in
charge of the Florida Institute of Technology’s introductory
chemical engineering course and its materials science and
engineering laboratory course, I decided that a strong em-
phasis on data analysis would be added to each of these
courses in order to satisfy ABET’s requirement regarding the
ability of students to analyze data.

Most departments emphasize spreadsheet calculations and
plotting of data in Microsoft Excel as part of their introduc-
tory chemical engineering course. Experience in our depart-
ment has shown that unless sufficient time is spent on data
analysis instruction such that spreadsheet calculations, plot-
ting, and curve fitting become second nature, such skills are
either forgotten or are never learned properly.

We have incorporated DataFit from Oakdale Engineering[1]

throughout the entire curriculum at Florida Tech, beginning
with ChE 1102, an eight-week, one-day-per-week, two-hour,
one-credit-hour, second-semester Introduction to Chemical
Engineering course in a hands-on computer classroom. The
syllabus for CHE 1102 is shown in Table 1. The examples
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ChE 1102 cover basic statistics during the first week of the
course and get constant reinforcement of these concepts through
the use of DataFit.[1] The second half of ChE 1102 consists of
problems that require Polymath- or Excel-based solutions to
either sets of linear and nonlinear algebraic equations or nu-
meric integration, as suggested by Clough.[2]

All Excel and DataFit files are available at <http://my.fit.edu/
~jbrenner/dataanalysispaper1.zip>.

SOLVING PROBLEMS WITH DATAFIT

Problem 1. Calibration of a Pressure Transducer

 Following the introduction to basic statistics, the first prob-
lem that I assign students is the calibration of a 0-250 psig
Span Instruments NTT-204 (now Millipore) pressure trans-
ducer against a 0-1000 psia Paroscientific pressure transmit-
ter. In addition to being useful for teaching students how to
make plots with error bars and determine the difference be-

tween absolute and gauge
pressures, it provides a rela-
tively simple problem for
studying linear regression
with DataFit. The repeatabil-
ity and lack of drift of
Paroscientific pressure
transmitters is even superior
to that of a deadweight tester
that was calibrated at
NIST.[3] The repeatability of
the quartz oscillator that the
Paroscientific pressure
transmitters use is certainly
within the quoted 0.01% of
full-scale precision (i.e., 0.1
psia fixed error for a 1000-
psia transmitter). Span In-
struments’ pressure trans-
ducers output a signal that
ranges from 4-20 milliamps
to within 0.08 milliamps.

After having the students
prepare a plot of the data
shown in Figure 1, including
error bars, the students copy
and paste the data into

Figure 1 . Calibration of a Span Instruments pressure transducer against a NIST-
traceable Paroscientific pressure transmitter.
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y = (.998 + .005)*x + (-15.2 + .8)

chosen, shown in parentheses, are selected so as to be consis-
tent with concepts that students learn concurrently in other
courses. DataFit also has become commonly used in our
Physical Chemistry Lab and Materials Science and Engineer-
ing Lab courses, as well as in several courses in other engi-
neering departments. Our experience at Florida Tech is that

students retain data
analysis concepts
best when such con-
cepts are formally
taught to them in this
short course and
then periodically re-
inforced throughout
their academic ca-
reer. Several ex-
amples covered in
weeks three through
eight will be dis-
cussed here.

An introduction to
basic statistics is in-
cluded in nearly all
introductory ChE
courses and will not
be discussed in this
article. Students in

TABLE 1
 Data Analysis Curriculum

1) Statistics and Confidence Intervals

2) Introduction to Plotting and
Calculations in Excel

3) y = ax + b Fitting in DataFit
(Pressure Transducer Calibration)

4) y = ax Requires User-Defined
Models (Hygrometer Calibration)

5) Semi-Log Functions (First-Order
Rate Laws - Felder & Rousseau
2.34)

6) Plotting and Curve Fitting of
Power-Law Functions (Crystal
Growth - Felder and Rousseau
2.37)

7) Nonlinear Functions (Vapor
Pressures)

8) Curve-Fitting in 3-D (Rate Laws
with 2 Reactants)

Experience in our department has shown
that unless sufficient time is spent on data
analysis instruction such that spreadsheet
calculations, plotting, and curve fitting be-
come second nature, such skills are either

forgotten or are never learned properly.



