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              A Free Nonlinear Estimation and Equation Solving Subprogram for VBA 

                                                  Edward M. Rosen 

                                                EMR Technology Group 
                                                Chesterfield, Mo. 63017 

Introduction 

Clough [1] observed that his students preferred Excel/VBA over Mathcad[2]  
and Matlab [3] .  This observation led the author to examine what software was  
freely available for VBA.  
 
A very comprehensive linear system package is available from Volpi [4] as discussed 
in Rosen[5 ] .  The package (MATRIX 2.3) is available as an Excel add-in. Though designed for spreadsheet 
use, the functions  and subprograms written in VBA  can be used in a VBA program,  some directly and  
others with slight modifications. Routines are available for simultaneous linear equations, eigenvalues 
and eigenvectors of symmetrical matrices, singular value decomposition as well as many other  
computations of linear algebra. 
 
Another free program is the SOLVER program in EXCEL. It can be executed both on the spreadsheet  or 
in VBA[6]. The author has found that SOLVER appears to do well on some problems but gives mixed 
results on others .  
  
The technology of XSOLVE (the subject of this paper) , though dated[7] , has been extensively tested and 
is easily configured to solve a wide range of problems. There is a large literature and programs on VBA[8] 
but  there  appears to be a dearth of free, easily accessible  VBA programs  that  can solve both sets of 
nonlinear equations as well as regression problems. 
 
 The Algorithm of XSOLVE 

We seek to find a solution to the n equations in the k unknowns X 

              zi (x1, x2,  …  xk) =  y1     

              z2(x1,  x2, …  xk)  = y2                                                                        
                       . 
                       . 
                       .  
              zn(x1,  x2….   xk) = yn                           (A.1) 
         
By a solution we mean an X such that  

                    =   
1

i n

i





 (zi – yi) 
2  

                               (A.2)
  

is a minimum. The functional form of zi  is assumed to be known and the yi are  
constants. Linearizing Equation (A.2) about a base point Xo there results 
 
                             P ∆ X = -F                                                                      (A.3) 
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where 
 
                P           = an n x k matrix whose elements are 
 

                                    i

j

z

x




          I = 1, 2, ….,n           j =  1, 2,…., k     

 
                F           = an n x 1 vector defined by 

                                    fi    =  zi  -  yi          I =  1, 2, …., n 

              ∆ X     =  n x 1 vector defined by 

                            X  =  Xo  +   ∆ X                                                              (A.4) 

For equation solving (n = k) Equation (A.3) is the Newton-Raphson method and P is 
the Jacobian. In this case if P is not singular the ∆ X could be calculated directly from  
Equation (A.3). 
 
Derivatives for the P matrix may be calculated analytically. If they are calculated 
numerically  then 0.001 times the larger of the starting point + 0.01 or the current 
point is used as a perturbation in a forward difference. (At the upper bound of a variable 
a backward difference is used.) 
 
Multiplying   Equation  (A.3)  by PT there results   
 
                         PTP ∆X = - PTF                                                                   (A.5) 
 
Letting   A = PTP and noting that 
 

                          -PTF    =     -1/2 
X




  =  G                                              (A.6)                              

  
Equation (A.5)   becomes 
 

                          A X = G                                                                          (A.7) 
  
which is generally known as the “Gauss-Newton” method. The  G vector is ½ the negative 

 gradient vector of   . 

