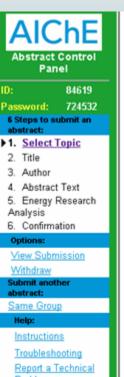
AIChE®



Confex Survey's Energy, Computing & Sustainability

Jim Davis, Computing Initiative Chair Bond Calloway, RANTC Chair Dr. Xiao Chen, UCLA Statistical Consulting Group

Survey Background-Started in RANTC – Energy Survey

Energy Research Gap Analysis – Phase I - '07 **Annual Meeting**

Problem

User FAQ

Refine Survey –
Annual '08 -

June 07

Directions: Question 1 below is required for ALL submissions. Questions 2 and 3 can o answer "Yes" to question 1, but they are never required

 Is your paper related to existing technology or advanced technology associate and supply of energy or global climate change research? (e.g. enhanced produc fossil, renewable or nuclear; energy efficiency, refinement into feed stocks or pro gas sequestration, capture or monitoring) O Yes O No

2) Is your paper related to fossil, renewable or nuclear energy? Check one, if other provide keyword (e.g. solar/nuclear)

a Braunund FarBrunau rakiaana

C Fossil

C Renewable

O Nuclear O Other.

3) Is your paper related to Global Climate Change? Check those that apply.

- Carbon Sequestration Carbon Capture Carbon Monitoring/Modal
- Other Greenhouse Gas Emissions

Other

Initial Analysis-

- Implement Expanded Survey – Annual '08
- (Complete)
- Implement Virtual Topical Annual '08 - (Complete)
- Implement for Spring 08 (Complete)
- Implement Energy **Program Guide for** 2009/2010 (Complete)
- International Congress on Energy Pilot (Complete)
- Computing Survey Implemented 2010 – Supports **AICHE** Computing Initiative
- Sustainability Survey implemented

Submit

International Congress on Energy – A "Conference within a Conference" energycongress.org

Registration is now open for the year's most focused, comprehensive and timely energy supply conference for energy professionals.

A new reality demands innovative approaches to ensuring an affordable, clean and sustainable supply of energy. To provide the fo best leadership at this critical juncture, you need the knowledge and insight found only at the International Congress on Energy.

This unique conference is a must-attend event for energy professionals and researchers engaged in energy supply R&D and initiatives. Don't miss this rare opportunity to be part of vitally important discussions among the most knowledgeable and forward-thinking minds in energy supply today. <u>Register now</u>.

In five days:

- Get a complete update on the latest trends and developments in bioenergy, carbon capture and sequestration and other alternative and enabling technology
- Take a look back at existing energy supply options and a peek ahead
- Learn first-hand from the experts developing tomorrow's solutions
- Hear over 600 original papers delivered by cutting-edge researchers
- > Focus on important issues from multiple perspectives
- > Head home with the knowledge and tools you need to advance your own research and initiatives ... and change lives, industries, the environment and society for the better

International Congress on Energy:

Sustaining Supplies

November 7-12, 2010 Salt Palace Convention Center Salt Lake City, UT

Sponsored by the Center for Energy Initiatives an AIChE Technological Community

> No other conference covers the issues so completely.

1 DONG LICO AND MORE LICOL

Three critical focus areas:

- Bioenergy
- Fossil fuels with carbon capture and sequestration
- Alternative energy and enabling technologies

Over 100 technical sessions: Dive deep into the issues, developments, trends and technologies you can't afford to ignore

Short Courses, plenary sessions, case studies and poster sessions round out your conference experience

High-caliber networking: Connect with professionals you may never have the opportunity to meet outside this conference.

