Semi-Flipped Classroom in an Energy Balances Course

Mary M. Staehle Mariano J. Savelski

Rowan ChE Curriculum

Freshman Year

Calculus

Physics

Chemistry

Freshman Clinic

General Education

Sophomore Fall

Math

Chemistry

Biology

Sophomore Clinic

Principles of Chemical Processes I

Sophomore Spring

Math

Chemistry

Sophomore Clinic

Principles of Chemical Processes II

Fluid Mechanics

Rowan ChE Curriculum

Freshman Year

Calculus

Physics

Chemistry

Freshman Clinic

General Education

Sophomore Fall

Math

Chemistry

Biology

Sophomore Clinic

Principles of Chemical Processes I

Sophomore Spring

Math

Chemistry

Sophomore Clinic

Principles of Chemical Processes II

Fluid Mechanics

Rowan ChE Curriculum

Freshman Year

Calculus Physics

Chemistry

Sophomore

Math Chemistry Biology

Sophomore Spring

Math

Chemistry

Sophomore Clinic

Principles of Chemical Processes II

Fluid Mechanics

Course Objectives

- 1. Introduce the fundamentals of the energy balances and their role in chemical processes.
- 2. Expand the understanding of the engineering approach to open-ended problems.
- 3. Develop the capacity to employ engineering judgment to assess the validity of answers.
- 4. Use modern computer tools to solve process problems.
- 5. Continue to develop an understanding of the importance of safety and environmental issues.

Principles of Chemical Processes II

PCP II at Rowan University

- Split into two sections for the first time in Spring 2013, which corresponded to an instructor change as well.
- Two classes a week (one 75-minute and one 105-minute class/lab).
- Common exams, graded homeworks, semester-long group project
- Course-specific tutoring session once a week

Observations of PCP II - 1st round

- Students did not read the textbook.
- Students were not seeking help when they needed it.
- Students did not know how to study or how to learn (after all, this is not the 14th grade).
- As a general rule, abstract thinking skills were poor.
- Providing different in-class examples in the two sections led to heterogeneity in exam preparation and performance.

Flipping the Classroom

- We decided to partially "flip the classroom" in order to
 - Provide additional in-class problem solving time
 - Encourage students to take responsibility and ownership for their own learning
 - Expose students to different teaching styles
 - Ensure homogeneity in the students' preparation for upper-level Chemical Engineering courses

Implementation of a Semi-Flipped Classroom

- Split the classroom time:
 - One 75-minute class period: traditional lecture, active learning, problem solving, solution strategies (1 Instructor)
 - One 145-minute class/lab/exam period (+ 40min):
 flipped, collaborative learning, problem solving (Both Instructors)
 - One 120-minute course-specific tutoring session –
 Optional (*Two Seniors*)

A Semi-Flipped Classroom

- Reading Assignments
 - Conceptual/AbstractThinking Required

Readiness Assessment
 Quiz (10% of final grade)

Readiness Assessment Quizzes

- Taken verbatim from the reading assignment
 - Or -
- Multiple choice questions requiring comprehension of abstract concepts
 - Or -
- Short problem solving exercises
 - Or -
- Assessment of chart-reading abilities
- Completed independently, submitted, then discussed in pairs, answered via PollEverywhere, class-wide discussion

The heat of vaporization

Respond at **PollEv.com/rowanpcp**Text a **CODE** to 37607

Depends on the entropy of the universe	141426
May vary with T and P	141427
May vary considerably with P	141429
May vary considerably with T	141436
None of the above	141437

Total Results: 34

The heat of vaporization

concepts with feedback

IN CLASS

GOAL

Students prepare to participate in class activities

GOAL

Students check their understanding and extend their learning

GOAL

OUT OF CLASS

Effectiveness of the Semi-Flipped Classroom

- Students provided mixed reviews (as expected)
- Instructors teaching Thermodynamics I this semester have noted anecdotally that the students are more engaged.
- Performance improved on the first
 Thermodynamics exam* (77.7 to 81.3, p=0.12)

^{*} The first exam includes a question using the entropy balance, which is not covered in PCP II.

Semi-Flipped Classroom

- Seems to improve student engagement, learning, and lifelong-learning skills.
- Standardized the "foundation" across two sections.
- Introduced lower-level students to varied teaching styles in the same course.
- Easy to implement

Semi-Flipped Classroom in an Energy Balances Course

- Mary M. Staehle
- Mariano J. Savelski