  
After A is calculated (which must be positive semi-definite) if a diagonal element is such 
that  1 + diagonal element = 1. that element and all the other elements in that row as well as 
the right hand side of Equation (A.7) are set to 0. (A small diagonal element implies there is no 
 effect of the parameter on any of the equations.)  Equation (A.7) is then scaled according  

(for aii ≠ 0.)  
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                             A*  = (aij*)  =   
ij

ii jj

a

a a
                                         (A.8) 

and  

                             G* = (gi*)   =   i

ii

g

a
 

from which Equation (A.7)  becomes 

                             A* ∆X*  = G*                                                                (A.9) 

  Marquardt [9]  modified  Equation (A.9) to be 

                       (A* +  λ I) ∆X* = G*                                                           (A.10) 

   which is the necessary condition for the minimum of   where         

                = ∆XTD ∆X  + 
1


 [  ( A∆X – G)T  (A∆X –G)]                        (A.11) 

and 

                 D = diag (ATA)                           (A.12) 

Thus, 

           A* = D-1/2  A  D  -1/2  and G* = D-1/2 G    (A.13) 

From  Equation (A.10) 

          ∆X* = (A* + λ I)-1  G*     (A.14) 

where 

               ∆ xi  =  i

ii

x

a


 (A.15) 

Equation (A.14) tells us how to search for a solution by going from base point to 
base point via Equation (A.4). When λ is small ∆ X becomes the Gauss- Newton search vector. 
When λ is large ∆ X becomes the steepest descent search vector. As λ is varied between  
these two ranges a curved path is traced out between the Gauss-Newton and the steepest descent 

directions. Since both directions point in a direction to always decrease   locally the 
angle between the Gauss-Newton and steepest decent direction must always be less than  
90 degrees.    

 
Equation (A.14) is solved by elimination  . If it is found to be singular ∆ X* is computed by finding the 
eigenvalues (E) of A* (which is symmetric and positive semi-definite) from subprogram JACOBI: 
 

                                       A* = SEST                                                      (A.16) 
Then 
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                                      ∆ X *  = (E + λ I) -1  G *   (A.17)  
where  

                                      ∆ X *  = ST  ∆X*   (A.18) 
 

                                       G *   = ST G* (A.19) 
  
In solving Equation  (A.17) if ei ≤ 10-8  

then ∆
ix
  is set to zero. Otherwise   ∆

ix
  =  i

i

g

e 




  (A.20)  

This avoids the possibility of taking large steps when there exists a local singularity 
of A* especially as λ → 0. If a predicted step falls outside the bounds it will be projected 
back onto the boundary. 
 
For the case when equations are being solved (n=k) the equations are scaled at each new base  
point by dividing each equation by the corresponding square root of the diagonal element 
of P PT .  The criterion for movement is whether or not a trial point has a scaled sum of squares 
(calculated internally) smaller than the base scaled sum of squares.  

  
 
 The XSOLVE Subprogram 
 
The XSOLVE VBA program has been translated from a listing of an older FORTRAN program. There are a 
number of required parameters (which gives it flexibility) but once these have been set they can be 
easily used as a template for other problems.  

 

 Figure 1 describes the routines used by XSOLVE.  MCP is the macro which calls XSOLVE.  XSOLVE in turn 
calls  eigenvalue  and eigenvector  routines.  SUB’s for these calculations are taken from the MATRIX 
routines of Reference 4.  Zval is an optional subprogram which evaluates the computed functions. 
 
 
                                              Figure 1  XSOLVE and Associated Routines 
 
           Routine                                                   Source 
 
 MCP                                                       Macro calling XSOLVE and optionally Zval 
    Zval                                                     Optional sub to evaluate functions 
    XSOLVE          Modified BSOLVE Routine from Henley and Rosen 
      Jacobi                                        Written to integrate Matrix eigenvalue and eigenvector routines 
          XmatEigenvalue_Jacobi             Sub modification of Matrix function Mateigenvalue_Jacobi  
          XmatEigenfunction_Jacobi        Sub modification of Matrix function Mateigenfunction_Jacobi 
          Mat_Jacobi_Find_Max               Sub from Matrix 
          MAX                                               Private Function from Matrix 
          Matcopy                                        Sub from Matrix 
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To use XSOLVE the following setup and calling sequence is required: 
         