REGISTER NOW

INTERNATIONAL CONGRESS ON ENERGY SUSTAINING SUPPLIES 2010

November 7-12, 2010 Salt Palace Convention Center Salt Lake City, UT

For more details and to register, please visit <u>http://energycongress.org</u>

the shift of a more starting of the second st

An AIChE Technological Community

N

Sp

Or

Re

Sp

Im

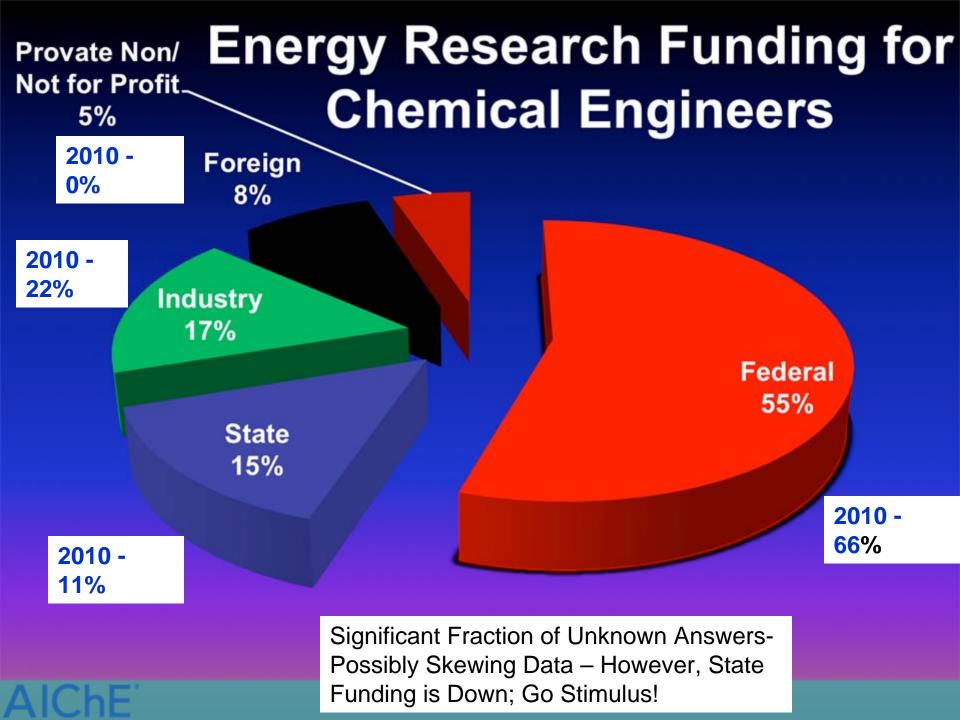
Earl

Octr

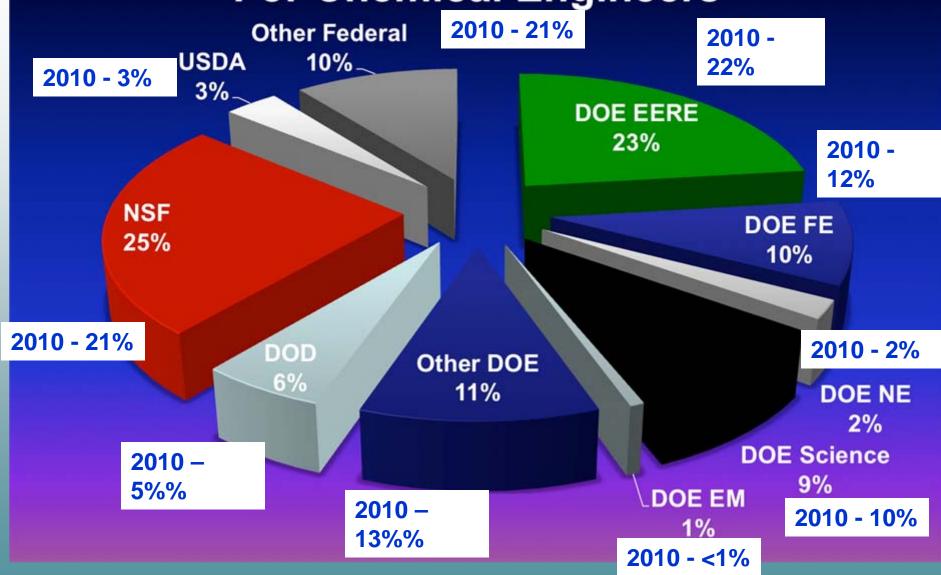
Org

Fossil Fuel with carbon capture and sequestration

AICHE Survey Overview

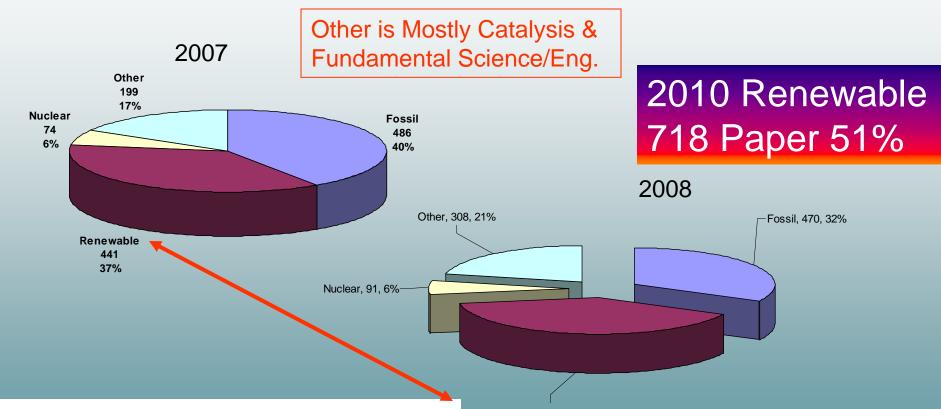

Year	Total	Energy	% of	Computing	Sustainability
			Total		
2007	4543	1200	26	-	-
2008	5219	1447	28		-
2009	4917	1714	35	-	-
2010	5061	1398	28	1071	2103
	(5013)				
Growth%	3%	-18%	% of	21%	42%
			Total		

- Energy Decrease even when Total Conference Papers was Up
- To Stimulate or Not to Stimulate
- Life After Stimulus


• Will Energy Continue to Increase After Wars Are Finished and Energy Prices stabilize? Not Likely – Budget Cuts On the Way

Sustainability by Division

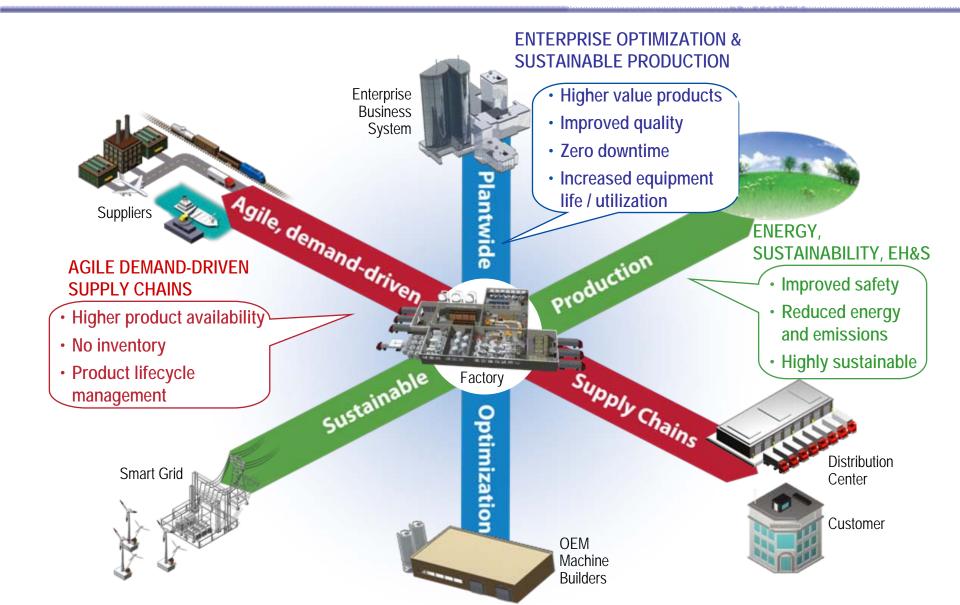
Division		Yes	Percent
Catalysis and Reaction Engineering Division	266	13%	
Chemical Engineering & the Law Forum	1	0%	