DataFit, click on the Solve Regression option, click on OK,
select the y = ax + b option, and let DataFit do the work for
them. After clicking on Results Detailed, the Fit Information
output is obtained (Table 2). Included in the output are the
residual sum of squares (RSS), which is the sum of the squares
of the differences between the calculated values of Y, the pres-
sure in psig as determined by the pressure transducer, and the
corresponding experimental values. Also evaluated are the
commonly seen R2 correlation parameter, as well as sev-
eral more-advanced goodness-of-fit parameters. Most im-
portantly, the 68%, 90%, 95%, and 99% confidence inter-
vals are conveniently tabulated. This is an excellent op-
portunity to reinforce basic statistics, most notably the
Gaussian distribution, which is typically taught at the be-
ginning of ChE 1102.

Problem 2. Calibration of a
Hygrometer

The second problem that I as-
sign is Problem 2.32 from Felder
and Rousseau’s textbook.[4] This
problem involves the correlation
of a signal from a hygrometer
versus the mass fraction of water
in the inlet stream to the hygrom-
eter. For this problem, first ask
students to do the y = ax + b fit
as described in the previous
section. The 95% confidence
intervals on the slope, a, and
the intercept, b, are as follows:
a = 470 ± 20; b = 0 ± 2, at the
appropriate number of significant
figures; proper use of significant
figures is an extremely difficult
concept to get students to consis-
tently apply. Then ask them
whether the intercept, b, is math-
ematically significant (i.e., non-
zero within the 95% confidence
interval). They should answer
that b is not mathematically sig-
nificant at the 95% confidence
level. Out of a sample of 100 stu-
dents asked over the last five
years as part of an in-class exer-
cise, only 50% have answered
correctly to this question; 25% of
students replied “don’t know.”
This is a surprisingly difficult con-
cept to master that requires con-
sistent reinforcement throughout
ChE 1102. Yet, of the same

sample of students, 98% replied correctly to a similar ques-
tion during hourly and final exams.

Once the students have realized that b is unnecessary, it is
time to teach them how to create a user-defined model in
DataFit, as y = ax is not one of the built-in models (one of
DataFit’s few shortcomings). This can be done by returning
to DataFit’s main menu and clicking on the Define User Model
option under the Solve menu. The user defines a Model ID,
(which I defined as “Linear, no intercept,” in this case). The
user also inputs the Model Definition, in this case Y = a*x.
Mathematical functions in DataFit, such as multiplication and
exponentiation, work in the same way as Excel.

In many cases, including this one and all cases where the
fitting is of a linear function, initial estimates are unneces-

Sum of Residuals = 4.08562073062058E-14

Average Residual = 3.14278517740044E-15

Residual Sum of Squares (Absolute) = 5.20799168906741

Residual Sum of Squares (Relative) = 5.20799168906741

Standard Error of the Estimate = 0.688079784556427

Coefficient of Multiple Determination (R^2) = 0.99994096

Proportion of Variance Explained = 99.994096%
Adjusted coefficient of multiple determination

  (Ra^2) = 0.9999355927

Durbin-Watson statistic = 2.88469613789683

TABLE 2
Fit Information for Pressure Transducer Calibration

DataFit version 6.1.10
Results from project
“F:\brenner\datafit\pcalib.dft”
Equation ID: a*x+b

Number of observations = 13
Number of missing observations = 0
Solver type: Nonlinear
Nonlinear iteration limit = 2000
Diverging nonlinear iteration limit =10
Number of nonlinear iterations performed = 1
Residual tolerance = 0.0000000001

Regression Variable Results
         Variable Value Standard Errort-ratio Prob(t)
         a 0.998001779 0.002312177  431.6287071 0
         b -15.1762779 0.359917526 -42.1659876 0

68% Confidence Intervals
         Variable Value 68% (+/-) Lower Limit Upper Limit
         a 0.998001779 0.002408132 0.995593648 1.000409911
         b  -15.1762779 0.374854103 -15.551132 -14.8014238

90% Confidence Intervals
         Variable Value 90% (+/-) Lower Limit Upper Limit
         a 0.998001779 0.004152438  0.993849342 1.002154217
         b -15.1762779 0.646375884 -15.8226538 -14.529902

95% Confidence Intervals
         Variable Value 95% (+/-) Lower Limit Upper Limit
         a 0.998001779 0.005089101  0.992912679 1.00309088
         b -15.1762779 0.792178474 -15.9684564 -14.3840995

99% Confidence Intervals
         Variable Value 99% (+/-) Lower Limit Upper Limit
         a 0.998001779  0.007181158  0.990820622 1.005182937
         b -15.1762779 1.117831851 -16.2941098 -14.0584461

Variance Analysis
       Source DF Sum of Square Mean Square        F Ratio        Prob(F)
       Regression 1 88206.02278 88206.02278          186303.3408        0
       Error 11 5.207991689 0.47345379
       Total 12 88211.23077



sary, but they become critical when doing some nonlinear
fitting. The default values of each of the curve-fit parameters
are unity in all cases. I look at this as one of DataFit’s very
few design flaws. When one goes through a Taylor series
expansion, terms involving higher-order parameters are
supposed to be corrections to the previous terms, mean-
ing that the product of the curve-fit coefficient multiply-
ing a high-order term and that higher-order term (i.e.,
d*x3) should be less than those of previous terms. With-
out some exceptional physical justification, it would be
difficult to throw out constant, linear, or quadratic terms
and keep a cubic term.