          1.   Set K, N  the number of unknowns and the number of equations. 
          2.   Set  Dim NDATA(26), DATA(16), OUTPUT(6) 
                 Redim   X(2*K), XV(K), XMAX(K), XMIN(K), Y(N), Z(2*N), 
                      PJ(N),P(K*(N+2) +N), A(K,K+2), AC(K,K+2) 
          3.   Set NDATA(1) = 1 

 4.   Set DATA (I) = 1 to 4 (Generally all 0) 
 5.   Set XV(I) = 1 to K (0, constant , 1 Numerical Derivatives, -1 Analytical Derivatives) 
 6.   Set XMAX (I) = 1 To K,  (max values of unknowns) 
 7.   Set XMIN(I)   = 1 To K   ( min values of unknowns) 
 8.   Set Y(I) = 1 to N             (values of desired values) 
 9.   Set Initial values of X(I) = 1 to K     (unknowns) 

          10.  Evaluate computed values (Z(I) = 1 to N) at initial values of X 
          11.  Call XSOLVE   (K, N, NDATA, DATA, X, XV, XMAX, XMIN, Y, Z, PJ, OUTPUT, P, A, AC) 
          12.  Test NDATA(2) to see if the function must be evaluated, the derivative is to be  
                  evaluated or a new base point has been found. 
          13.  If a new base point has been found test NDATA(3) to see if the search has 

 been terminated. If it has not recall XSOLVE. 
 

A full description of the values in the calling sequence is given in the Appendix. 
 
Example Problems 
 
Example 1   “This problem[10] was found to be difficult for some very 
                       good algorithms”. It (MGH09) is classified as higher level of difficulty. 
 
                      The problem is to find  parameters  b1, b2, b3 and b4 to best fit: 
 
                       y = b1*(x**2+x*b2)/(x**2+x*b3 +b4) 
                   y   x 
 
       1.957000E-01    4.000000E+00 

       1.947000E-01    2.000000E+00 

       1.735000E-01    1.000000E+00 

       1.600000E-01    5.000000E-01 

       8.440000E-02    2.500000E-01 

       6.270000E-02    1.670000E-01 

       4.560000E-02    1.250000E-01 

       3.420000E-02    1.000000E-01 

       3.230000E-02    8.330000E-02 

       2.350000E-02    7.140000E-02 

       2.460000E-02    6.250000E-02 
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                                        NIST Certified Values and XSOLVE Values. 
 
                                Parameter                     NIST                           XSOLVE 
 
                                      b1                      1.928069E-01                1.928069E-01 
                                      b2                      1.912823E-01                1.912825E-01 
                                      b3                      1.230565E-01                1.230565E-01 
                                      b4                      1.360623E-01                1.360624E-01 
 
                        Sum squares                3.0750560E-04               3.0750560E-04      
    
                        Starting Values:  (25 39 41.5 39) 
 
Table 1 is the VBA input file for this problem. 
                       
 
Example 2   This is POLYMATH[11] problem Twoeq1- Pipe diameter calculation for 
                       a specified pressure drop. It is two equations in the two unknowns 
                       D and fF: 
 
f(D) = -dp/rho+2*fF*v*v*L/D     

f(fF) = if (Re<2100) then (fF-16/Re) else (fF-1/(4*log(Re*(fF)^(1/2))-0.4)^2)   

dp=103000     

L=100     

T=25+273.15  

Q=0.0025     

pi=3.1416     

rho=46.048+T*(9.418+T*(-0.0329+T*(4.882e-5-T*2.895e-8)))     

vis=exp(-10.547+541.69/(T-144.53))     

v=Q/(pi*D^2/4)     

kvis=vis/rho     

Re=v*D/kvis 

     

D(0)=0.04 

fF(0)=.001 

           

 XSOLVE  Solution (starting with (0.1, 0.1)               : 

D = 0.0389653 
fF = 0.00459053        Residual sum of squares:  2.70229E-15 
 
This corresponds to the POLYMATH solution. 
 