Computational Molecular Science and Engineering Fo	brum	34	2%
Computing and Systems Technology Division	1000 Departs Anourand	132	6%
Education	1232 Papers Answered	69	3%
Engineering Sciences and Fundamentals	Yes to Both	146	7%
Environmental Division	Sustainability & Energy	96	5%
Food, Pharmaceutical & Bioengineering Division	Questions – The two	151	7%
Forest and Plant Bioproducts Division	terms (not surprisingly)	56	3%
Fuels and Petrochemicals Division	are strongly correlated.	69	3%
Materials Engineering and Sciences Division	Survey would need to	110	5%
Nanoscale Science and Engineering Forum		62	3%
Particle Technology Forum	— be redesigned to better —	66	3%
Process Development Division		56	3%
Separations Division	"Sustainability"	198	9%
Sustainable Engineering Forum	271	13%	
Topical 1: Separation Needs for Energy Independence	42	2%	
Topical 5: Nanomaterials for Energy Applications		34	2%
Topical 8: Hydrogen Production and Storage		61	3%
Topical A: Systems Biology	13	1%	
Topical D: Chemical Engineering in Oil and Gas Produ	24	1%	
Topical E: High Temperature Environmentally Sustain Environmental Division)	41	2%	
Topical G: Innovations of Green Process Engineering	for Sustainable Energy and Environment	46	2%