After manually assigning initial estimates and/or constraints
on the curve-fit coefficients, clicking OK, clicking Solve Re-
gression, and OK again, the user will need to locate his or
her user-defined model in the list of models. After locat-
ing your recently defined model, click on Solve, click OK,
and then click on Results Detailed to return to the Fit In-
formation screen once again. The models are ranked by
the RSS, and so the Fit Information that pops up first is
the one with the lowest RSS, not the one for the most
recent fit. By clicking on the uppermost dialog box to lo-
cate the user-defined model, one will get the Fit Informa-
tion associated with the user-defined model, “Linear, no
intercept.” Interestingly, scrolling down to the 95% con-
fidence interval shows that the confidence interval for the
one-parameter model (a = 473 ± 8) is narrower than the
slope from the two-parameter model (a = 470 ± 20).

Problem 3. Fitting Water Vapor Pressures to the
Clausius-Clapeyron and Antoine Equations

Fitting water vapor-pressure data to the Clausius-Clapeyron
equation is challenging for underclassmen, but usually can
be done successfully if the previous examples have been
worked out in class or for homework. This problem, along
with the follow-up fitting of the same data to the Antoine
equation, typically is either the final in-class or homework
problem that students are asked to solve during CHE 1102.
Data for the vapor pressure of water is tabulated in Appendix
B.3 of Felder and Rousseau.[4] The Clausius-Clapeyron equa-
tion is as follows, and requires conversion of temperatures
into Kelvin:

log ( )10 1P A
B

T
= -

At this point in the course, the students know that they
should plot pressure on a logarithmic scale on the y-axis and
reciprocal temperature on the x-axis. Students are asked to
plot 1,000/T so that the values on the x-axis are between a more
aesthetically pleasing 0 and 10, to estimate the slope (-B) and
the intercept (A) graphically, to use DataFit to determine A
and B, and finally to superimpose the curve fit (the solid line)
on top of the experimental points (Figure 2).

The Clausius-Clapeyron equation is a reasonably good fit
of the vapor pressure of water data from 0 to 60 ∞C, but one
can see that there is a systematic deviation from linearity at
low temperature and pressure. By graphically extrapolating
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Figure 2.
Clausius-
Clapeyron plot
for water vapor
pressures.[4]



a straight line through the portion of the data that appears to
be linear, one can estimate the slope (-B) as -2200 and the
intercept (A) as 109 from Figure 2. Interestingly, there are
slight differences in the DataFit estimates of the curve fit pa-
rameters, depending on whether the logarithm of the pres-
sure data and the inversion of the temperature data are taken
before curve fitting in DataFit or not (Table 2). In the case
where the data are not so linearized before entry into DataFit
and then a nonlinear model is generated in DataFit, the points
at low vapor pressures are de-emphasized relative to the other
points.

If one tries to fit the Antoine equation for water vapor pres-
sures either below 60 ∞C or above 60 ∞C, in either case if one
does not manually change the default parameter guesses of
unity, DataFit’s “solution” will require more iterations than

the default number of iterations, which is 250.

log ( )10 2P A
B

T C
= -

+( )

This problem can be changed using Edit Preferences. I have
changed the default number of iterations permanently to 2,000.

The problem with using the results for A and B from the
Clausius-Clapeyron equation as initial guesses for A and B
for the Antoine equation fit is that the Antoine equation re-
quires temperatures to be in degrees Celsius instead of in
Kelvin. In fact, if one uses the Clausius-Clapeyron equation
constants to fit the water-vapor pressures above 60∞C and
lets DataFit set the default value of C to 1, then even after
having made the appropriate conversion of the data from
Kelvin into Celsius, DataFit will erroneously return a “suc-

cessful” result after only one iteration that contains
errors larger than the values of the parameters them-
selves. The Antoine equation cannot be solved for
temperature ranges in which the denominator,
(T+C), switches from negative to positive over the
range of temperatures. If one uses the values of A
and B from the Clausius-Clapeyron equation and an
initial guess for C of 273.15, then the Antoine equa-
tion does converge properly to the answers below in
Table 3 in the “Proper Convergence” column.