The log is a base 10 log. In VBA only the natural logarithm is available so the 
natural log must be multiplied by 0.4342944. In the spreadsheet log is base 10. 
  
Table 2 is the input file for this problem. 
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Conclusions 
 
The complete VBA  files for the two example problems may be obtained by contacting the author 
at  edwardmemrose@gmail.com. Output for the example problems is generated onto  the spreadsheet. 
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                             Table 1   Example 1 Input File          

   Sub MCP       ********************************************************* 
 
' Set For XSOLVE CALL 
‘ Input File for MCH09 
 
  Dim KK, NN, I, I1, J As Integer 
  KK = 4 
  NN = 11 
   
  Dim DATA(16), OUTPUT(6) As Double 
  Dim NDATA(26) As Integer 
   
  ReDim X(NN) As Double 
   
  ReDim A(2 * KK), AV(KK), AMAX(KK), AMIN(KK), Y(NN), Z(2 * NN), _ 
          PJ(NN), P(KK * (NN + 2) + NN), AB(KK, KK + 2), AC(KK, KK + 2) As Double 
      
   NDATA(1) = 1 
  For I1 = 1 To 5 
    DATA(I1) = 0# 
  Next I1 
   
  DATA(4) = 0.00000001 
   
  For I1 = 1 To KK 
    AV(I1) = -1# 
    AMAX(I1) = 50# 
    AMIN(I1) = 0# 
  Next I1 
     
' Initial Values of Unknowns 
       A(1) = 25 
       A(2) = 39 
       A(3) = 41.5 
       A(4) = 39 
  
      X(1) = 4 
      X(2) = 2 
      X(3) = 1 
      X(4) = 0.5 
      X(5) = 0.25 
      X(6) = 0.167 
      X(7) = 0.125 
      X(8) = 0.1 
      X(9) = 0.0833 
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      X(10) = 0.0714 
      X(11) = 0.0625 
 
      Y(1) = 0.1957 
      Y(2) = 0.1947 
      Y(3) = 0.1735 
      Y(4) = 0.16 
      Y(5) = 0.0844 
      Y(6) = 0.0627 
      Y(7) = 0.0456 
      Y(8) = 0.0342 
      Y(9) = 0.0323 
      Y(10) = 0.0235 
      Y(11) = 0.0246 
Q20: 
 '  Evaluate Z Vector 
 
   For I = 1 To NN 
            Z(I) = (A(1) * (X(I) ^ 2 + X(I) * A(2))) / (X(I) ^ 2 + X(I) * A(3) + A(4)) 
   Next I 
   GoTo Q40 
Q30: 
 ' Evaluate Derivatives 
      J = NDATA(4) 
      For I = 1 To NN 
       If J = 1 Then PJ(I) = (X(I) ^ 2 + X(I) * A(2)) / (X(I) ^ 2 + X(I) * A(3) + A(4)) 
       If J = 2 Then PJ(I) = A(1) * X(I) / (X(I) ^ 2 + X(I) * A(3) + A(4)) 
       If J = 3 Then PJ(I) = -A(1) * X(I) * (X(I) ^ 2 + X(I) * A(2)) / (X(I) ^ 2 + X(I) * A(3) + A(4)) ^ 2 
       If J = 4 Then PJ(I) = -A(1) * (X(I) ^ 2 + X(I) * A(2)) / (X(I) ^ 2 + X(I) * A(3) + A(4)) ^ 2 
       Next I 
Q40: 
    Call XSOLVE(KK, NN, NDATA, DATA, A, AV, AMAX, AMIN, Y, _ 
           Z, PJ, OUTPUT, P, AB, AC) 
  
  If NDATA(2) = 0 Then GoTo Q20 Else 
  If NDATA(2) = 1 Then GoTo Q30 Else 
  If NDATA(3) > 0 Then GoTo Q40 
    
'  OUTPUT 
   
  For I1 = 1 To 4 
     Cells(20 + I1, 1) = A(I1) 
  Next I1 
      
  Cells(26, 1) = OUTPUT(1) 
             