Federal Energy Research Funding For Chemical Engineers

AIChE

AICHE Energy Programming By Source

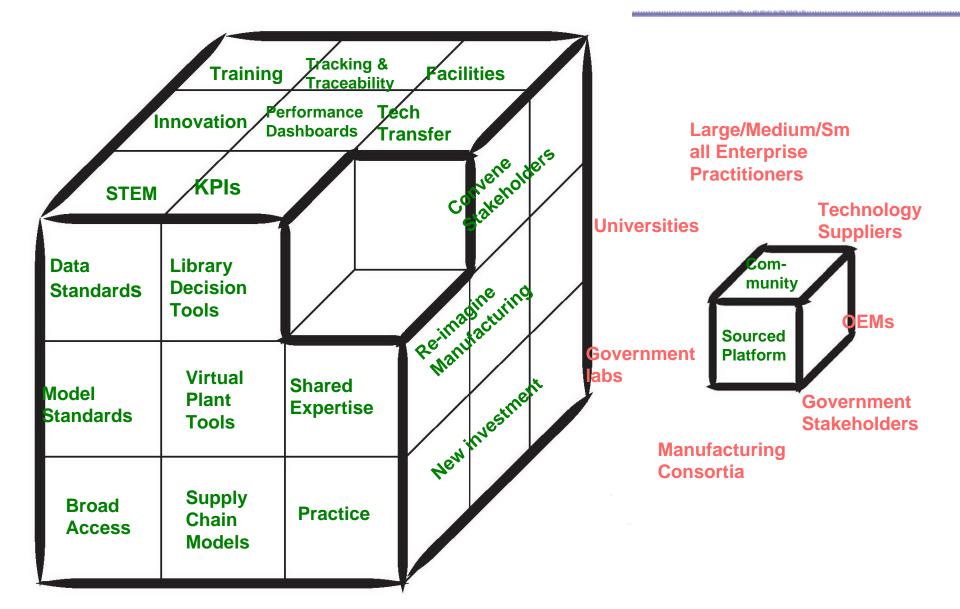


Renewables Research Declined but remained fundamentally the same mix in our energy portfolio from 2009-2010 Fossil Energy Portfolio Increased 32 to 36% in 2010;

Renewable, 578, 41%

2009 Renewable 885 Paper 52%

Optimized Plant & Supply Network: Meaningful Uses / Benefits



Achievable Meaningful Use Goals and Magnitude of Impact

Demand-driven efficient use of resources and supplies in more highly optimized plants and supply

- 80% reduction in cost of implementing modeling and simulation
- 25% reduction in safety incidents
- 25% improvement in energy efficiency
- 10% improvement in overall operating efficiency
- 40% reduction in cycle times
- 40% reduction in water usage
- Product safety
 - Product tracking and traceability throughout the supply
- Sustainable production processes for current and future critical industries
 - 10x improvement in time to market in target industries
 - 25% reduction in consumer packaging
- Maintain and grow existing U.S. industrial base
 - Environment for broad innovation
 - 25% revenue in adjacent industries
 - 25% revenue in new products and services
 - 2x current SME's addressing total market
 - More highly skilled sustainable jobs created
- Positive public perception about U.S. Manufacturing
 - Americans feel our continued leadership as the world's largest manufacturer has strategic national importance

Comprehensive Public-Private Partnership Program

SBE&S Total

SBE_S Paper	Frequency	Percent	
No Yes	3942 1071	78.64 21.36	
Total	5013	100.00	

Papers by Type of SBES

Development of Computer Processors	72
Education	76
High Fidelity Simulation Studies	398
Large data set analysis	278
Modeling and/or Simulation	806
Multiprocessor Software or Code Development	152
Networked Based Collaboration	58
Networked Based Data Sharing	68
Remote Resource Access	62

