National Manufacturing Initiatives Underpinned by SBE&S

Jim Davis
Vice Provost &
Chief Academic Technology Officer
UCLA

Manufacturing creates substantial economic activity

- •70 R & D spending by industry
- •69 % of exports
- National security

Cost drive locations

Environmental impact responsibilities opportunities

Productivity growth is essential for high wage jobs

U.S. manufacturing internationally competitive in sectors due to productivity gains

EXECUTIVE OFFICE OF THE PRESIDENT

A FRAMEWORK FOR REVITALIZING AMERICAN MANUFACT

DECEMBER 2009

7 Areas of Emphasis

- 2. New technologies and business practice
- Basic research and leading technologies
 - •New options to stimulate innovation
 - •Research tax credit
 - •Spur innovation in manufacturing
 - •Structural reforms to support innovation and production
- Protect Intellectual PropertyDouble MEP

Smart Manufacturing 1.0: Integrated Decision-Making

End-to-end data and information connectivity across the plant floor

Advanced Manufacturing Is Enabled by Internet 2.0

Advanced Manufacturing

Smart Manufacturing 2.0: Enterprise-wide End-to end Connectivity

Highly-optimized Production and Demand-Dynamic Supply Chain Efficiency

- Customers "pushing" demands
- Flexible production of smaller volumes of custom products
- Less vertically integrated
- More information driven and automated

Efficiency Metrics

Change from output/input productivity measures to customization, flexibility, responsiveness, energy performance and reuse

The Consumer in the Optimized, Demand-Dynamic Plants and Supply Networks?

Customer

FIATECH's Vision of an Integrated and Automated Capital Projects Industry

EIATECH

Lifecycle Data Management and Information Integration

Council on Competitiveness 21st Century Manufacturing

Foundations for Competitiveness

Skills Talents Attitudes

Technology & Innovation

Investment

Infrastructure

Cost Basis of Competitiveness Global Market Access and IP Protection

Discontinuities and Differentiators

Pace of Change Accelerated Collaboration & Deployment Resource Cost & Efficiency

Supply Chain Management SME Networks for Value Creation Infrastructure & Organization Resilience

Environment, energy & Regulations

1/26/2011

9

- 1. Talent-driven innovation
- 2. Cost of labor & materials
- 3. Energy cost & policies
- 4. Economic, trade, financial & tax systems
- 5. Quality of physical infrastructure
- 6. Government investments in manufacturing & innovation
- 7. Legal & regulatory system
- 8. Supplier network

Deloitte.

2010 Global Manufacturing Competitiveness Index

Examine.

Dialogue 4:
Preliminary Findings and Recommendations
from the TLSI Working Groups

Accelerating Innovation

Regulation & Policy

Talent

Innovation Outreach

Regional Collaborations

Study of Innovation Clusters

300,000 Small & medium sized Manufacturers (SMEs)

HPC Modeling & Simulation – Advanced computational methods competitive advantage

Offer affordable digital manufacturing technologies to drive economic growth

Jim Davis

April 21-22 NSF Roadmap Development Workshop

1/26/2011

will be key elemente in future manufacturing facilities

biomass-based energy alternatives that are designed to minimize greenhouse gas emissions

Technology Roadmap Report

1. Motivating Smart Process Manufacturing

SMART PROCESS MANUFACTURING

EXECUTIVE SUMMARY AND FRAMEWORK FOR AN OPERATIONS AND TECHNOLOGY ROADMAP

WORKING DRAFT

PREPARED BY:
SMART PROCESS MANUFACTURING
ENGINEERING VIRTUAL ORGANIZATION
STEERING COMMITTEE

JULY 2009

- 2. The Business Case and the Business Transformation
- 3. The Technical Transformation
- 4. The Smart Process Manufacturing Roadmap
- 5. The Path Forward

Implementing 21st Century Manufacturing – September 2010

Executive Office Leads:

- Ron Bloom, Senior Advisor for Manufacturing Policy
- Aneesh Chopra, Chief
 Technology Officer, OSTP
- Sridhar Kota, Assist Director Adv.
 Manufacturing, OSTP

Agency Executive Leads:

- Kristina Johnson, DOE UnderSecretary
- Henry Kelly, DOE, Principle
 Deputy Assistant Secretary
- Patrick Gallagher, DOC NIST Director

Smart Manufacturing Leadership Coalition

- 23 Companies
- 28 Practitioner Participants
- 12 Supplier Participants
- 5 Universities systems, control, optimization, manufacturing, high performance computing
- 4 High Performance Computing centers
 - government lab and university
- 5 Manufacturing consortia/institutions

Federal

 OSTP, DOE, NIST, DOD, NSF US Senate Committee

Implementing 21st Century Smart Manufacturing

- Alcoa
- American Council for Energy Efficient Economy
- Applied Materials
- CH2MHill
- Cisco
- Council on Competitiveness
- Dow
- DuPont
- Eastman
- Eli Lilly
- Emerson
- Exxon Mobil
- Ford
- General Mills
- General Motors
- Honeywell Solutions

- Merck
- National Council for Advanced Manufacturing
- Oak Ridge National Laboratory
- Owens Corning
- Procter & Gamble
- Pfizer
- Praxair
- Purdue
- Rockwell Automation
- Sematech
- Shell
- Spitzer and Boyes
- UCLA
- U North Carolina RENCI
- U Wisconsin
- U Texas Austin

Optimized Plant & Supply Network: Meaningful Uses / Benefits

Achievable Meaningful Use Goals and Magnitude of Impact

- Demand-driven efficient use of resources and supplies in more highly optimized plants and supply
 - 80% reduction in cost of implementing modeling and simulation
 - 25% reduction in safety incidents
 - 25% improvement in energy efficiency
 - 10% improvement in overall operating efficiency
 - 40% reduction in cycle times
 - 40% reduction in water usage

Product safety

- Product tracking and traceability throughout the supply
- Sustainable production processes for current and future critical industries
 - 10x improvement in time to market in target industries
 - 25% reduction in consumer packaging
- Maintain and grow existing U.S. industrial base
 - Environment for broad innovation
 - 25% revenue in adjacent industries
 - 25% revenue in new products and services
 - 2x current SME's addressing total market
 - More highly skilled sustainable jobs created
- Positive public perception about U.S. Manufacturing
 - Americans feel our continued leadership as the world's largest manufacturer has strategic national importance

The Return on an Investment **Vision 2020**

Natural Gas	Petroleum	Electricity	GHG	Revenue	Jobs
Trillion BTUs	Million barrels	MW saved	Million metric	Million	New direct
saved per	of oil saved		tons avoided	dollars per	jobs supported
year	per year		per year	year	
907	275	7,383	166	7,263	242,104

21 1/26/2011

Comprehensive Public-Private Partnership Program

··· Recommendations of the Consultation Group

Information and Communications Technologies

Game Changing Computational Thinking

economics of change

1/26/2011

24

Assessment of US innovative capacity in SBE&S

 Nine-person team led by Prof. Sharon Glotzer of U. Michigan visited 59 academic, industrial and government sites in China, Japan, Europe.

- Report: "International Assessment of R&D in Simulation-Based Engineering and Science" (2009)
- Co-sponsored by:

1/26/2011 26

Source of Disruptive Innovation: Multi-core, hyperparallel processing.

At Oak Ridge National Lab: NSF's Kraken (Cray XT-5, 66,048 cores)
 & DOE's Jaguar (Cray XT-5, 181,504 cores, 1.6 petaflops):

960 processors, 4 teraflops, and under \$10K.

SPM http://www.oit.ucla.edu/nsf-evo-2008/