End Sub         ****************************************************** 
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                   Table 2  Input File for Example 2  Twoeq1 

  Sub MCP()    ******************************************************* 
 
' Set For XSOLVE CALL 
' Problem Twoeq1 from Polymath 
 
  Dim KK, NN, I1  As Integer 
  KK = 2 
  NN = 2 
   
  Dim DATA(16), OUTPUT(6) As Double 
  Dim NDATA(26) As Integer 
   
  ReDim A(2 * KK), AV(KK), AMAX(KK), AMIN(KK), Y(NN), Z(2 * NN), _ 
          PJ(NN), P(KK * (NN + 2) + NN), AB(KK, KK + 2), AC(KK, KK + 2) As Double 
        
   NDATA(1) = 1 
    
  For I1 = 1 To 5 
    DATA(I1) = 0# 
  Next I1 
   
  DATA(4) = 0.00000001 
   
  For I1 = 1 To KK 
    AV(I1) = 1# 
  Next I1 
     
    AMAX(1) = 0.2 
    AMAX(2) = 0.2 
        
    AMIN(1) = 0.00001 
    AMIN(2) = 0.00001 
     
    Y(1) = 0 
    Y(2) = 0 
     
'  Start Values 
 
         A(1) = 0.1 
         A(2) = 0.1 
Q20: 
'  Evaluate Z Vector 
   Call Zval(A, Z) 
             
Q40: 
    Call XSOLVE(KK, NN, NDATA, DATA, A, AV, AMAX, AMIN, Y, _ 
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           Z, PJ, OUTPUT, P, AB, AC) 
 
  If NDATA(2) = 0 Then GoTo Q20 Else 
  If NDATA(3) > 0 Then GoTo Q40 
     
'  OUTPUT 
Q60: 
   
  For I1 = 1 To KK 
    Cells(I1 + 3, 2) = A(I1) 
    Cells(I1 + 3, 3) = Z(I1) 
  Next I1 
  Cells(7, 2) = OUTPUT(1) 
   
End Sub     ********************************************************* 
 
‘ Zval Subprogram    ************************************************** 
 
Sub Zval(A, Z) 
 
Dim dp, L, T, Q, Pi, rho, vis, v, kvis, Re, D, fF, xx1, xx2 As Double 
 
       D = A(1) 
       fF = A(2) 
       dp = 103000 
       L = 100 
       T = 25 + 273.15 
       Q = 0.0025 
       Pi = 3.1416 
       rho = 46.048 + T * (9.418 + T * (-0.0329 + T * (0.00004882 - T * 0.00000002895))) 
       vis = Exp(-10.547 + 541.69 / (T - 144.53)) 
       v = Q / (Pi * (D ^ 2) / 4) 
       kvis = vis / rho 
       Re = v * D / kvis 
        
       Z(1) = -dp / rho + 2 * fF * v * v * L / D 
       xx1 = fF - 16 / Re 
       xx2 = fF - 1 / (4 * 0.4342944 * Log(Re * (fF) ^ (1 / 2)) - 0.4) ^ 2 
       If Re < 2100 Then Z(2) = xx1 
       If Re >= 2100 Then Z(2) = xx2 
 
End Sub     **************************************************************** 
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                 Appendix     XSOLVE Calling Sequence 
 
The Subprogram is called by:  

Dim     NDATA(26), DATA(16), OUTPUT (6) 
 
Redim   X(2*K), XV(K), XMAX(K), XMIN(K), Y(N), Z(2*N), 
             PJ(N),P(K*(N+2) +N), A(K,K+2), AC(K,K+2) 
 
Call XSOLVE   (K, N, NDATA, DATA, X, XV, XMAX, XMIN, Y, Z, PJ, OUTPUT, P, A, AC) 

where 

      K = the number of independent variables (K ≥ 1)     (input) 
      N = The number of equations to be solved (N ≥ K)   (input)  
  