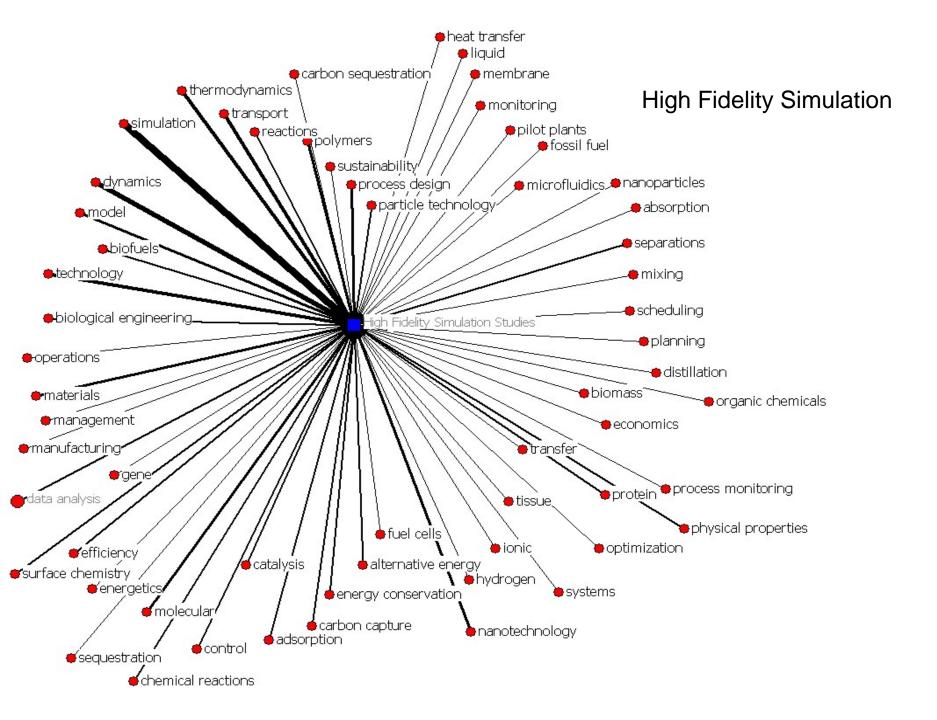
Total

1970

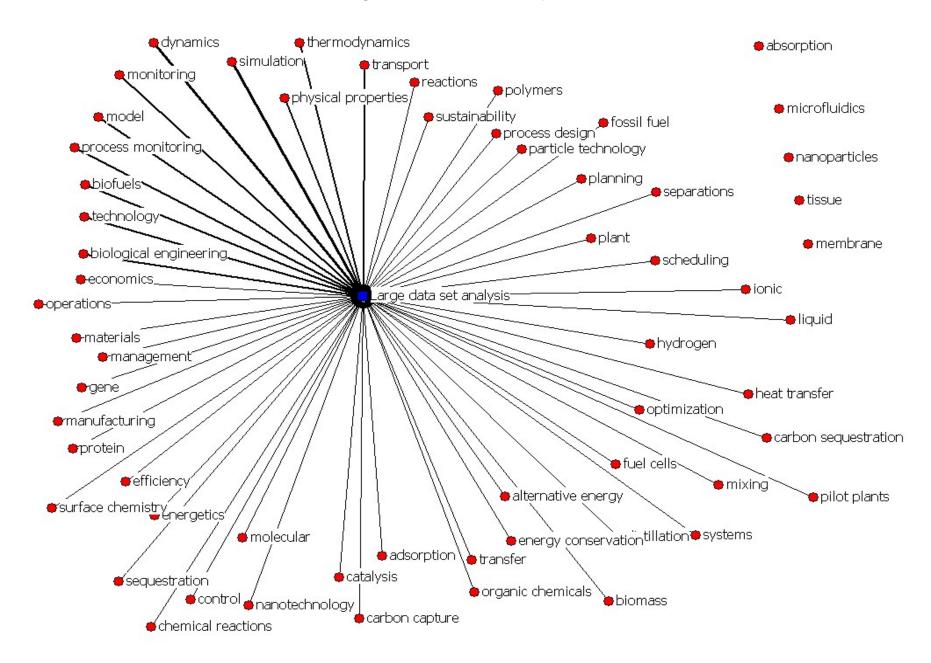
SBE Paper by Division

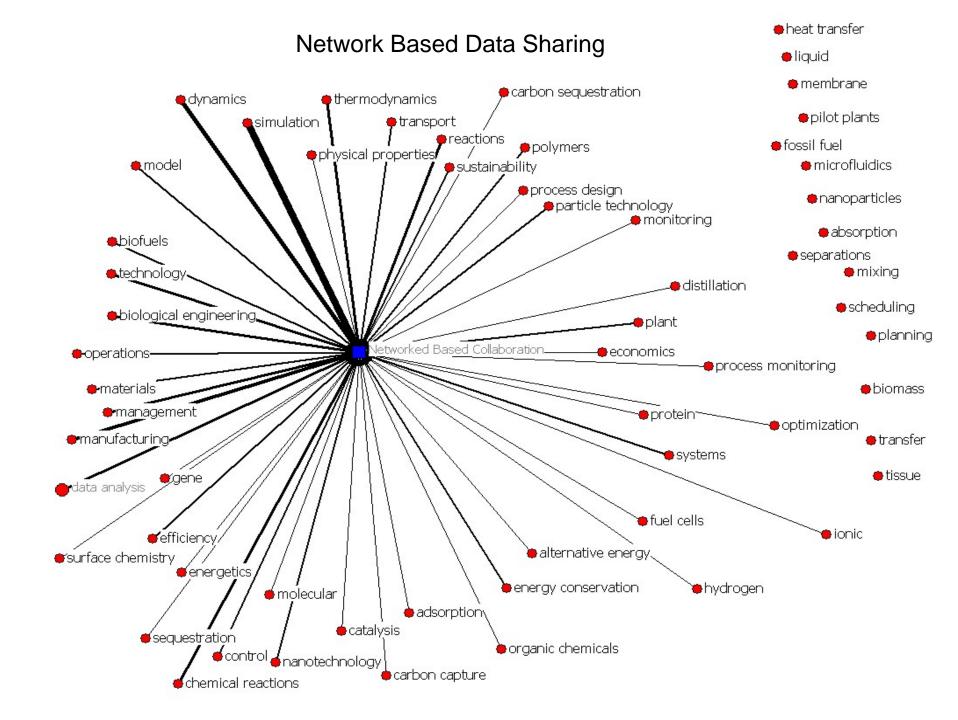
Division		Yes	Percent		
Catalysis and Reaction Engineering Division	92	22%			
Computational Molecular Science and Engineerir	ng Forum	56	54%		
Computing and Systems Technology Division		170	42%		
Education		40	16%		
Engineering Sciences and Fundamentals		157	27%		
Environmental Division		21	14%		
Food, Pharmaceutical & Bioengineering Division		105	17%		
Forest and Plant Bioproducts Division	Forest and Plant Bioproducts Division				
Fuels and Petrochemicals Division		10	13%		
Materials Engineering and Sciences Division	1071 papers answered yes to	63	14%		
North American Mixing Forum	SBE&S	11	30%		
Particle Technology Forum		49	19%		
Process Development Division	Divisional Responses > 10%	18	17%		
Separations Division	59	16%			
Sustainable Engineering Forum	53	19%			
Topical 2: Simulation Based Engineering and Science	Topical 2: Simulation Based Engineering and Science				
Topical 5: Nanomaterials for Energy Applications	3	6	16%		
Topical 8: Hydrogen Production and Storage		14	19%		
Topical A: Systems Biology	34	58%			
Topical D: Chemical Engineering in Oil and Gas Production and Other Complex Subsurface Processes			35%		
Topical E: High Temperature Environmentally Sustainable Energy Processes			33%		
Topical G: Innovations of Green Process Engineering for Sustainable Energy and Environment			11%		
Topical I: Comprehensive Quality by Design in Pl	harmaceutical Development and Manufacture	20	27%		