This discrepancy proved a difficult challenge
for even the best students. Due to the sensitiv-
ity of the parameters for the Clausius-
Clapeyron fits as to whether the data was lin-
earized or not, and due to the slight discrepan-
cies between the results in Table 3 and those
in the literature,[4, 5] I now wonder whether the
previously reported Antoine constants for other
molecules may be slightly off as well.[4, 5] At a
minimum, it appears the number of significant
figures reported for Antoine equation constants
in the literature[4, 5] is grossly overstated.

ASSESSMENT
In the first class exposed to this curricu-

lum, 17 of 20 students successfully com-
pleted both the Clausius-Clapeyron and
Antoine problems. Two of the three stu-
dents who failed to make a proper plot
and a proper fit in DataFit attended class
less than one-third of the time, and the
other student, although in good atten-
dance, turned in less than half of the
homework assignments and had signifi-
cant language problems. The past four
years of classes have had similar results.

A similar problem, for butane vapor

TABLE 3
 Clausius-Clapeyron Constants for Vapor Pressure of Water

from 0 to 60oC

Clausius-Clapeyron Linear Fit of Nonlinear Fit of
    Constants Linearized Data of Raw Data

A  9.091+ 0.004 9.003 + 0.004
B   2301+ 1  2274 + 1

TABLE 4
 Antoine Curve Fitting of Vapor Pressure of Water from 0 to 60oC

Constants 250 iterations Proper Convergence      Literature Data[4, 5]

        A   6.95 + 0.08 8.124 + 0.002       8.10765
        B  1180 + 40 1759.8 + 0.6      1750.286
        C  186 + 4 235.8 + 0.1       235.000

TABLE 5
Clausius-Clapeyron Equation Parameters*

Molecule         AL       BL               AN         BN

Carbon Dioxide 7.58 + 0.02   865 + 4       7.58 + 0.01   864 + 3
Ethane 7.37 + 0.05   837 + 9     7.127 + 0.008   785 + 2
Propane 7.71 + 0.08 1130 + 14     7.191 + 0.007 1128 + 3
Isobutane 7.69 + 0.07 1274 + 16     7.198 + 0.007   996 + 2
Butane 7.61 + 0.06 1306 + 7     7.256 + 0.009 1193 + 4

*Pressures in mm Hg and temperatures in Kelvin
LLogarithm of pressure taken first
NLogarithm of pressure not taken first



pressures, has been assigned to sophomores and graduate stu-
dents, using data from the NIST Chemistry WebBook.[12] All
but one of 12 sampled students who came to Florida Tech
from other countries for ChE graduate school sought me out
for help. None of the eight students that went to Florida Tech
for both bachelor’s and master’s degrees needed help. Ninety
percent of sophomore students who took CHE 1102 as fresh-
men were also able to solve the butane problem successfully.

With the default guesses, DataFit failed to converge be-
cause it cannot handle the denominator changing from nega-
tive to positive, depending on temperature. When the second
term exceeds A, the solution also diverges. Under some sets
of initial estimates, DataFit “converges” to a flat line! When
the initial estimates are reasonably close to what DataFit re-
ports as the correct answer (A = 7.44 ± 0.04; B = 1330 ± 30;
C = 294 ± 4), the solution converges to what is shown in
Figure 3. Even this is clearly incorrect, as the low vapor pres-
sure data is de-emphasized, because the magnitude of the er-
ror in such a small quantity is dwarfed by a small percentage
error in the high vapor pressure points. This kind of error is
not unique to DataFit. I have seen it in Polymath curve fits as
well.

CONCLUSIONS
Of the international graduate students asked to fit vapor-

pressure data for the previous problem, none had previous

Figure 3. Antoine fit of butane vapor pressure data clearly shows bias against low
vapor pressure points.

exposure to either Polymath or DataFit. While each of them
also learned how to use Polymath in graduate school, 11 of
the 12  polled said that they found DataFit easier to use. The
reason that I downloaded DataFit in the first place was not
because of its excellent curve-fitting capabilities, but because
when I first started using it in industry in 1998, DataFit was
the only program that did proper 3-D scientific plotting for
less than $500. In 1999, when Florida Tech bought a site li-
cense for DataFit version 6.1, it cost only $750 for the entire
campus (albeit a relatively small campus), whereas a single
copy cost $100. Moreover, the site license allowed for stu-
dents and faculty to use DataFit at home as long as they were
doing academic work. A comprehensive set of solutions to
similar problems can be found at <http://my.fit.edu/~jbrenner/
dataanalysispaper1.zip>.
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