      NDATA – an integer storage vector 

       
            NDATA(1)  - used to control the sequence of operations internally. 
                                  Must be set to 1 on initial entry into XSOLVE. It is 
                                  reset by XSOLVE after initial entry.  (input and output) 
 
                                        Value            Meaning 
                                            1                Must be set on initial entry                (on input) 
                                            2                Analytical derivative mode                 (on output) 
                                            3                Numerical derivative mode                (on output) 
                                            4                Search mode                                         (on output)                  
                                            5                New base point mode                         (on output) 
                                           -1                Search cannot continue                      (on output) 
 
            NDATA(2)  - used to determine if function or derivative needs to be calculated 
                                  or if a new base point is being reported. It is set by XSOLVE  (output) 
 
                                        Value             Meaning  

0              Calculate the function, Z(X) 
1                   Calculate the derivative vector of the function with 

respect to X(J) where J is given in NDATA(4) and put into the 
PJ vector. 

                                           -1                  A new base point has been found. (The starting point is a 
                                                                new base point). Examine NDATA(3) for convergence. 
 
             NDATA(3) – indicates status of search at new base point. 
 
                                          Value            Meaning 
                                           >0                Gives the number of variables not satisfying convergence 
                                                                criterion where 
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| |

| |

i

i

x

x







 
 

 
                                                                and where τ and ε are specified in DATA(3) and DATA(4). 
                                                                  Recall  XSOLVE 
                                            0                  All parameters satisfy the convergence criterion.                                                                   
                                           -1                  A new base point has been found but λ  > 1 and 
                                                                γ >  90o  and the convergence criteria have not been met. 
                                                                  This implies that numerical difficulties are present.                                                                 
                                            -2                  There are more unknowns than equations (N<K) 

                                           -3                  The total number of variables to be varied is zero as indicated 
                                                                 in the XV vector. 
                                           -4                  The convergence criteria have been met (same as NDATA(3) = 0) 

                                                                 but  λ > 1 and γ < 45o
. This generally means that progress 

                                                                 has been very slow due perhaps to the presence of a ridge. 
                                           -5                  On entry the value of NDATA(1) was zero or negative. 
                                           -6                  One of the variables was out of the stated range of XMAX and 
                                                                 XMIN  on entry. 

                                           -7                  The value of   > 
810  but the convergence criteria have not been 

                                                                 met. This implies   may be too small.  
                                           -8                  Convergence criterion has been met in equation solving but 

                                                                    
1010

.   This implies existence of a relative minimum which is  

                                                                 not an exact solution.   
    
             NDATA(4) – index of variable for which analytical partial derivatives are to be calculated. 
                                   NATA(12) gives the variable index when numerical derivatives are being 
                                   used  (output)       
                                     
             NDATA(5) to NDATA(26) – used internally. 
        
      DATA – A storage vector 
 

              DATA(1) –  initial value of  . If DATA(1)  0,   is set to 10 internally.   is the factor used to 

                                  change   by multiplication or division. For a finer one dimensional search 
                                  set to a smaller value, say 2.  (Input)  

              DATA(2) -  initial value of  .    If  DATA(2)    0,  λ is set to 0.01 internally. This value will 
                                  automatically change as the computation continues. It may be monitored 

                                  in OUTPUT(6).    is the factor that is used to combine the gradient and the 
                                  Newton-Raphson methods. When λ is large (i.e. ,1.) the search is primarily 
                                  In the negative gradient direction. When it is small (i.e, 10-5) it is primarily in  
                                  the Newton-Raphson direction. (input)  
               DATA(3) -  the initial value of τ. If DATA (3) ≤ 0, τ is set to 0.001 internally. τ is used in the 
                                  convergence test. See NDATA(3) above (input). 
             DATA(4) -   the initial value of  . If DATA(4) ≤ 0,   is set to 0.0002 internally.   is used 
                                   In the convergence test (input). 