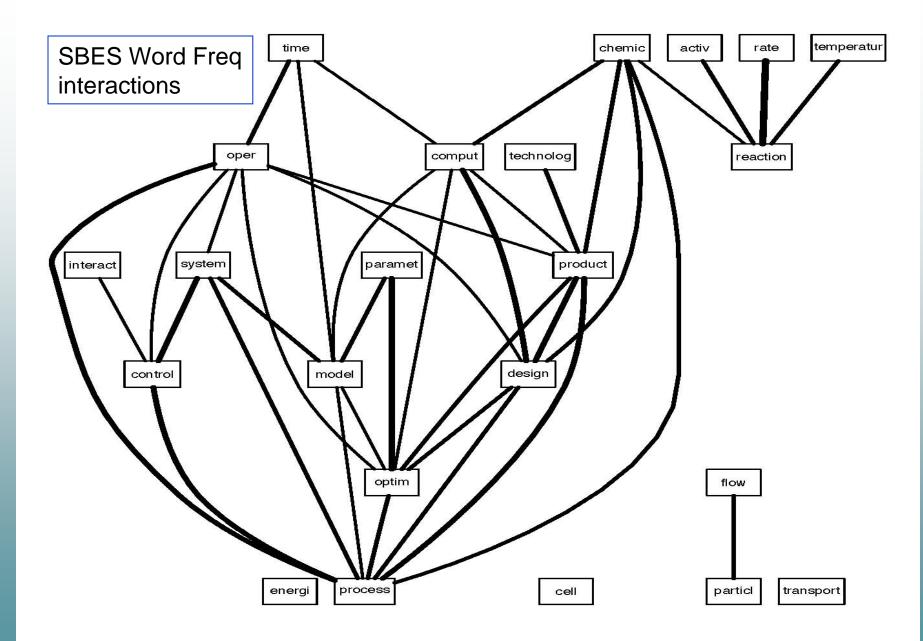
Keywords


3rd

			High Fidelity		Modeling	Multiprocess	Netwo	Networked	Remote
			Simulation	Large data	and/or	or Software	rked	Based Data	Resource
kword	total	education	Studies	set analysis	Simulating	or Code	Based	Sharing	Access
absorption	15	0	8	0	6	1	0 O	-	
adsorption	90	3	24	5	46	6	1	1	0.292
•	123	3	24	14	57	9	2	5	
alternative energy biofuels	123	3	14	21	59	6	3		
	213	5	37	45	88	15	8		1
biological engineering							0		
biomass	16 63	1	1	3		1		0	
carbon capture		3					2		
carbon sequestration	34		10	3	11	5	1	1	
catalysis	114	2	25	12	46	13	1	4	a second second
chemical reactions	158	6	35	18	64	14	7	7	
control	148	7	32	17	71	2	5	9	
distillation	20	3	3	1	11	1	1	1	
economics	31	2	3	9	13	0	1	2	
energetics	44	3	10	3	18	3	1	1	
energy conservation	65	3	15	8	24	3	4		
fossil fuel	50	2	10	8	24	4	0		
fuel cells	40	1	10	1	20	5	1	0	
gene	41	2	8	6	20	1	1	2	
heat transfer	37	2	8	4		3	0		
hydrogen	42	0	10	4	20	4	1		
management	32	2	3	3	6	1	7	6	-
manufacturing	90	8	13	12	17	7	11	13	9
materials	169	8	41	14	82	17	3		
membrane	19	0	5	0	12	2	0	0	0
microfluidics	8	0	4	0	3	1	0	0	0
mixing	56	3	13	11	24	5	0	0	
molecular	140	1	43	17	58	13	1	1	6
nanoparticles	4	0	2	0	2	0	0	0	0
nanotechnology	159	4	40	19	73	14	3	3	3
organic chemicals	22	1	3	6	6	2	1	2	1
particle technology	118	3	26	19	43	12	4	7	4
physical properties	114	3	30	24	40	11	1	3	2
planning	32	1	1	11	13	2	0	1	3
plant	67	2	10	13	27	1	3	6	5
polymers	136	2	38	11	67	11	3	1	3
protein	58	2	16	8	24	5	1	1	1
reactions	159	6	36	18	64	14	7	7	7
scheduling	30	1	1	9	13	2	0	1	3
separations	82	3	23	7	41	5	0	1	
surface chemistry	83	2	22	8		9	1	3	
sustainability	72	6	9	12	30	5	3		
thermodynamics	307	13	76	34	129	32	6		
transport	236	12	67	23	92	27	5		
transport	236	12	67	23	92	27	5	/	3




	Total	education	High Fidelity	Large data	Modeling	Multiprocess	Netwo	Networked	Remote
			Simulation	set analysis	and/or	or Software	rked	Based Data	Resource
kword			Studies		Simulating	or Code	Based	Sharing	Access
control	148	7	32	17	71	2	5	9	5
data analysis	150	6	18	57	42	7	6	9	5
dynamics	542	20	130	60	231	51	14	19	17
model	215	7	43	27	118	11	4	4	1
operations	54	1	9	8	21	1	3	6	5
optimization	54	1	6	11	30	3	2	0	1
process design	159	11	38	19	77	6	2	5	1
process monitoring	68	1	9	28	21	0	1	5	3
simulation	735	39	194	66	289	66	25	25	31
systems	47	1	7	9	19	4	3	4	0