               DATA (5) -  initial value min  .  If DATA(5) ≤ 0,  min  is set to 0.0 internally. When                                                                                      
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                                     ≤  min  , the partial derivatives from the previous iteration are used 

                                  instead of computing them again. (input) 

 DATA(6) -  DATA(9)  - after the first call, the values of   ,   τ   ,     and     min  ,  

                                  respectively, used internally (output). 
               DATA(10) thru DATA(16)  - used internally. 
   
     X  -    the vector of the K unknowns. On first entry into the subprogram, initial 
               estimates must be supplied for X(1) to X(K). On each exit, the routine  
               supplies a new improved estimate of the unknowns.   On final exit this vector 
               contains the best point found to date. Locations X(K+1) to X(2K) always contain 
               the best point (i. e., base point) found to date.   
              

     XV -  A vector indicating which of the X variables are actually to be varied 
              by the program. It may be varied after each new base point. (input) 
              If XV(I) = 0., hold X(I) constant 
              If XV(I) = 1., allow  X(I) to vary by using numerical derivatives. 
              If XV(I) = -1., allow X(I) to vary by using analytical derivatives 
                                      calculated  by the user in the calling program. 
 
     XMAX -  a vector containing the upper bounds on all X variables. It may be varied 
                    after each new base point. (input) 
 
     XMIN – a vector containing the lower bounds on all X variables. It may be varied  
                    after each new base point. Thus XMIN(I) < X(I) < XMAX(I). (input)   
 
     Y –  a vector of the N desired function values. (input) 
 
     Z –  a vector of N computed function values calculated in the calling program 
            before first entry and on subsequent requests for functional values.   
            Locations Z(N+1) to Z(2N) contain the functional values corresponding to X(K+1) 
            to X(2K). (input) 
     
     PJ-  a vector of partial derivatives for the variable J at the last base point found. 
            This is one column of the P matrix. The vector that must be calculated in the calling 
            program is: 
 

                 PJ(1)  =  
1

j

z

x




                   

                 PJ(2)  =   
2

j

z

x




 

                                    . 
                                    . 
                                    . 
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                  PJ(N)  =  
n

j

z

x




        

                    It is used for derivatives input only if analytical derivatives are being used. 
                    When equations are being solved it is the calculated scaled factors on output  

            
     Output -  An output vector of variables which is reported at each new base point (output).  

           Output(1) -     ,  the value of the sum of squares at the current base point. The value 

                                   of the sum of squares at the point corresponding to the value of X on entry, 
                                   can be found in DATA(15) on output.  
          Output (2) -    ϒ   , the angle in degrees between the step actually taken and the steepest  
                                   descent  direction at the last base point. 
          Output(3)  -    a counter for the number of times a return from XSOVE is made. It is  
                                   set to zero on first entry and incremented by one on each exit. 
          Output(4)  -    a counter for the number of functional evaluations required by 
                                   XSOLVE. It is set to 1 on initial entry (to count the initial functional 
                                   evaluation) and incremented by 1 each time a return from a functional 
                                   evaluation is made. 
          Output(5) -     a counter for the number of derivative evaluations required. It is set to 
                                   zero on first entry and incremented by one each time a return from a  
                                   partial derivative request is made.  
          Output(6) -     the value of the parameter  λ used to find the current base point.  
 
      P  -   A scratch vector used to hold the values of all the partial derivatives computed in the 
               calling program. The first N * K  locations contain the partial derivatives stored  
               columnwise (an N x K matrix): 
 

                            1

1

z

x




. . . . . . . . . 1

K

z

x




 

                               .                         .  
                               .                         . 
                               .                         .                     

                            
1

Nz

x




. . . . . . . . . N

K

z

x




                                

                 The partial derivatives in the P vector will be calculated by finite differences or by the 
                 calling program, depending on the XV vector.  
 
 
       A  and AC  - Scratch matrices used internally 