AIC

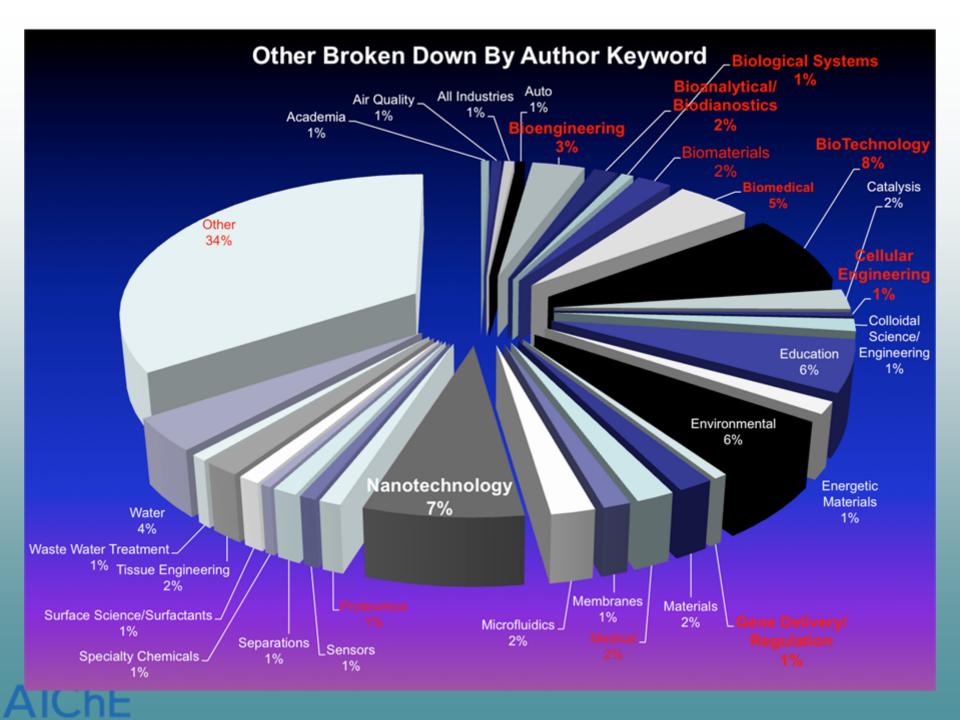
Large Data Set Analysis

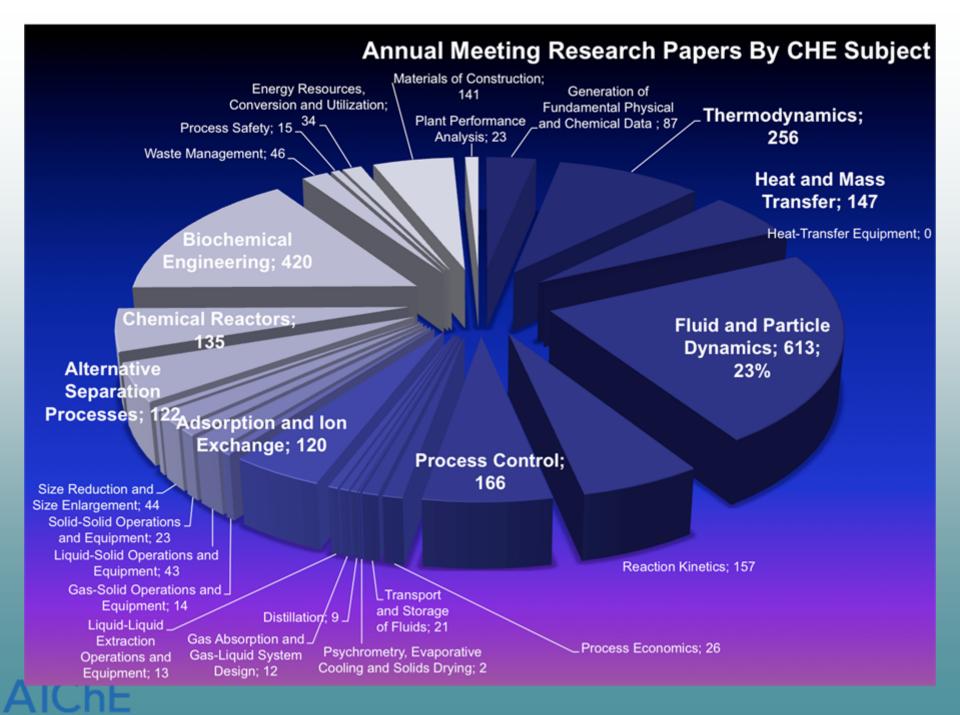
AIChF

Next Steps of SBE&S and AICHE

- Continue SBE&S survey next year but consider context of outcomes
- Consider program themes
- Industry-academic workgroup to recommend and socialize meaningful use outcomes relevant to AICHE
 - Smart Manufacturing
 - Integration of product and process design
 - Product innovation
 - Time to Product
 - Education/awareness of computational engineering
- Facilitate interactions with sister institutes
- Facilitate workshop Smart Manufacturing project definition
- Facilitate workshop with CAST and CoMSEF

AIChE


Future Plans


- Continue Efforts to Define Computing Initiative
- Coordinate with AICHE Center for Energy Initiatives

Backup Slides

Biochemical Engineering

Enzyme Engineering 14%

Process Modeling 14%

> Biological Reactors 13%

Biochemical Engineering Fundamentals 59%